
v-Promela: A Visual, Object-Oriented Language forSPIN

Stefan Leue�
Electrical and Computer Engineering

University of Waterloo
Waterloo, Ontario N2L 3G1, Canada

sleue@uwaterloo.ca

Gerard Holzmann
Bell Laboratories
600 Mountain Ave

Murray Hill, NJ 07974-0636, USA
gerard@research.bell-labs.com

Abstract

We describe the design ofVIP, a graphical front-end to
the model checkerSPIN. VIP supports a visual formalism,
calledv-Promelathat connects the model checker to mod-
ern hierarchical notations for the specification of object-
oriented, reactive systems. The formalism is comparable to
formalisms such as UML-RT, ROOM, and Statecharts, but
is presented here in a framework that allows us to combine
the benefits of a visual, hierarchical specification method
with the power of LTL model checking provided bySPIN.
Like comparable formalisms,VIP can describe hierarchies
of behaviour and of system structure. The formalism is de-
signed to be transparent to theSPIN model checker itself,
by allowing all central constructs to be translated mechan-
ically into basicPROMELA, as already supported by the ex-
isting model checker.

1. Introduction

To manage the complexity of the software engineering
process the software life-cycle has been split up into a num-
ber of stages, and software process models associate well-
defined activities with each one of these stages. While in-
dividual process models vary in detail, they largely agree
on the existence of an analysis or requirements stage, fol-
lowed by a design stage, an implementation and unit testing
stage, an integration testing stage, and finally a maintenance
stage. In [3] Davis cites various studies that analyze the im-
pact that early life-cycle software engineering has on the
overall cost of software projects. In particular, according
to these studies removing a bug at the requirements stage
can be 200 times less costly than removing it at the mainte-
nance stage. This suggests that software engineering should
pay particular attention to the early stages of the life-cycle�The work of this author was mainly performed while visiting Bell Lab-
oratories.

in which software requirements are elicited, captured, and
automatically analyzed for consistency and correctness.

We observe two trends in software engineering method-
ologies for concurrent real-time systems. On one side of the
spectrum, there is a class of practical, object-oriented lan-
guages like ROOM [14], OMT [12] and SDL [8] that tend
to provide a homogeneous, seamless coverage of the life-
cycle down to the code generation, testing and even mainte-
nance stages, but which mostly lack the abstraction mecha-
nisms necessary to build comprehensive tractable require-
ments models that would avail themselves to automated
analysis. At the other end, there are languages like Promela
[5] and SMV [2] which provide the abstraction mechanisms
required to obtain mathematically tractable models, but fail
to provide support for more than the early stages of the life
cycle as well as to support the modularization mechanism
needed to cope with largely complex requirements specifi-
cations.

It is the goal of our paper to demonstrate that the gap
caused by this dichotomy can be narrowed, if not closed.
We introduce a visual notation calledv-Promela. The nota-
tion is based on some common cornerstones of the object-
oriented modeling paradigm for real-time systems, while
remaining translatable into Promela, which accounts for its
mathematical tractability. In the design of v-Promela we
were guided by the following set of desiderata:

1. In keeping with a trend in software engineering nota-
tions, v-Promela should be avisualnotation.

2. v-Promela should be capable of expressing bothstruc-
ture andbehaviour, key elements in description tech-
niques designed to capture software architecture at
early life-cycle stages [1].

3. The notation should addabstractionandhierarchical
layeringmechanisms to Promela.

4. It should implement a “reasonable” subset of the
object-orientedfeatures, including the representation

1

http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=16866&isYear=1999
http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-65150
http://www.ub.uni-konstanz.de/kops/volltexte/2008/6515/

of concurrent objects, inter-object communication, in-
heritance and polymorphism.

5. All structural and behavioural concepts of v-Promela
should beimplementable in Promela. A compilation of
v-Promela into Promela allows us the use of the XSPIN

model checker to validate v-Promela models.

6. The success of a visual modeling notation hinges upon
the availability of suitableCASE toolsupport. We
sketch the design of the VPI toolset that is intended to
provide for visual editing of v-Promela models, com-
pile v-Promela models into Promela code, and allow
v-Promela models to be simulated and validated using
SPIN technology.

Furthermore, we expect that v-Promela will avail itself to
compositional verification methods, e.g., assume-guarantee
reasoning, as well as to design-by-contract like require-
ments capture by pre-/post-condition pairs and invariants.
We also foresee that v-Promela - based modeling facilitate
the exploitation of symmetries that are typical for object-
oriented systems.

Other model checking languages, like for instance SMV,
could be used as a translation target for our visual notation
as well. However, we feel that the support that Promela of-
fers for inter process communication makes it most suitable
as a target language for v-Promela.

