
On Interrupt-Transparent Synchronization
in an Embedded Object-Oriented

Operating System�
Friedrich Schön

GMD—German National Research Center for Information Technology
Kekuléstraße 7

D-12489 Berlin, Germany
fs@first.gmd.de

Wolfgang Schröder-Preikschat, Olaf Spinczyk, Ute Spinczyk
University of Magdeburg

Universitätsplatz 2
D-39106 Magdeburg, Germanyfwosch,olaf,uteg@ivs.cs.uni-magdeburg.de

Abstract

A crucial aspect in the design of (embedded real-time)
operating systems concerns interrupt handling. This paper
presents the concept of a modularized interrupt-handling
subsystem that enables the synchronization of interrupt-
driven, non-sequential code without the need to disabling
hardware interrupts. The basic idea is to use non-
blocking/optimistic concurrency sequences for synchroniza-
tion inside an operating-system kernel. Originally designed
for the PURE embedded operating system, the presented
object-oriented implementation is highly portable not only
regarding the CPU but also operating systems and yet effi-
cient.

1. Introduction

A crucial aspect in the design of (embedded real-time)
operating systems concerns interrupt handling, in particular
the synchronization of asynchronously initiated code frac-
tions. The underlying model has to be efficient and should
also reduce the periods of time during which interrupts are
physically disabled to an absolute minimum. Ideally, at
software level, interrupts should never be disabled at all.
The embedded (parallel/distributed) operating system fam-�This work has been partly supported by the Deutsche Forschungsge-
meinschaft (DFG), grant no. SCHR 603/1-1 and the Bundesministerium
für Bildung und Forschung (BMBF), grant no. 01 IS 903 D 2.

ily PURE [14] follows this ideal pattern and, thus, ensures
interrupt transparency: selected members of the PURE

family at no times disable (hardware) interrupts, or ex-
ploit special CPU instruction, for synchronization purposes.
Rather, these family members usenon-blocking/optimistic
concurrencysequences for synchronization and result into
an operating-system kernel that never has to disable inter-
rupts.

Disabling of hardware interrupts may be disadvanta-
geous for several reasons. For example, in the case of
pipeline processors there may arise the need to flush the
pipeline before interrupts can be disabled. This is to ensure
that certain pipelined instructions are not executed before
the disabling of interrupts becomes effective. As a con-
sequence, performance is lost. Another example regards
the worst-case interrupt latency, which corresponds to the
longest period of time during which interrupts are disabled.
In that case, the capability to react fast on external events
is limited. Moreover, the probability of loosing external
events is increased. There are many other examples, most
of them come out of the (embedded) real-time area. One as-
pect in the design and implementation of real-time operat-
ing systems therefore is to reduce the need for disabling in-
terrupts to an absolute minimum or to provide mechanisms
that help avoiding such measures at all [12]. The (general
purpose) operating systems available at the market base on
interrupt disabling to secure critical sections.

There are a couple of (special purpose) operating sys-
tems, e.g. [6, 9], that employ atomic CPU instructions and
provide a locking-free kernel. However, the specific algo-



rithms to achieve wait-free synchronization [7] often have
negative effects on the software structure and make the de-
velopment of highly modular systems somewhat difficult.
In addition, portability is limited. The processors typically
used in the deeply embedded1 systems area do not pro-
vide appropriate atomic CPU instructions, such ascompare-
and-swapor load-linked/store-conditional, to ease the im-
plementation of wait-free synchronization. Instead, these
instructions must be emulated using more fundamental and
often very restricted atomic CPU instructions. This emu-
lation means increased resource consumption in terms of
CPU clock cycles and memory consumption which cannot
always be tolerated.

In order to improve maintainability and portability of
(embedded) operating systems other solutions to the inter-
rupt synchronization problem should be pursued. This pa-
per presents a solution to the synchronization problem of
interrupt-driven, non-sequential code by making assump-
tions about the invocation patterns of aninterrupt service
routine (ISR). In addition, the model proceeds from a spe-
cific structure, or modularization, of an interrupt-handling
subsystem that dismembers an ISR into two closely re-
lated parts. The flow of control from one part to the other
one of an ISR is regulated by a synchronized queue. This
queue then represents the single point at which interrupt
safeness has to be ensured. It is the point where the pro-
posed interrupt-transparent (non-blocking/optimistic) syn-
chronization of shared data structures takes place.

