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Abstract 

 
Distributed application programmers rely on 

middleware such as CORBA in order to handle the 
complexity that arises from the distributed and 
heterogeneous nature of the underlying computing 
platform. CORBA, in particular, provides a media 
streaming mechanism that can be used for media 
streaming and for associating QoS requirements with 
media streams. Despite defining the interfaces of the 
media streaming mechanism, the corresponding 
specification does not prescribe how QoS is enforced at 
low-level by the middleware.  This paper describes the 
design and implementation of a QoS architecture, called 
Quartz, which has been integrated with CORBA in order 
to provide a framework that allows applications to 
transfer real-time media in open systems. This framework 
is employed to model and simulate a pattern recognition 
mechanism for use in an automated manufacturing cell, 
which is also described and analysed in this paper. 

 
 

1. Introduction 
  
In the last decade we have observed the acceptance of 

distributed object computing as a technique that allows 
distributed applications to be developed for open, 
heterogeneous platforms and to interoperate with other 
applications through well-defined object-based interfaces. 
In order to be deployed in this context, a distributed 
application has to follow an object model defining how 
objects are structured and how they interact with each 
other. 

Distributed object models are supported by 
middleware that provides the programmer with powerful 
tools for the development of distributed applications. This 
middleware hides from the programmer the complexity 
involved in network communication, handling of network 
addresses, conversion between data formats, and other 
issues arising from the distributed and heterogeneous 
nature of the computing environment.   

Many proposals for middleware for distributed object 
computing can be found in the literature although few 
have a large market acceptance. The CORBA architecture 

[1], which was proposed in 1992 by the OMG, has 
established itself as the de facto standard in this area. The 
wide acceptance of CORBA is a result of its openness as 
a standard, of the suitability of its object model for 
heterogeneous systems, of the diversity of CORBA-
compatible products that are provided by several vendors, 
and of the support given to this technology by the 
approximately 800 members of the Object Management 
Group (OMG). 

Despite its adequacy for transmission of best-effort 
data, CORBA did not initially provide support for 
delivering real-time media (i.e., media that is associated 
with timing constraints) due to the quality of service 
(QoS) requirements that have to be fulfilled while 
delivering this category of data traffic. The immediate 
solution for the implementation of CORBA-compatible 
multimedia applications subject to QoS requirements 
would be the use of CORBA only for the transmission of 
best-effort data such as control information, while the 
media would have to be transferred using a lower-level 
network protocol with provision for QoS specification 
and enforcement. However, it is not reasonable to use 
high-level middleware to provide protocol and 
distribution transparency for best-effort data, and on the 
other hand expose the programmer to the lower-level 
protocols used for transmission of real-time media.  

In order to make CORBA suitable for the transmission 
of real-time media, OMG has defined a media streaming 
mechanism that is integrated with the CORBA 
architecture [2]. The A/V streams mechanism, when used 
together with software that enables the administration of 
computational resources with the intent of fulfilling the 
QoS constraints imposed on the delivery of real-time 
media data, allows CORBA applications to transfer media 
data by using high-level CORBA-compatible 
abstractions.  

However, the mechanisms necessary for QoS 
enforcement are not defined by the CORBA A/V streams 
specification. In order to address this deficiency, we have 
designed and implemented a QoS architecture, known as 
Quartz, that, when integrated with CORBA, can provide a 
complete framework for the development of distributed 
multimedia applications. Besides providing mechanisms 
for QoS enforcement, the integration of Quartz with 
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CORBA makes the middleware more portable, and easier 
to implement and maintain due to the separation between 
mechanisms for data transmission and QoS enforcement. 

This paper is organised as follows. Section 2 
introduces the area of distributed object computing, 
including CORBA and its media streaming mechanism. 
Section 3 introduces the Quartz architecture, which has 
been designed to provide mechanisms for specification 
and enforcement of QoS constraints in open distributed 
systems. Section 4 shows how Quartz has been integrated 
with the CORBA architecture in order to fulfil the 
requirements present in applications that handle 
continuous media. Section 5 describes an example of the 
use of CORBA and Quartz for pattern recognition in an 
automated manufacturing cell. Finally, Section 6 presents 
some conclusions. 

 
 

2. Distributed object computing 
 
In the last decade the development of software, which 

was typically based on the use of structured design and 
procedural languages, has rapidly migrated towards the 
adoption of object-oriented design and programming 
techniques.  