2. Related Work and Overview

Related Work. We decided to develop v-Promela as a
notation that is largely consistent with what we expect to
evolve into theUnified Modeling Language for Real-Time
Systems(UML-RT) [15]. UML-RT is primarily based on
two other techniques. First, it is an extension of theUnified
Modeling Language(UML) [11] that was developed by Ra-
tional Corporation and has become adopted by the Object
Management Group (OMG)1 into its Object Management
Architecture (OMA)2. More recently, Rational Corporation
and ObjecTime Limited have teamed up to define UML-RT
as an extension of UML (see [15]), based on the ROOM
method [14]. It is expected that based on its broad support
UML and its derivative methods will gain substantial mo-
mentum in the software engineering community. The cur-
rent state of the UML-RT language definition is rather pre-
liminary. As one of the authors puts it, UML-RT is “ROOM
in UML clothes”. However, we expect the UML-RT nota-
tion to be expanded and eventually to become adopted by
OMG as well [13]. In cases both ROOM and UML-RT do
not provide sufficient guidance in the design of v-Promela

1Seehttp://www.omg.org .
2Seehttp://www.omg.org/news/pr97/umlpr.htm .

constructs, we have taken the liberty of defining our own
language features.

UML, ROOM and UML-RT have themselves been
greatly influenced by extensive precursory work. Most no-
tably, work on Statecharts [4] has greatly influenced all
these methods. Consequently, a subset of the Statecharts
language can also be found in v-Promela. There is also a
large body of work on Promela [5], including a web site
that provides access to many Promela and XSPIN related
resources3.

A translation from pure Statecharts into Promela has
been suggested in [10]. This work translates a much more
faithful interpretation of Statecharts than the one used in v-
Promela, which is why our work and the one in [10] are not
directly comparable.

Overview. We assume that the reader has some familiar-
ity with the basics of the Promela language [5, 6]. In Section
3 we define how structure can be described in v-Promela
and illustrate its implementation in Promela. Next, in Sec-
tion 4 we explain behaviour specification in v-Promela and
discuss the corresponding Promela implementation. In Sec-
tion 5 we show how inheritance and polymorphism can be
fitted into v-Promela, and how these concepts influence im-
plementation in Promela. Section 6 discusses the architec-
ture of VIP (Visual Interface for Promela), the CASE tool
that is to support v-Promela. We conclude and define direc-
tions for future research in Section 7.

3. Structure in v-Promela

The structural description component of v-Promela,
which we describe in this Section, follows largely the UML-
RT notation as described in [15], and inherits many impor-
tant ideas from ROOM [14].

Models and Packages. Models and Packages are high-
level organizational constructs in v-Promela that help to
organize a large specification into different modules. The
highest level structuring element is the model, which can be
refined into an arbitrary number of packages. Both pack-
ages and models are not instantiable, and have no run-time
semantics, they merely hold v-Promela specifications. A
package may be refined by exactlyone capsule, a con-
cept we define in more detail in the next section. Cap-
sule structures may themselves be refined by other capsules.
v-Promela models describe eitheropenor closedsystems,
similar to the way this is accomplished in ROOM. For open
systems, during simulation in the VIP tool the user may in-
teract with the system to inject environment events. For val-

3See http://netlib.bell-labs.com/netlib/spin/
whatispin.html .

idation purposes, a system must be closed, and VIP offers
support for randomized closing of an open v-Promela sys-
tem.

Capsules. Capsules represent structural and behavioural
abstraction in v-Promela. A capsule can be decomposed
into a set of contained capsules, in this case we call the cap-
sulecomposite. The capsule decomposition defines a hier-
archy. The leaf nodes of this hierarchy do not have an inter-
nal decomposition, and we call themelementarycapsules.
Capsules describe active objects which have an independent
thread of control. There can be at most one state machine
associated with a capsule to represent the dynamic aspects
of the observable capsule behaviour.

A definition of a capsule in v-Promela entails a class def-
inition, and major portions of the class definition are visual-
ized graphically using an UML-RT type internal view col-
laboration diagram as in Figure 1, which can be thought of
describing the architecture of a very simpleplain old tele-
phony system(POTS) in which calls from an originating
party will be forwarded to a terminating party. In Figure
1 this stucture is captured by the definition of the capsule
classPOTS. This capsule class is structurally refined as con-
sisting of instances of capsule classesOriginator and
Terminator . We use an iconic representations of state
machine diagrams and collaboration diagrams placed in the
upper right hand corner of a capsule definition to indicate
that the capsule has either a structural refinement, or that it
has a state machine associated with it.

Replication, Optionality and Destruction of Capsule In-
stances. To account for the dynamic nature of concurrent
real-time systems a varying number of capsuleinstances
may exist any given point in time in a v-Promela model.
The state machine of a composite capsule in v-Promela is
capable of dynamically creating and destroying instances
of contained capsules. A replication factor for a contained
capsule of the format[minimum-number.. maximum-
number] indicates the number of instances generated at
instantiation time of the containing capsule, and the max-
imum number of possible instances, respectively. If the
lower limit is 0, we say that the capsule isoptional. When
no instance replication factor is given, the at the creation
time of a composite capsule one instance of all its sub-
capsules will also be generated. As an example, when an
instance of the capsule classPOTSis created, one capsule
instance of classOriginator will be created, but no in-
stance of classTerminator . The strings before the colon
define the names of the capsule instances, for replicated
capsules the instance name refers to an array. A capsule
instanceQ may destroy any contained non-replicated cap-
sule instanceP in a hierarchy-downwards direction by the
commanddestroy P . If P is replicated, the instantiation

pE:Oper [0]

<<capsule>>

X:Originator

POTS

Y[0..5]:Terminator

pTB: Term [0]
<<capsule>>

pAO: Orig [0]

pOA: Orig~ [0]

p2:Int~ [IntL_]

p1:Int [IntL]

pBT: Term~ [0]

Figure 1. Composite capsule with replicated
contained capsules

number of the replica to be destroyed is attached in squared
brackets. If the capsule instance to be destroyed is itself
a composite capsule, then all contained capsule instances
need to be destroyed as well.