In the following sections, first the synchronization model
of PURE is discussed. This is followed by a presentation of
the (C++) implementation. Afterwards an analysis of the
proposed implementation is presented, discussing a num-
ber of arguments regarding the suitability of the concept for
real-time embedded systems. Some concluding remarks fin-
ish the paper.

2. Synchronization Model

The partitioning of an interrupt handler into two closely
related portions is a very common approach: UNIX systems
(e.g. SVR4 [5], 4.4BSD [10], or Linux [1]) partition the
kernel into atop half and abottom halfand use anasyn-
chronous system trap(AST) to force the scheduling of an
event related to the top half; interrupt handlers in MARS [4]
are divided into aminor and major section; PEACE [15],
the PURE predecessor, invented the notion ofprologueand
epiloguefor the two halves; and Windows NT uses ade-
ferred procedure call(DPC) to propagate interrupts [3]. In
all these systems, one of the two parts (i.e. bottom half,

1The phrase “deeply embedded” refers to systems forced to operate
under extreme resource constraints in terms of memory, CPU,and power
consumption. The dominating processor technology for these systems is
still 8-bit, 16-bit technology is only slowly coming.

AST, major section, epilogue, and DPC) represents an asyn-
chronously initiated function whose execution need to be
synchronized with respect to the overall system operation.
The major difference to PURE is the technique applied for
a safe interplay of the synchronous and asynchronous (i.e.
interrupt-driven) code fractions: PURE provides a general
and interrupt-transparent solution.

The interrupt-handling subsystem of PURE is made of
two main parts (Figure 1). The features provided by the
interrupt synchronization and linkage environment(ISLE)
enable the system to attach/detach an ISR to/from the ex-
ception (i.e. trap/interrupt) vectors of the underlying CPU
in a CPU-independent manner. They also support, but do
not enforce, theobjectificationof ISR software in a CPU-
independent manner. ISLE is extended by aninterrupt-
driven embedded addition(IDEA) that, typically, constitutes
device driverwhich, in turn, contain the ISR. IDEA also rep-
resents the connecting link to other parts of a PURE operat-
ing system, for example to the process management subsys-
tem or the process scheduler. That is to say, IDEA contains,
or leads to, critical code sections that have to be secured
properly.

fl
a
n
g
e

guard

prologue

epilogue

sy
nc

hr
on

ou
s

as
yn

ch
ro

no
us

interrupt

ISLE

IDEA

Figure 1. Building blocks of the interrupt-
handling subsystem

As indicated in Figure 1, IDEA is subdivided into an
asynchronously and synchronously executing part:pro-
logueandepilogue. The transition from prologue to epi-
logue is performed by theguard. Usingflange, a prologue
is attached to some CPU exception vector and will be im-
mediately started upon signaling a hardware interrupt to the
CPU. An epilogue is considered a prologue continuation
and will be started only if granted by the guard. The guard
takes care of the serialized execution of these epilogues.



Since epilogues are executed with all interrupts enabled,
the period of time during which interrupts are blocked is re-
duced. Since critical sections are not secured by disabling
interrupts, the latency of the highest priority interrupt han-
dler can be determined solely basing on the hardware spec-
ification of the underlying CPU.

2.1. Prologue Continuations

Epilogues and critical sections are termedguarded sec-
tion. The entire guarded section is controlled by a specific
guard. As a consequence, the guard does not only specifi-
cally prevent the concurrent execution of epilogues but also
of (contemporary) critical sections. These guarded sections,
for example, partly implement common operating-system
functions such as thread scheduling, event signaling, mes-
sage communication, and memory management. In Figure
2, these functions constitute POSE, the PURE operating-
system extensions.

epilogue

prologue

ch
e

ck

I
D
E
A

guard

s
lu
ic
e

enter
leaverelay

enact

guarded section

POSE

Figure 2. Serialization of interrupt epilogues

Prologues and epilogues are (logically) loosely coupled
by the guard. This loose coupling is intimated by the dashed
arrow. The guard implements asluiceof epilogues and en-
sures that at a moment in time only one epilogue may be
active.