With the widespread adoption of object-oriented 
design and programming techniques for application 
development, it was natural that this tendency extended to 
the area of distributed computing. The adoption of object-
based approaches in distributed programming was 
reinforced by the availability of standards proposed by the 
OMG, a consortium created by software vendors, 
developers and end-users to promote object technology 
for the development of distributed computing systems.  

The OMG has proposed a set of standards for 
distributed object computing, which are described by the 
Object Management Architecture (OMA) [3]. The OMA 
is a framework of standards and concepts for open 
systems, centred around the concept of the Object 
Request Broker (ORB). In this architecture, methods of 
remote objects can be invoked transparently in a 
distributed and heterogeneous environment through the 
ORB. 

The OMG also specifies a series of standard services 
that complement the ORB, such as a naming service, a 
life cycle service, an event service, a transaction service 
and a security service, which are often necessary in a 
distributed environment.  

 
2.1. CORBA 

 
The Common Object Request Broker Architecture is 

the standard ORB defined by the OMG [1]. The CORBA 
specification establishes the roles of the components of 
the ORB and defines their interfaces. By introducing a 

common architecture, the OMG makes transparent for 
applications the differences between distinct CORBA 
implementations and lower-level systems.  

In the CORBA environment, each object 
implementation has its interface specified in IDL 
(Interface Definition Language). Clients issue remote 
method invocations as if they were local object calls. 
These calls are transferred to the server object through the 
ORB, which acts like an “object bus”, establishing a 
“network of objects”. 

A communication protocol called IIOP (Internet Inter-
ORB Protocol) is used to allow interoperability between 
different CORBA implementations. In addition, the OMG 
has approved mappings of the IDL interfaces for the main 
programming languages in order to allow objects written 
in different languages to interoperate. 

CORBA has become a de facto standard for distributed 
object computing. Several legacy applications in sensitive 
areas such as banking and telecommunications have been 
ported to CORBA platforms, and new applications have 
been built based on CORBA in order to obtain easy 
interoperability with other applications and to improve 
portability and reuse.  

 
2.2. The CORBA streaming mechanism 

 
The CORBA streaming mechanism [2] was proposed 

by the OMG in order to provide support for delivery of 
continuous media data in CORBA-based systems. This 
mechanism defines a group of abstractions to deal with 
stream data in multimedia systems. These abstractions are 
illustrated in Figure 1.  
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 Figure 1. The CORBA streaming mechanism 

Virtual device objects abstract multimedia devices (i.e. 
cameras, speakers, etc) used by a multimedia application. 
A stream control object allows the user to control media 
flows (i.e., start and stop them) as well as add/remove 
parties to/from multi-party connections.  

Stream endpoints transfer stream data through the 
network, getting data from and delivering data to virtual 
devices. Each endpoint has one or more associated media 
flows, which are abstracted as flow endpoint objects 
located at each end of the flow. Flow endpoints are 
classified as producers and consumers according to the 
role performed by them in the transfer of data. 
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The data delivery is subject to QoS constraints 
described during the creation of the stream, i.e., during 
the binding of two or more virtual devices. A binding 
operation establishes a stream between two virtual 
multimedia devices, defining the QoS parameters 
associated to the stream. Two binding semantics are 
allowed. The simple local binding uses the virtual device 
and returns a stream control object. In the third party 
binding mechanism, a stream control object can bind two 
(or more) remote virtual devices and keep control over the 
data flow.  

The QoS parameters associated with a stream (such as 
video resolution and the number of audio channels) can 
be specified through the stream control object, through 
the stream endpoint or through individual flow endpoints. 

With the introduction of the stream mechanism, the 
CORBA architecture becomes suitable for describing 
applications that handle real-time media, and can be 
adopted as the common middleware for control and 
transfer of media. Nevertheless, despite allowing CORBA 
applications to handle real-time media, the CORBA 
streaming mechanism does not specify how QoS 
constraints imposed on the delivery of media data are 
enforced. In order to allow QoS constraints to be 
interpreted and enforced, we have proposed a framework 
that integrates a QoS architecture, called Quartz, into the 
CORBA architecture. 

 
 

3. The Quartz architecture 
 
Many distributed applications can function properly on 

currently available networking platforms and operating 
systems. However, there exists a category of applications 
that is not satisfied by the best-effort resource 
management policies provided by the majority of the 
computing platforms that are currently available. For 
these applications, the availability of resources provided 
by the underlying system is required to be predictable. 
These applications are said to have quality of service 
(QoS) requirements, and include applications varying 
from real-time control systems to distributed multimedia 
systems.  