Data Classes. In v-Promela, data objects are instances of
data classes. Data classes implement the basic Promela data
types (i.e.,bit, bool, byte, shortandint) as well as any data
structure that can be derived from the basic data types in
Promela, with the exception of channels. In v-Promela,one-
dimensional arrayscan be defined using a tabular structure
that defines a data class name, a dimension, a base type,
and an initial value. In a similar fashion, structures can be
built based on basic data classes and one-dimensional ar-
rays. The scope of the data class definitions is global for the
entire model.

Data Objects. Data objects can be instantiated from de-
fined data classes. In ROOM and UML-RT, inter-process
communication is exclusively message passing and there is
no shared variable communication. For v-Promela we de-
cided to be more permissive than ROOM and UML-RT in
order to accommodate low-level modeling needs. Hence,
we define the visibility attributesprivate, protectedand
public to limit visibility to the scope in which an object is
declared, to be global in the name scope of the capsule in
which they are declared, and to be globally accessible to all
capsule instances, respectively. If more than one capsule
uses the same name for a protected or private variable, the
innermost re-definition of that name will overlay the more
global definition. When referring to a visible object in a
different name scope v-Promela uses path names to identify
this object.

Capsule Replication and Data Objects. Data objects
may belong to replicated capsule instances and every replica
of a capsule instance hosts replicas of all data objects de-
clared for this capsule class. When replicated capsule in-
stances have non-private data objects an index notation
will be used to refer to a particular instance of that cap-
sule. Consider that the third instance of a capsule of
typeTerminator provides a public data objectdigit,
then this could be referred to asZ.Y[3]::digit where
Z is the name of the containing instance of classPOTS.
v-Promela provides for a global array variableprocid
which stores the information whether a particular capsule
instance exists at any point in time, or not.

Messages. A message in v-Promela consists of two parts,
a message identifierand an optionalmessage body. The
message identifier is an abstraction of the contents of the
message, which may be conveyed in the message body.
The type of the message identifier corresponds to a Promela
mtype, the message body is of the type of any valid data
class or of a basic data type. The semantics of message
reception in v-Promela is such that the message identifier
name in a receive statement must match the identifier of the
message at the head of the queue, and the type of the vari-
ables that follow must match the type of the message body.
The following table defines some of the message types used
in the example in Figure 1:

Message identifier Message body type(optional)

start
off hook switchhook-msg

dial dial-msg
connect internal-msg

ring tone term-msg

Protocols. Protocols define lists of message identifiers ex-
changed between instances of two capsules. A protocol has
a name which allows one to refer to the message identifier
lists. A protocol definition has global scope. The message
identifier lists can be split up in identifiers for messages sent
to another capsule instances (out-messages), and messages
received from another capsule instance (in-messages). The
capsuleExample1 in Figure 1 contains, for instance, the
following protocol, which describes the message exchanges
between originators and terminators as seen from the origi-
nator:

Protocol definition:Int

out-message identifiers in-message identifiers

connect disconnect
party-busy

We adopt from UML-RT and ROOM the notion of the
conjugateof a protocol which is the same as the non-
conjugated protocol except that the in and out lists are in-

verted. We denote the conjugation of a protocol by append-
ing a tilde at the end of the original protocol name.

Ports. The message exchange interfaces of a capsule are
called ports. A port is an abstraction for the concepts of re-
cipient and sender addresses, queueing discipline and queue
capacity of the communication infrastructure that the sys-
tem uses. Ports are represented by either white or black
filled boxes on the boundaries of capsules, c f. the boxes la-
beled ‘pAO:Orig [0]’ and ‘ p2:Int˜[IntL]’. The
string before the colon defines the name of a port, optionally
followd by the replication factor of this port, enclosed in
brackets. The string after the colon and before the blank de-
notes the protocol type of the port. The string in the squared
brackets that follows the type denotes the capacity offers
this port, i.e., the maximum number of messages that can at
any point in time be sent to and not yet received from this
port. A zero port capacity indicates synchronous communi-
cation along this port. In addition to the protocol type, two
more attributes define the type of a port. First, a port can be
of the base type, which is the case if the attached protocol
is a non-conjugated protocol. This is denoted by a black,
filled box at the boundary of a capsule. If the protocol of a
port is conjugated, we say that this port plays the conjugated
role and depict it by a white box. The second attribute is the
distinction betweenend portswhich pass messages to and
from a behaviour describing state machine, andrelay ports
which pass messages to and from capsules. End-ports are
depicted by an elongated, round-cornered rectangle which
is connected to the port box by a line, c f. the portpE in
Figure 1.

Connectors. Connections between ports indicate the fact
that messages can flow between capsules. The presence of
a connector between two ports entails that there must be
some communication infrastructure between two capsules,
although the particulars of this infrastructure are hidden.
There are two types of connectors in v-Promela: an arrow
represents unidirectional communication between the asso-
ciated ports in the direction of the arrow, while a line in-
dicates bi-directional communication. Two syntactic con-
ditions constrain when a connector can be drawn between
two ports. First, the ports myst be protocol type compatible
(c f., [14]), and second, any directly or indirectly connected
pair of end ports must have different roles (i.e., one must be
the base role, the other must be the conjugated role).