When a prologue wishes to start a continuation (check)
it hands over to the guard the corresponding epilogue ob-
ject to be executed (relay). The epilogue will be run (en-
act) only when the sluice is free, meaning that the control-
ling guard is locked. Initially the sluice is free, i.e. all
guarded sections are inactive. The free-state of the sluice
is canceled when a guarded section becomes active (enter),

meaning that the controlling guard is unlocked. As long as
the guarded section is active, epilogues issued by interrupt-
ing prologues are made pending by storing them in a queue.
Then the interrupted guarded section continues execution.
When the guarded section becomes inactive, the free-state
of the sluice will be restored and the queue of pending epi-
logues will be cleared by processing all pending epilogues
(leave). Similar holds when a prologue returns to the inter-
rupted thread.

2.2. Phase Transition

A difficulty to be solved by the propagation procedure is
to make sure epilogue execution goes along with the low-
est possible interrupt priority, i.e. all interrupts are enabled.
Since prologues execute on a certain hardware interrupt pri-
ority level, the interrupts are to be enabled on the phase tran-
sition from prologue to epilogue. At this moment, specific
care must be taken such that interrupt handlers will not run
the risk of infinite recursive activation and (interrupt) stack
overflow.

When the prologue asks the guard for epilogue propaga-
tion (relay), a test on an active guarded section is performed.
The epilogue is made pending, and the interrupted process
is resumed, if the request for propagation overlaps with an
active guarded section. If overlapping does not take place,
a number of follow-up steps take place to make sure that (a)
propagated epilogues run interrupts enabled, (b) stack ex-
pansion is constrained by a variable but maximum number
of nested interrupts, and (c) no pending epilogue has been
left after propagation finished. The order of the individual
steps is of importance yet: (1) the guard is to be locked,
(2) the actual interrupt priority level is to be remembered
and then are interrupts to be enabled, (3) all pending epi-
logues are to be processed, (4) the interrupt priority level is
to be restored, and (5) the guard is to be unlocked. Finally, a
check on further epilogues that may have been made pend-
ing in the meantime is to be performed and, if necessary, the
entire sequence is to be repeated.

The fourth step restores a certain interrupt priority level.
This also means the disabling of interrupts of the same
and lower priority. Nevertheless is the presented approach
meant to be interrupt-transparent. Note that the restored
interrupt priority level is that of the interrupting prologue
that initiated epilogue propagation. This priority level was
defined by hardware not by software. So there is nothing
“disreputable” to go up to this level when the prologue has
finished epilogue propagation and returns to the interrupt-
handling code of the ISR: the I/O behavior of the corre-
sponding guard function (relay) remains consistent, it starts
and ends execution with the same interrupt priority. Restor-
ing the interrupt priority level is mandatory also to prevent
the starvation of epilogues.



Since interrupts are enabled after having locked the
guard, the growth of the (interrupt) stack is restricted and
depends (a) on the maximum number of interrupt lev-
els/priorities and (b) on the stack consumption of each of the
maskable interrupt handlers. The maximal expansion of the
interrupt stack is fixed and can be computed/approximated
before run-time.

3. Implementation

Since the guard operates in an interrupt-driven context,
its queue operations need to be synchronized. This happens
in an interrupt-transparent manner. A queuing strategy has
been implemented that enables the dequeue operation, in
order to run delayed epilogues upon leaving a guarded sec-
tion, to be overlapped by enqueue operations issued by an
interrupt handler (i.e. prologue). In addition, enqueue oper-
ations are allowed to overlap themselves, e.g. when a high-
priority interrupt handler preempts a low-priority interrupt
handler. All necessary synchronization measures run with
interrupts enabled. Other overlapping scenarios need not be
considered.

3.1. Data Structures

PURE is an object-oriented system implemented in C++.
In order to be able to keep epilogue objects on a queue,
the class implementing an epilogue is inherited from a base
class that provides queuing capability. This base class,
Chain, is providing anext pointer to support the imple-
mentation of single-linked lists. The head of this list then is
implemented by a singleChain* instance. Extending the
list head by a secondChain* instance which implements
the pointer to the last list element (i.e. the tail) results in a
queue. The resulting class is shown in Figure 3.