Applications that require a certain level of QoS must 
specify their requirements in a clear and accurate manner 
by using QoS parameters. The values of these parameters 
reflect the requirements imposed by the application, and 
can be stored in pre-defined user profiles containing the 
QoS constraints imposed on the behaviour of the 
application or can be obtained by the application through 
direct interaction with the user.  

The achievement of the specified level of QoS is 
typically made possible through the reservation of the 
resources managed by the underlying system that are 
necessary to provide the network and operating system 

services used by the application with the requested level 
of quality. These resources include network bandwidth, 
processing time, physical memory, and access to 
multimedia hardware.  

Several operating systems and network protocols 
incorporate mechanisms that allow applications to retain 
resources for their exclusive use. These mechanisms, 
called resource reservation protocols, are the key 
elements that support the provision of QoS guarantees. 
Unfortunately, most applications do not benefit from 
these mechanisms because the distributed computing 
middleware on which they rely is still being adapted to 
make use of such mechanisms. Furthermore, multiple 
resource reservation protocols coexist in open systems. 
Consequently, allowing applications to reserve resources 
via a middleware layer implies that the differences 
between reservation protocols have to be handled by the 
middleware. 

Middleware components, usually referred to as QoS 
architectures, are responsible for providing mechanisms 
for specification and enforcement of QoS that make use 
of the resource reservation protocols provided by the 
underlying system. QoS architectures deal with issues 
such as the translation of QoS parameters comprehensible 
at the application-level into the parameters understood by 
the underlying reservation protocols that control access to 
the resources provided by the system. Without the 
services provided by a QoS architecture, these issues 
would have to be dealt with by the application.  

Research on QoS architectures has resulted in several 
proposals that can be found in the literature (see [4] for a 
survey and [5] for an analysis of the open issues in this 
area of research). We have identified four main 
limitations that prevent the use of the existing QoS 
architectures in open systems. These limitations are: 
• most existing QoS architectures require QoS to be 

specified using a low-level format that is not 
appropriate for applications with a more high-level 
notion of QoS, or use a format appropriate only for one 
specific area of application;  

• QoS enforcement often occurs at either network or 
operating system level, instead of both, and in some 
cases the underlying system is not made completely 
transparent for the application, which still has to deal 
with low-level issues;  

• the use of most existing architectures in open, 
heterogeneous systems is prevented due to their close 
integration with the underlying system; and 

• most QoS architectures ignore the possibility of 
dynamic resource adaptation, which can occur due to 
factors such as resource failure or system 
reconfiguration. 
A QoS architecture that addresses these limitations 

would, besides handling the complexity originating from 
the necessity of obtaining QoS-constrained services from 
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the underlying platform on behalf of applications, make 
applications easier to implement and increase their 
portability between different underlying platforms. In 
addition, such a QoS architecture would allow 
application programmers to use the same high-level 
interface for specifying QoS requirements for 
applications inserted in different application contexts and 
making use of different networking infrastructures and 
operating systems. 

Quartz is a generic architecture for the specification 
and enforcement of QoS that provides mechanisms 
necessary for building applications with QoS 
requirements in open systems.  

 
3.1. Overview of Quartz 

 
The Quartz QoS architecture [6] is composed of a QoS 

Agent running on top of the several resource reservation 
protocols available in the target system. QoS applications 
use the services provided by the QoS Agent to obtain the 
desired level of QoS.  
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Figure 2. Overview of the Quartz architecture 

Figure 2 situates the Quartz architecture in a 
computational system. At the application level, 
applications with QoS constraints (such as multimedia 
applications, real-time applications, etc.) interact with 
Quartz through interfaces that are specialised for the 
corresponding area of application.  

The QoS Agent, the major component of the Quartz 
architecture, receives the QoS constraints imposed by 
applications, interprets them, and interacts with the 
underlying system in order to enforce these QoS 
constraints. 

The underlying system contains resources that are used 
by the application. It is typically composed of several 
sub-systems, which can be grouped into two main areas: 
the network infrastructure (e.g., ATM or Internet 
protocols) and the operating system (e.g., a real-time or 
desktop operating system with reservation capabilities). 
The QoS Agent sees networks and operating systems as 
resource providers. Each resource provider allows its 
resources to be allocated through a resource reservation 
protocol. The QoS Agent must know how to interact with 
each of the resource reservation protocols present in the 

computing environment, using their interfaces in order to 
allocate resources for applications.  