Buffers and Synchronizers. In order to remain more
consistent with the modeling capabilities of basic Promela
it might be desirable to allow active capsule instances to ac-
cess buffers in a much more flexible fashion than it is pos-
sible using the standard v-Promela message passing mecha-
nism through ports and connectors. In v-Promela we allow

<<capsule>>

POTS

<<capsule>>

<<buffer>>

[10]
W:ChanT

b2:ChanT

b1:ChanT

b3:ChanT

X:Originator

Y:Terminator

Figure 2. Composite capsule with contained
buffer

an arbitrary set of capsule instances to write objects into
or to read from a designated buffer object. The concept is
illustrated in Figure 2 where the originator and terminator
processes place tokens representing channel hardware re-
sources in a buffer instance of nameWand typeChanT,
which is the type of the objects that they can host. A buffer
has a capacity attribute which determines the maximum
number of objects it may hold at any given point in time.
The access relationship between active capsules and buffers
is described in terms of buffer access points (white or black
filled dots) and directed buffer access paths which are rep-
resented by arrows. Asynchronizeris similar to a buffer
except that it has a capacity of zero. Any interaction with
a synchronizer is via synchronous rendez-vous communica-
tion.

Implementation in Promela

Capsule definitions correspond to Promelaproctypes .
Special attention needs to be paid to optional and repli-
cated capsule instances, where more than oneproctype
may be incarnated. We introduce a counter variable
which tracks the number of currently active instances
of a particular capsule class. In the example of Fig-
ure 1 we use a byte type instance counter variable
POTSTerminator instnr to count the number of in-
stances of capsule classTerminator . The instance
counter variable is used as an additional guard for the exe-
cutability of arun statement enforcing the maximum repli-
cation constraint for a capsule class. The instance counter
will be passed as an argument to the object instance as a
parameter namedme. This allows every object instance
to know what its instance counter is. We keep a global
array variablePOTSTerminator procid to store the
process id that is returned as a result of therun statement

in the Promela code. This variable allows us to identify
which process id has been associated with which instance
of a replicated capsule. As an illustration, assume that a
state machine within capsule classPOTSwas containing a
run Terminator statement which would be translated
into the following Promela code sequence:

d_step {
(POTS_Terminator_instnr < 5) ->

_tpid = run Termonator(POTS_Terminator_instn);
POTS_Terminator_procid

[POTS_Terminator_instn] = _tpid;
POTS_Terminator_instnr++ }

The declaration of the proctype corresponding to the
replicated capsule classTerminator is proctype
Terminator(short me). InsideTerminator , ac-
cess to a global data object likedigit would need to
be translated into access to a corresponding field in a
global array data structure that keeps the values of this
data object for all replications of the capsule, for in-
stancePOTS_Terminator_digit [_me] for ac-
cess to data objectdigit inside instanceme of capsule
Terminator .

To illustrate dynamic destruction of capsule instances,
assume that proctypeP corresponds to a capsule contained
within a capsule represented by proctypeQ. The contain-
ing capsuleQ, which in the first place is responsible for
instantiating proctype Q, will use a global guard variable
P destroy to terminated the life ofP. This is accom-
plished by anunless construct at the highest level within
the code structure ofP, as in the following example:

proctype P() { { ... P’s code ...}
unless {

P__destroy ->
d_step { P_procid [P_instnr] = 0;
P_instnr--; R__destroy = 1 } } }

proctype Q() { ...
P__destroy = 1 ...}

In the implementation of private data objects, local
Promela variable declarations are used, and for protected
and public data objects, global variable declarations are
used. To disambiguate non-private data object names we
use name prefixing in the Promela code, where the prefix
is composed based on the positioning of the object in the
capsule hierarchy. Non-private replicated data objects are
implemented as arrays. For instance, to access the public
copy of a data objectdigit in the 5th instance of cap-
sule instanceY within capsule instanceZ, we obtain the
statementZ_Y_digit [5] in the corresponding Promela
code. Due to Promela constraints, non-private data objects
of replicated capsules may not be arrays themselves.

Message identifiers are translated intomtype objects,
and message bodies into Promela data types. The pairing

of two ports by a connector results in one Promela chan-
nel for each receiving end of the connection. The names of
the channels need to be disambiguated. In other words, if
capsulesC3 andC4 with bi-directionally connected ports
p and q and a protocolP are contained within a capsule
C2 which is contained within C1, then we will define the
two channelsC1 C2 p P andC1 C2 q P to represent the
connection betweenp andq. A v-Promelasend to port
p will be implemented as a Promelasend to the chan-
nel at the receiving end, i.e., a send toC1 C2 q P . A v-
Promelareceive from portp is translated into a Promela
receive from channelC1 C2 p P.