1: class Cargo : public Chain {
2: protected:
3: Chain* tail;
4: public:
5: Cargo ();
6: void enqueue (Chain* item);
7: Chain* dequeue ();
8: };

Figure 3. Queue interface

The Cargo abstraction implements aninterrupt-
transparent queueaccording to the first-in, first-out (FIFO)
strategy. The critical operations areenqueue() and
dequeue(). They will be discussed below. The construc-
torCargo() takes care of a specific initial state represent-
ing an empty queue with the following properties: (a)next

(i.e. the head pointer) is nil and (b)tail points tonext.
In fact, an emptyCargo queue is not really empty in the
usual sense. Rather, in this case,tail points to a dummy
element which is represented by the queue head pointer.

3.2. Concurrency Problem

The data structure described in the previous section
makes the distinction whether an element is inserted into
an empty or non-empty queue obsolete. Due to the dummy
element, the queue never runs empty. As a consequence,
queue insertion happens in only two basic steps, namely:
(1)tail->next = item and then (2)tail = item,
with item being aChain*. A nil head pointer will be au-
tomatically set to the first list element when that element
is to be placed on a logically empty queue. This is be-
causetail points to thenext pointer of the last element
in the queue, and not to the last element. Initially, thisnext
pointer is the head pointer itself.

It is obvious that the above mentioned insertion mecha-
nism is not interrupt-safe. An interrupt occurring during or
after step (1) and entailing overlapped execution of the same
sequence on the same data structure results in an inconsis-
tent state. After step (1) the tail pointer still points to the old
last element which, through step (1), became the predeces-
sor of the inserted element. Overlapped execution of the in-
sertion procedure destroys that predecessor relationship and
creates a new one: the old last element now points to the el-
ement inserted during the interruption phase. At the end of
this phase, the tail pointer will point to the most recently in-
serted element. After return from interrupt, resumed execu-
tion of step (2) then lets the tail pointer point to the element
that was going to be placed on the queue but whose inser-
tion was interrupted. The effect is that that element, and any
other element enqueued afterwards, will never be found on
the queue when following the head pointer. A dequeue typ-
ically employs the head pointer to remove the next element
from the (FIFO) queue. Consequently, due to overlapping
enqueue operations, elements may be lost.

3.3. Interrupt-Safe Enqueuing

The implementation of an interrupt-safeenqueue() is
listed in Figure 4. According to FIFO, a newly to be in-
serted element becomes the last queue element and has to
terminate the list. List termination is handled in line 2 and
insertion of an element is handled in line 8. Furthermore
the tail pointer needs to be updated. This is done in line
4. In contemporary queue implementations, manipulation
of the tail pointer finishes the insertion procedure. In the
case discussed here this manipulation takes place before the
element is added to the queue.

The fundamental idea for makingenqueue()



1: void Cargo::enqueue (Chain* item) {
2: item->next = 0;
3: Chain* last = tail;
4: tail = item;
5: while (last->next) {
6: last = last->next;
7: }
8: last->next = item;
9: }

Figure 4. Enqueue operation

interrupt-safe is setting the tail pointer to the element to
be enqueued before the insertion actually takes place. The
assignment is atomic, however it causes the loss of the
insertion point. Therefore, the insertion point must be
remembered (line 3) before the tail pointer is manipulated.
But in this case overlapped execution ofenqueue()
between lines 3 and 4 may cause the insertion of further
elements. This means thatlast of the interrupted instance
potentially does not really point to the last element of the
queue and, thus, no longer remembers the right insertion
point when the interruption phase ends. The new insertion
point must be found by searching for the end of the list
(lines 5–7). Finally, the insertion can take place. The
overlapped execution ofenqueue() still results in an
ordered queue. Note that the order in which elements are
placed on the queue does not necessarily correspond to the
order ofenqueue() calls, but rather to the order in which
the assignments of the overlapping invocations indicated
by line 4 are completed.

3.4. Interrupt-Safe Dequeuing

The previous paragraphs discussed the case of overlap-
ping enqueue() by itself. This may happen when a
low-priority prologue is interrupted by a high-priority pro-
logue and both prologues request the invocation of their
associated epilogues. The other case to be handled is
that dequeue() is overlapped byenqueue(). This
may happen when a guarded section is going to be left
and, thus, pending epilogues are to be removed (employing
dequeue()) from the queue of the guard. The case that
needs not to be handled is whendequeue() interrupts it-
self andenqueue(). This kind of overlapping would be
possible only if prologues decide to remove epilogues from
the queue—and this does not correspond to the pro/epilogue
concept of PURE.