Protocols can have different messages so that their mes-
sage bodies are of different incompatible types. However,
Promela channels accept only messages that have identical
base types. To solve this problem we define the channel type
as consisting of two parts: themessage identifierwhich it is
of typemtype, and a second component which is obtained
by using a Promelatypedef for a Cartesian product con-
struction over the message body types of all messages of the
same direction in a protocol. For instance, the protocol half
of protocolInt containing all messages flowing from the
Initiator to theTerminator would be defined as

typedef Int_msgtype {internal_msg internal;
error_msg error}

where internal msg is the message body type of
disconnect messages, anderror msg is the type of
busy messages. A channel implementing portp1 in Fig-
ure 1 would be defined to be of typeInt msgtype.

v-Promela buffers and synchronizers are implemented as
Promela channels, where synchronizers have a zero channel
length.

4. Behaviour Specification in v-Promela

Both elementary and composite capsules in v-Promela
may or may not have behaviour descriptions attached to
them. We call a capsule which possesses a behaviour defini-
tion anactivecapsule. Behaviour in v-Promela is specified
using hierarchical communicating extended finite state ma-
chines (HCEFSMs) which have some similarity with State-
charts [4]. However, while Statecharts know the concept of
“concurrent” states, in v-Promela control within each cap-
sule is strictly sequential and concurrency is expressed us-
ing concurrent composition of capsules.

State Diagrams. A state in v-Promela is an abstraction
for a point of control within the computation of a cap-
sule. We use state name labels of the formcapsule-name
: state-nameto identify states and the capsules to which
they belong. TOP is a special keyword denoting the top-
level state within a capsule. Figure 3 contains the state

idle wait

conv

POTS:Terminator:TOP

busy

connect

no_answer

onhook offhook

running

POTS:TOP

idle e?launch > run Terminator()

e?launch > run Terminator()

waitidle

waitconv

POTS:Originator:TOP

connected

connectbusy

offhook

disconnect

Figure 3. Behaviour specification for example
POTS

E

X

X

X

idle

connect

busy

no_answer

onhook

called

POTS:Terminator:TOP

initial
connect

no_answer

onhook

busy

POTS:Terminator:called

offhook

conv

wait

Figure 4. Hierarchical decomposition of the
POTS:Terminator:TOP state

machines for the capsules in Figure 1. Every state con-
tained in a state diagram may be refined by another state
diagram. We call the resulting state machine hierarchi-
cal. Figure 4 presents the hierarchical decomposition of
the POTS:Terminator:TOP state. State refinement in
v-Promela can be represented in various forms. A hierar-
chical state machine may be drawn as a multi-layered state
machine in which state hierarchy is expressed by graphi-
cal inclusion. For editing purposes it is convenient to have
a partial representation for just one level of the hierarchy
available, as in Figure 4. In this notation, a circle with an
‘E’ on the boundary of a composite state indicates astate
entry pointand a circle with an ‘X’ on the boundary of a
composite state represents astate exit point. To explain the
hierarchical state machine concept in v-Promela in more de-
tail, we will from now on refer to the more generic example
in Figure 5.

As most hierarchical state machine models v-Promela
knows the concept of group transitions. These occur when
the system is in a lower-level state and a higher-level tran-
sition is enabled and then executed. As an illustration, as-
sume that the state machine in Figure 5 is in state(S2, S22,

int3

S2

m1

S222

Example:TOP

m2

int2

S1

initial

m5

S22

m4

X

m3 X

E

m7

m7

initial

S221

m6

Example:S22

m1

S21
S22

m2

int2

int1

S2

m3

int1
S3

E

Example:S2

m7

m4

X

int4

X

Figure 5. Generic HFSM example

S222)and an eventint1 is happening, then the system will
transition into state(S3). A transition into a hierarchical
state can be driven by two policies. First,return to history
drives the system into the substate of the composite state
from which it was last pre-empted, or into the initial state if
the composite state wasn’t visited before. As an example,
a return toS22 throughm4 in Figures 5 would lead into
S222 if this state was last pre-empted. Alternatively, the
return to explicit statepolicy leads back to a contained state
irrespective of where the composite state was left. As an ex-
ample consider transitionm2in Figure 5 which will always
lead intoS21. The choice of the return policy is implicit
in the specification and depends on whether entry points are
connected to an internal state, or not.

When an active capsule is instantiated, its contained state
machine will be driven into the initial state. An initial state
is denoted by a circle with a vertical bar. The system will
also carry out an initial transition labeledinitial as part
of the instantiation process.

Transition Enabling and Transition Code. Transition
code in v-Promela consists of a set of sequential v-Promela
statements that will be executed while a capsule is perform-
ing the transition from one state into a successor state, or
while executing an initial transition. Transition code can
appear either as code associated with the occurrence of a
state transition, or as state-entry and state-exit code (we re-
fer to the latter two cases as ‘state code’). In principle, with
the exception of some restrictions that we will discuss be-
low, any sequence of Promela expressions forms valid tran-
sition and state code in v-Promela. We take advantage of
the fact that Promela is a guarded command language - ev-
ery statement in Promela has an either explicitly or implic-

itly defined enabling condition. It follows that labeling a
state transition withany sort of Promela statement either
implicitly or explicitly defines an enabling condition for
this transition. There are two ways of associating transi-
tion code with transitions. First, as shown for the transi-
tions of thePOTS:Originator:TOP state machine in
Figure 3 the corresponding transition code is edited in a
separate table relating the symbolic transition name to a
piece of v-Promela code. As an example, theconnect
labeled transition could be mapped to the code sequence
pOA?dial -> p1!connect , indicating that the origi-
nator requests establishment of a connection to the termi-
nator. Alternatively, the transition code can be directly at-
tached to the transition label, as shown for thePOTS:TOP
state machine in Figure 3. The first solution scales up nicely
to models with complex transition code, the second facili-
tates comprehension of the v-Promela model when the tran-
sition code is relatively short.