The interrupt-safe implementation ofdequeue() is
shown in Figure 5. In this implementation, the particular
concurrency problem arises if the queue holds only one ele-
ment and at the same timedequeue() is overlapped by at

least oneenqueue(). Removing this last element from
the queue normally would result in the initial (“empty”)
queue state. However this requires the manipulation of
tail by dequeue()—andtail is also manipulated by
enqueue(). In this particular situation, it may happen
that new elements will be added not to the queue but to the
element having been dequeued. The idea of an interrupt-

1: Chain* Cargo::dequeue () {
2: Chain* item = next;
3: if (item && !(next=item->next)) {
4: tail = (Chain*)this;
5: if (item->next) {
6: Chain* lost = item->next;
7: Chain* help;
8: do {
9: help = lost->next;
10: enqueue (lost);
11: } while (lost = help);
12: }
13: }
14: return item;
15: }

Figure 5. Dequeue operation

safedequeue() now is (1) to check for exactly this case
(line 5) and (2) to requeue all elements that have been en-
queued by mistake (lines 6–11). Line 3 checks for a non-
empty queue, if necessary removes an element from the list,
and checks whether this was the last element. Line 4 creates
the initial state if the queue run empty.

4. Analysis and Discussion

The correctness of theCargo implementation has been
validated by model checking. First investigations con-
firm the correctness ofenqueue() [13]. The following
subsections discuss the proposed interrupt synchronization
mechanism in terms of overhead and real-time behavior.

4.1. Overhead

The overall performance of the PURE interrupt-
synchronization scheme has been documented earlier at a
different place [2]. Table 1 shows the overhead of two
variants of the synchronized queue in comparison with the
plain, unsynchronized queue. The number of (Pentium II,
300 MHz) CPU instructions (ins.) and clock cycles (cyc.)
are presented for theenqueue() anddequeue() prim-
itives, based on the C++ compileregcs-1.0.2 release
for i80x86 processors. Method inlining has been disabled.



interrupt synchronization
function none blocking transparent

ins. cyc. ins. cyc. ins. cyc.

enqueue() 10 84 19 127 12 86
dequeue() 17 82 21 135 26 90

total 27 166 40 262 38 176

Table 1. Overhead of the queue operations

The numbers given for the interrupt-transparent syn-
chronization indicate the best case: thewhile-clause of
enqueue() (Figure 4, lines 5–7) and theif-clause of
dequeue() (Figure 5, lines 5–12) are not executed. Only
the expressions of the corresponding conditions are eval-
uated. In addition, the numbers ofdequeue() in all
three cases are for a queue with exactly one stored element.
The numbers for the blocking case include instructions and
clock cycles needed for disabling/enabling interrupts.

In the worst case ofenqueue(), additional instructions
for searching the end of the list must be taken into account
(see also lines 5–7 of Figure 4). The clock cycles consumed,
however, depend on the length of that list. The additional
overhead for a single iteration amounts to 3 instructions.
In case ofdequeue(), the worst case adds instructions
for (1) preparation of element requeuing (line 6 of Figure
5) and (2) element requeuing itself (lines 8–11 of Figure
5). Again, the number of clock cycles consumed for the
second step depends on the queue length. Also note that
requeuing is implemented usingenqueue(). The addi-
tional dequeue() overhead in the worst case, excluding
enqueue(), is 24 instructions.

Comparing the clock cycles of transparent against
blocking interrupt synchronization documents a fairly
lightweight implementation. As shown, the interrupt trans-
parentenqueue() anddequeue() perform about 33 %
better than the interrupt-blocking peers. Anenqueue()
performs worser only if been interrupted at the critical
point (between line 3 and 4 of Figure 4) for at least three
times, creating a list of at least three epilogues. A faster
enqueue() generally decreases the interrupt latency. This
makes the interrupt transparentenqueue() somewhat su-
perior to the interrupt-blocking variant.

The best case numbers for the interrupt-transparent im-
plementation of bothenqueue() anddequeue() indi-
cate the overhead of these two primitives for the assumed
normal situation in which no interruption takes place. This
situation is considered normal not only because a single in-
terrupt at a time is a fairly exceptional event, but also be-
cause overlapping interrupts are much more exceptional.
The critical and somewhat overhead-prone case comes up
only whenenqueue() (1) gets interrupted at sensitive lo-

cations and (2) could be thus overlapped by itself and when
(3) the interrupting instance shares the same queue with the
interrupted instances. Even for stressed systems this com-
bination of events is of quite low probability.

The clock-cycle difference between blocking and none
interrupt synchronization indicates the overhead of dis-
abling and enabling interrupts: 43 cycles forenqueue()
and 53 cycles fordequeue(). Compared to the raw run-
time of both primitives (84 resp. 82 clock cycles), this re-
sults into a fairly large overhead.

4.2. Worst Case Overhead

A prediction of theworst case overhead(WCO) of the
interrupt-transparentenqueue() and dequeue() de-
pends on the actual number of epilogues queued by the
guard. This number,Nepi, in turn depends (a) on the hard-
ware interrupt priority scheme and/or (b) on the implemen-
tation of the device drivers. The following formulas hold
for the two functions:WCOenq = Oins + (Nepi � 1) �OskiWCOdeq = Orem +Opre +Nepi �Oreq
In these formulas,Oins gives the overhead for list inser-
tion of a single item,Oski for skipping a single item when
searching for the list end,Orem for deleting an item from a
single-element list,Opre for preparing element requeuing,
andOreq for requeuing a single element. Given a certain
CPU, these all are constant parameters. The values of which
can be determined by source code or run-time analysis. The
only variable parameter isNepi. However,Nepi remains an
unknown quantity only if, in case of overlapping operation,
every intervening interrupt (i.e. prologue) calls for epilogue
processing. This will be the case when prologue activations
always ask the guard for continuation as epilogue, indepen-
dently of the actual execution state of that epilogue. How-
ever, a typical protocol between prologue and epilogue will
be that the prologue calls only for an inactive epilogue. That
is, whenever a prologue interrupts its associated epilogue it
will not call for epilogue activation but rather communicate
with the active epilogue directly. This limits the maximal
value ofNepi making it dependent only on case (a) above.
Being faced with a hardware that implements an 8-level in-
terrupt priority scheme, the maximum value ofNepi will be
eight.

4.3. Interrupt Frequency

The PURE synchronization concept does not prescribe
any constraints on the interrupt frequency that can be dealt
with. When operating-system software never disables in-
terrupts, the duration until which the next interrupt (of the



highest priority level) can be handled mostly depends on the
duration of the ISR—and the ISR, i.e. the prologue code, is
not considered an integral PURE building block, but rather
a component that is strongly related to the application do-
main. That is to say, PURE is free of any system parameter
that limits the frequency by which interrupts of the highest
priority can be handled.

4.4. Real-Time Capabilities

At the level of abstraction of the proposed synchroniza-
tion mechanism, the length of the epilogue queue is virtu-
ally unlimited. In a PURE environment, the epilogue queue
is given a maximum length by a careful design and imple-
mentation of all device drivers. One design issue, for exam-
ple, is to ensure that a prologue always requests the execu-
tion of a single epilogue at a time and only if the execution
of this epilogue is not pending at that moment. In this case,
the maximal possible queue length corresponds to the num-
ber of epilogue-demanding prologues (i.e. interrupt han-
dlers) in the system. In particular, if interrupt-priority levels
are not shared by many prologues, the maximal possible
queue length corresponds to the maximal possible number
of nested prologues at a time. The sum of the worst case
execution times of all the queued epilogues then determines
the maximal possible delay for a process to leave a guarded
section.

In the current PURE implementation, all epilogues are
equally qualified for execution. This is enforced by em-
ploying a simple FIFO queuing strategy when an epilogue
needs to be made pending. When being executed, any of
these epilogues may ask for the scheduling of a process of
a higher priority than the currently executing process. As
a result, the current process will be preempted in favor of
the execution of some higher-priority process. Whether or
not that process really is of the highest priority, and, thus,
preemption at that moment was the right decision, depends
on the actions performed by the subsequent epilogues in the
queue.

While the guard works according to FIFO, a real-time
scheduler typically prefers some priority- or deadline-based
scheme. Assuming there are two pending epilogues,E1 andE2, and the execution of these epilogues entails the schedul-
ing of two processes,P (E1) andP (E2), each of which
having a higher priority than the currently executing pro-
cess. Further assume that the priority ofP (E1) is lower
than the priority ofP (E2). In such a situation, and if the
execution of any epilogue could result in the preemption of
the currently running process, lower priorityP (E1) would
be run before higher-priorityP (E2) since FIFO epilogue
propagation executesE1 beforeE2.