Some real-time systems modeling languages are more
restrictive in their choice of a syntactic form for transition
enabling condition and transition code. A typical transition
specification format in notations like UML or OMT looks
as follows:

event-signature[guard] action-expression̂
send-clause

To remain consistent with these notations, v-Promela offers
an optional transition code table format that is consistent
with the above structure.

Promela Code within v-Promela Transitions. The
choice of a suitable subset of the Promela language that can
appear as part of v-Promela transition or state code is de-
termined by a compromise between sufficient expressive-
ness and an avoidance of clashes with other v-Promela con-
structs. All references to variables must be todata objects
declared within the scope of the state machine that the tran-
sition belongs to.Meta termsthat are not allowed include
ltl and inline . Also, declaratorsare not allowed in-
side transition code. In principle, allcontrol flowconstructs
shall be allowed with the exception oflabel definitions,
goto s, andbreak statements. Furthermore,d step defi-
nitions will not be allowed because every piece of transition
of state code will implicitly be made ad step declara-
tion. Theunless statement of Promela is not allowed -
exceptions with priorities can be expressed through higher-
level group transitions. All Promelabasic statementsare all
allowed in v-Promela’s transition code, with the exception
of enabled , name, np andpc val which only have a
meaning within Promelanever claims. The set of pre-
defined expressions in v-Promela code is restricted to,
pid , cond expr , else , empty , full , len , nempty ,

nfull , poll , run and timeout . We add the prede-

fined expressiondestroy which represents the dynamic
destruction of capsule instances. Send and receive state-
ments in v-Promela refer toport names in order to specify
a potential source or sink of the communication.

Semantic Assumptions. v-Promela is interpreted based
on an interleaving model and on the assumption of arun-
to-completionsemantics. To ensure atomicity and run-to-
completion semantics v-Promela transition code is required
to be largely ‘d step -safe’, i.e., it has to obey the con-
straints applying to Promela statement sequences appearing
within the body of ad step 4 statement.

Entry and Exit Code. v-Promela offers the definition of
entry andexit code sequences for states which will be ex-
ecuted whenever a state is entered or exited, respectively.
While being only a syntactic shorthand for transition code,
entry and exit code bear potential for nice abstractions and
may greatly increase readability of a specification.

Implementation in Promela

v-Promela states are translated into Promelalabels, and
transitions are implemented as Promelagoto statements.
Transition code will be executed prior to thegoto repre-
senting the respective transition. Group transitions are im-
plemented using the Promelaunless construct. To im-
plement run to completion semantics transition code is em-
braced by ad step statement, unless the statements in the
sequence require a combination ofatomic andd step
to ensure atomicity. To implement the return-to-history se-
mantics we use a byte size one place history variable for
every non-elementary state for which there exists the pos-
sibility of a pre-emptive exit. A value 0 of this variable
indicates that the state was either never visited before or
that it was left properly, a valuek for k = 1 : : : n indicates
that the state was pre-empted in statek out of a total ofn
substates. When jumping into a complementary state that
has a substate history variable we have to first check the
value of that variable and perform a jump to the appropriate
substate label. Entry and exit code in a hierarchical state
machines is executed whenever a simple or a group transi-
tion occurs that involves states for which entry or exit code
has been defined. A group transition from a composite state
into another state will execute the exit code for all substates
and cause a group transition for all composite substates. In
case the target state of a group transition is itself a com-
posite state, the target state will return to its proper state
according to the state re-entry rules. This means that that
group transitions may entail a cascading series of exit and

4d step is a statement modifier in Promela that asserts atomic execu-
tion of sets ofdeterministic, non-blockingandterminatingPromela state-
ments.

entry code executions. Entry and exit code is implemented
as non-parameterizedinline procedures in Promela. Putting
all the concepts together, the following example illustrates
the implementation of a portion of the hierarchical state ma-
chine defined in Figure 5:

S22: atomic { HFSM_S22_entry();
if
:: (S22_last == 0) -> S22_last = 1; goto S221
:: (S22_last == 1) -> S22_last = 1; goto S221
:: (S22_last == 2) -> S22_last = 2; goto S222
fi; }
S221: { atomic {

if
:: d_step {in?m5 -> S22_last = 2}; goto S222
fi;}

S222: atomic {
if
:: d_step {in?m6 -> HFSM_S222_exit();

S22_last = 1}; goto S221
:: d_step {in?m7 -> HFSM_S22_exit();

S22_last = 0}; goto S21
fi;}

} unless { atomic {
if
:: d_step {in?m3 -> HFSM_S22_exit()};

goto S21
fi } }

Group transitions may cause exit code executions at
lower levels. To ensure that a group transition at higher
level leads to the execution of lower level code we need to
invoke the lower level exit code procedures in the higher
level ones. For example, the following exit procedure will
be defined forS22:

inline HFSM_S22_exit () {
if

:: S22_last == 1 -> skip
:: S22_last == 2 -> HFSM_S222_exit()

fi;
printf("Exit-code of S22\n")}

5. Inheritance and Polymorphism

Object-oriented approaches to system design like
ROOM and UML-RT have suggested splitting system mod-
els into classes, and allowing classes toinherit attributes of
other classes. In v-Promela, we envision two sorts of inheri-
tance: 1)structure and behaviourinheritance, and 2)proce-
dural or abstract data typeinheritance. At the current state
of the v-Promela definitions we concentrate on the former
aspect of inheritance, which is closely related to the cap-
sule concept as defined abot, and leave the latter aspect of
inheritance up for future research.