But, being preempted or not, a process always voluntar-
ily relinquishes the CPU by executing scheduler code. In

PURE, the scheduler is controlled by a guard and a process
being run, thus, at first always has to leave some guarded
scheduler section. Leaving a guarded section eventually
causes the process to actively propagate pending epilogues.
In the scenario described above, the propagating i.e. cur-
rently running process will beP (E1), which then executesE2, which schedulesP (E2), which preemptsP (E1).

Thus, the guard occasionally does not really favor a
lower-priority process over a higher-priority process, but it
may cause a further scheduling latency until the highest-
priority process will be run. That latency has an up-
per bound and depends on the maximal possible number
of pending epilogues at a time. The scheduling latency
can be avoided only if guard and scheduler are one thing,
i.e. if the guard conforms to the strategy of the real-time
scheduler. However, this requires the management of an
interrupt-transparent queue other than according to FIFO—
which tends to increase overhead and somewhat limits the
real-time properties. The approach followed by the cur-
rent PURE implementation therefore is to only register the
scheduling decisions during epilogue propagation and then
have a single, finishingscheduler epiloguethat performs
preemption. This measure reduces the scheduling latency
by avoiding “false preemption” that might be caused by the
epilogues.

The problem discussed above may occur only in sys-
tem configurations of more than one preemption causing
epilogue. These configurations are more likely with event-
triggered real-time systems. In case of time-triggered sys-
tems [4], there will be at most one such kind of epilogue,
namely aclock epilogue. May be there will be no epilogue
at all, because the entire system runs in polling mode and
does not rely on interrupts (i.e. prologues). All these scenar-
ios are application-domain specific and supported by tailor-
made members of the PURE family of operating systems. A
further member is currently developed that eliminates false
preemption using integrated scheduling of both epilogues
(i.e. passive objects) and processes (i.e. active objects).

5. Conclusion

This paper discussed the design and implementa-
tion of a system that supports interrupt-transparent (non-
blocking/optimistic) synchronization of interrupt-driven
concurrent code. The presented approach assumes the
structuring of an interrupt-handling subsystem, e.g. a de-
vice driver, into two parts: a prologue and an epilogue. The
prologue represents an asynchronously executing interrupt
handler. The epilogue represents a synchronously executing
prologue continuation allowed to execute critical sections of
an operating-system kernel. The connecting link between
both parts is implemented by a guard whose purpose is to
control the execution of so-called guarded sections. A seri-



alization of the execution of guarded sections is performed
by collecting delayed epilogues in a queue. In this setting,
the queue represents the single point whose implementation
has to be ensured to be interrupt safe.

The presented performance figures of the PURE imple-
mentation document a still “featherweight” solution. As
a result, the delay of an interrupted process due to queu-
ing overhead can be reduced when compared to more tra-
ditional ways of queue synchronization that physically dis-
able/enable interrupts. This aspect is of particular signif-
icance for (embedded) real-time systems whose goal, be-
sides others, must be to constrain the effects of disruptive
elements such as interrupts to an absolute minimum. Since
the PURE concept does without blocking of interrupts, the
latency of the highest-priority interrupt handler solely de-
pends on static parameters, such as the processor speed or
the number of CPU instructions, and not on dynamic as-
pects, such as the timed occurrence of interrupts. Thus, that
latency can be determined in advance, before run-time.

Critical sections in PURE are so-called guarded sections.
A guarded section is never preempted to run epilogues or,
because event-driven rescheduling is considered a prologue
continuation, another process. These sections may be pre-
empted only to run prologues. Pending epilogues will be
processed upon leaving a guarded section. As a conse-
quence, the worst case delay of a guarded section is de-
termined by the number of (a) interrupting prologues and
(b) delayed epilogues. The former factor depends on the in-
terruption model of the CPU and the external physical pro-
cesses, the latter factor is constrained by the design of the
device drivers. The PURE kernel consists of only a handful
of, and moreover very small, guarded sections.