Our approach towards structure and behaviour inheri-
tance is guided by the way that ROOM addresses this issue,
see in particular the discussion in Chapter 9 of [14]. In v-
Promela, we may define a new capsule class as a sub-class

ToProbe:TempProt

set

Thermostat:TOP

off
on
off on

Thermostat

Interface:User[0]

off
on
off on

OnOff:TOP

Interface:User[0]

OnOff

Figure 6. Abstract definition (left) and refine-
ment (right)

of an existing class (either in the same model, or from a
different model using a module identifier). We use single
inheritance, i.e., a capsule class may only have one parent
class. With the exception of protocol and data classes, a
capsule subclass inherits all structural attributes of the su-
perclass. Behavioural definitions are additional attributes of
capsules. Hence, all behavioural attributes like states, tran-
sitions, entry- and exit code will be inherited. All inherited
attributes can be overwritten or deleted within the subclass.
The effect of this type of polymorphism is strictly local to
the subclass.

To illustrate inheritance, consider the definition of an
capsule namedOnOff in Figure 6. It features an exter-
nal interface through a port calledInterface of proto-
col typeUser . The interface permits external entities to
provideon andoff messages to the switch. A subclasses
should be used to define more specific aspects of the system,
and this is usually done by adding attributes. The capsule
classThermostat in Figure 6 is a sub-class refinement
of the capsule classOnOff . All inherited, non-local at-
tributes are shown in greyed colour, whereas local attributes
are shown in black. Structurally,Thermostat has inher-
ited theInterface port fromOnOff . At the same time, a
port namedToProbe has been added to the subclass. It al-
lows interactions with the probe so that temperature values
can be sampled and heating and cooling can be controlled.
The behaviour definition ofThermostat inherits theon
and off states as well as transitions between them from
OnOff . However, the behaviour ofThermostat is more
complex than that of the simpleOnOff switch. First, a non-
exiting self-transition processes the set target value for the
thermostat that is received from the environment through
the Interface port. Second, theon state has a refine-
ment and is now responsible for regulating the temperature
of the probe to a target value.

Implementation in Promela

In the way that we have defined it, inheritance is a compile-
time mechanism. Hence, the implementation of the inheri-
tance concepts is in essence a question of suitable user in-
terface design in VIP (see Section 6). For every attribute
in every capsule definition it must be determined whether it
is a local definition, or whether it has been inherited from
a different capsule. In case of an inherited definition, there
must be a pointer to the original definition of the attribute,
and this pointer must be used at editing time to display in-
herited attributes, as well as at compile time in order to
produce suitable Promela code. During the editing of a v-
Promela model, changes to a superclass will be immediately
reflected in any subclass that inherits the change.

6. VIP Tool Architecture

As a visual notation v-Promela can only be useful if it is
supported by a graphical toolkit. In this Section we describe
the architecture ofVIP, theVisual Interface to Promelatool,
c.f. Figure 7. VIP provides a visual editor for v-Promela
models and allows them to be stored in an internal textual
format, calledv-Promela Textual Form5. The textual form
captures logics and layouts of the v-Promela models.

For the purpose of model analysis, v-Promela models
will be translated into Promela code, based on the imple-
mentation strategy that we have described in previous Sec-
tions. The Spin model checker [6] is used to check prop-
erties of the resulting Promela model. The analysis re-
sults that Spin produces will be fed back into VIP, and VIP
will interpret them in the context of the original v-Promela
model. As an example for the interpretation step, if Promela
reports an assertion violation relating to a global data object,
then the name of this object needs to be interpreted to deter-
mine which capsule instance this variable belongs to. Note
that the existence of v-Promela is completely transparent
to Spin, which allows us to use the existing Spin verifica-
tion engine without changes. VIP also contains a modified
version of the simulation capability of Xspin which allows
individual capsule instances, data objects and inter-object
message exchanges to be observed and traced. Simulation
capabilities that go beyond Xspin (animation of state ma-
chines and structural elements) will also be implemented in
VIP.

Promela models are relatively short-lived and rarely sur-
vive the requirements stage. Compatibility of v-Promela
with the UML-RT standard is therefore motivated by the
wish to use v-Promela models throughout a larger number
of stages of the design cycle. Consequently, VIP is capa-
ble of synthesizing ROOM models using the ROOM linear

5A preliminary syntax definition of the textual form is included in [7].

��������������������������
��������������������������
��������������������������
��������������������������
���������� ������������
���������� �����������
���������� �����������
���������� �����������
���������� �����������
���������� �����������
���������� �����������
���������� �����������
���������� �����������
���������� �����������
���������� �����������
��������� �����������
���������� �����������
���������� �����������
���������� ������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������� ����������
��������� ����������
��������� ����������
��������� ����������
��������� ����������
��������� ����������
��������� ����������
��������� ����������
��������� ����������
��������� ����������
��������� ����������
��������� ����������
��������������������������
��������������������������
��������������������������
��������������������������
�������������������������

��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������

models, properties

Spin

Promela

VIP

existing

FormTextual
v-Promela

ROOM
UML-RT

store

results, trails

retrieve

Figure 7. Architecture of VIP tool

form notation. In some places we made semantic assump-
tions that violate either ROOM or UML-RT semantics, and
some constructs of v-Promela do not have counterparts in
ROOM or UML/RT. Examples are the queueing strategy
for ports where v-Promela uses one queue per port, while
ROOM has one input queue for all ports, and the outer level
priority resolution of concurrently enabled HFSM transi-
tions where ROOM sets a priority on lower level transitions.
VIP will be equipped with compatibility modes that limit
the editing of v-Promela models so that compatibility with
ROOM or UML/RT is maintained.

7. Conclusion

We have presented v-Promela, a visual, object-oriented
modeling language for concurrent reactive systems. v-
Promela relies on the premise that system modeling requires
both structural and behavioural views on the system, rely-
ing on the concepts of capsules and hierarchical state ma-
chines. Because v-Promela can be compiled into Promela,
v-Promela models avail themselves to formal analysis using
the Spin model checking tool. To facilitate the handling of
v-Promela specifications we have sketched the design of the
VIP tool which is currently being implementing. Because
of the difficulty of manually editing v-Promela models and
translating them into Promela, comprehensive case studies
await completion of the implementation of VIP. However,
we have partially edited a telephone switch model in the
spirit of v-Promela.

Several research issues need to be addressed in the fu-
ture. v-Promela does not yet support a notation to cap-
ture properties that could be checked against the specifi-
cation. The Spin system takes advantage of various for-
mats in which properties can be specified. States can be
labeled asendor progressstates in Promela, and this con-
cept can be easily transferred to states in v-Promela. The
Spin tool allows properties to be attached to the model us-

ing assertions. These can be incorporated readily in the v-
Promela model. For instance, it would be possible to at-
tach assertions to either states or to transitions so that pre-
and post-conditions, as suggested in UML, can be speci-
fied. Spin allows state-oriented temporal properties to be
specified as omega automata or as LTL formulae, e.g., [9].
Future research addresses notational support for specifying
LTL properties within VIP.

Acknowledgements

The authors thank Margaret Smith for insightful com-
ments during the design of v-Promela. We also thank Bran
Selic for sharing with us his views on how UML-RT will
evolve.

References

[1] L. Bass, P. Clements, and R. Kazman.Software Architecture
in Practice. Addison Wesley, 1998.

[2] E. Clarke, O. Grumberg, and D. Long. Verification tools
for finite-state concurrent systems. InA Decade of concur-
rency – Reflections and Perspectives, volume 803 ofLNCS.
Springer Verlag, 1994.

[3] A. Davis. Software Requirements: Objects, Functions and
States. Prentice-Hall, 1993.

[4] D. Harel. Statecharts: A visual formalisation for complex
systems. Science of Computer Programming, 8:231–274,
1987.

[5] G. Holzmann.Design and Validation of Computer Protocols.
Prentice-Hall, 1991.

[6] G. Holzmann. The model checker spin.IEEE Trans. on
Software Engineering, 23(5):279–295, May 1997.

[7] G. Holzmann and S. Leue. Towards v-Promala, a visual,
object-oriented interface for spin. Unpublished manuscript,
1998.

[8] ITU-T. Recommendation Z.100: Specification and Descrip-
tion Language (SDL). Geneva, Switzerland, 1993.

[9] Z. Manna and A. Pnueli.The Temporal Logic of Reactive
and Concurrent Systems. Springer Verlag, 1992.

[10] E. Mikk, Y. Lakhnech, M. Siegel, and G. Holzmann. Im-
plementing statecharts in promela/spin. InProc. Work-
shop on Industrial Strength Formal Specification Techniques
WIFT’98, Boca Raton, Fl., USA, October 1998. IEEE Com-
puter Society.

[11] Rational Software Corporation. UML no-
tation guide. Research report, 1997. See
http://www.rational.com/uml. Published by
The Object Management Group, AD/07-08-05.

[12] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and
W. Lorensen.Object-Oriented Modeling and Design. Pren-
tice Hall, 1991.

[13] B. Selic. Various Personal Communications, May – August
1998.

[14] B. Selic, G. Gullekson, and P. Ward.Real-Time Object-
Oriented Modeling. John Wiley & Sons, Inc., 1994.

[15] B. Selic and J. Rumbaugh. Using UML
for modeling complex real-time systems.
http://www.objectime.com/new/uml/
index.html, March 1998.

	Text13: First publ. as paper in: Proceedings of the Second International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC '99), 2 - 5 May 1999, Saint-Malo, France
	Text14: Konstanzer Online-Publikations-System (KOPS)
URL: http://www.ub.uni-konstanz.de/kops/volltexte/2008/6515/
URN: http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-65150