Prologues and epilogues of PURE may be event-
triggered or time-triggered. A criticism of time-triggered
systems is to give up the dynamics and flexibility of event-
triggered systems in favor of a static and somewhat inflex-
ible solution. Approaches for hard real-time scheduling as
followed, for example, with Spring [16] or MARUTI [8] thus
are supported as well by PURE. The kernels of Spring and
MARUTI, however, perform blocking synchronization of in-
terrupts, while PURE is providing a non-blocking/optimistic
solution.

PURE is designed as aprogram family [11]. The
family idea particularly accompanied the design and de-
velopment of the interrupt synchronization and linkage
environment of PURE. Selected family members per-
form interrupt-transparent synchronization, some perform
interrupt-blocking synchronization, and others perform no
synchronization at all. The highly modular design of highly
performance-sensitive parts yet yields a high performance
and pure object-oriented system in C++. The goal of PURE

is to give applications exactly the resources they need to
perform their tasks, no more and no less.

References

[1] M. Beck, H. Böhme, M. Dziadzka, U. Kunitz, R. Magnus,
and D. Verworner.Linux Kernel Internals. Addison-Wesley,
1998. ISBN 0-2011-33143-8.

[2] D. Beuche, A. Guerrouat, H. Papajewski, W. Schröder-
Preikschat, O. Spinczyk, and U. Spinczyk. The PURE
Family of Object-Oriented Operating Systems for Deeply
Embedded Systems. InProceedings of the 2nd IEEE In-
ternational Symposium on Object-Oriented Real-Time Dis-
tributed Computing (ISORC’99), St Malo, France, May
1999.

[3] H. Custer.Inside WINDOWS-NT. Microsoft Press, 1993.
[4] A. Damm, J. Reisinger, W. Schwabl, and H. Kopetz. The

Real-Time Operating System of MARS. Operating Systems
Review, 23(3):141–157, 1989.

[5] B. Goodheart and J. Cox.The Magic Garden Explained —
The Internals of UNIX System V Release 4. Prentice Hall,
1994. ISBN 0-13-098138-9.

[6] M. B. Greenwald and D. R. Cheriton. The Synergy be-
tween Non-Blocking Synchronization and Operating Sys-
tem Structure. InProceedings of the 2nd Symposium on
Operating Systems Design and Implementation, pages 123–
136, October 28–31 1996. Seattle, WA.

[7] M. P. Herlihy. Wait-Free Synchronization.ACM Transac-
tions on Programming Languages and Systems, 13(1):123–
149, January 1991.

[8] S.-T. Levi, S. K. Tripathi, S. D. Carson, and A. K. Agrawala.
The MARUTI Hard Real-Time Operating System.Operating
Systems Review, 23(3):90–105, 1989.

[9] H. Massalin and C. Pu. A Lock-Free Multiprocessor OS
Kernel. Technical Report CUCS–005–91, October 1991.

[10] M. K. McKusick, K. Bostic, M. J. Karels, and J. S. Quarter-
man. The Design and Implementation of the 4.4BSD Oper-
ating System. Addison-Wesley, 1996. ISBN 0-201-54979-4.

[11] D. L. Parnas. On the Design and Development of Program
Families. IEEE Transactions on Software Engineering, SE-
5(2):1–9, 1976.

[12] K. Ramamritham and J. A. Stankovic. Scheduling Algo-
rithms and Operating Systems Support for Real-Time Sys-
tems.Proceedings of the IEEE, pages 55–67, Jan. 1994.

[13] K. Schneider, M. Huhn, and G. Logothetis. Validation of
Object Oriented Concurrent Designs by Model Checking. In
Proceedings of the 10th IFIP WG10.5 Advanced Research
Working Conference on Correct Hardware Design and Ver-
ification Methods (CHARM99), Bad Herrenalb, Germany,
September 27–29 1999.

[14] F. Schön, W. Schröder-Preikschat, O. Spinczyk, and
U. Spinczyk. Design Rationale of the PUREObject-Oriented
Embedded Operating System. InProceedings of the Interna-
tional IFIP WG 9.3/WG 10.5 Workshop on Distributed and
Parallel Embedded Systems (DIPES ’98), Paderborn, 1998.

[15] W. Schröder-Preikschat.The Logical Design of Parallel Op-
erating Systems. Prentice Hall International, 1994. ISBN
0-13-183369-3.

[16] J. A. Stankovic and K. Ramamritham. The Spring Kernel:
A New Paradigm for Real-Time Operating Systems.Oper-
ating Systems Review, 23(3):54–71, 1989.