The QoS Agent is a placeholder into which other 
components can be plugged in order to interact with the 
surrounding environment. It is responsible for two main 
tasks:  
• Interpreting the QoS requirements specified by the 

application in the form of QoS parameters, translating 
them from a format understood by the application into 
a format suitable for performing resource reservations; 
and  

• Interacting with the underlying resource reservation 
mechanisms in order to allocate the necessary 
resources for performing the service subject to QoS 
requirements.  
Being just a placeholder for other components, the 

QoS Agent does not perform these tasks directly. Instead, 
it relies on other components that are specialised for 
translation of QoS parameters and interaction with 
resource reservation protocols. Since the translation 
process depends directly on the application and on the 
resource being used, and the interaction with reservation 
protocols depends on the interface provided by this 
particular protocol, specialised components will be used 
in each case. These components will be plugged into the 
QoS Agent whenever necessary.  

 
3.2. QoS specification and translation 

 
In an open environment, different forms of expressing 

QoS are present in different abstraction levels and are 
used by distinct applications and platforms. A QoS 
architecture has to be able to interpret (i.e. translate and 
understand) these different QoS parameter formats to be 
used in multiple application fields and to enforce QoS 
using different resource reservation protocols.  

In order to avoid having a translator for each 
combination of application field and reservation protocol, 
Quartz adopts a three-step translation mechanism. The 
QoS requirements of the application are specified in the 
form of application-specific QoS parameters, which are 
first translated into a set of generic application-level QoS 
parameters defined by Quartz. These parameters are 
further translated into a set of generic system-level QoS 
parameters and balanced between the network and the 
operating system. Finally, generic system-level 
parameters are translated into the system-specific QoS 
parameters understood by each of the reservation 
protocols used by the application.  

Table 1 illustrates the transformation undergone by a 
parameter at the different levels of the translation process 
(in this case, video quality is translated into a set of ATM 
parameters). Table 2 illustrates the case of a parameter (in 
this example, the overall delay) that must be balanced 
between the network and the operating system. 
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Table 1. Example of parameter translation   

Parameter Set Parameter Values 
Application-specific 
Parameters 

Video::Quality = VHS  (352x240 
pixels; 24 bits/pixel; 30 frames/sec) 

Generic Application-
level Parameters 

App::DataUnitSize = 247.5 Kb;  
App::DataUnitRate = 30 units/sec. 

Generic System-level 
Parameters 

Net::Bandwidth = 7.425 Mb/sec. 

System-specific 
Parameters 

ATM::PeakCellRate = 155 cells/sec. 

Table 2. Example of parameter balancing 

Parameter Set Parameter Values 
Generic Application-
level Parameters. 

App::EndToEndDelay = 500 msec. 

Generic System-level 
Parameters 

Net::Delay = 300 msec.;  
OS::Delay = 200 msec. 

 
3.3. Internal structure of Quartz 

 
The internal structure of the QoS Agent is illustrated in 

Figure 3.  
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Figure 3. Detailed structure of the QoS agent 

The translation unit performs the translation of QoS 
parameters between the different formats used at different 
levels in the architecture. In addition, the translation unit 
balances the usage of interchangeable resources provided 
by the different sub-systems (i.e., the network and the 
operating system) that are present in the underlying 
system. The translation unit contains QoS Filters and a 
QoS Interpreter. QoS Filters can be subdivided into 

application and system filters, one for each application 
field and for each sub-system present at the lower level, 
respectively. Filters are responsible for translating 
between QoS parameters represented internally by Quartz 
and any external format. The QoS Interpreter handles 
parameters formats used internally by Quartz at different 
abstraction levels and balances the use of resources 
provided by the underlying system.  

The QoS Agent also encapsulates multiple system 
agents, which are responsible for interacting with the 
reservation protocols administering the use of the 
resources provided by the underlying system. The system-
specific agents get the values of QoS parameters 
determined by the translation unit and perform the 
reservation of the resources provided by the 
corresponding sub-system using the associated 
reservation protocol.  

 
3.4. Analysis of Quartz 

 
The Quartz architecture supports heterogeneity by 

encapsulating the QoS mechanisms necessary for 
interacting with a specific resource reservation protocol or 
application area into a replaceable component with a 
standardised interface. These components are plugged 
into the architecture whenever the associated protocol or 
application area is in use. As a result, the architectural 
core is highly portable, reusable and extensible because 
the specifics of the application area and of the reservation 
protocols present in the underlying system are 
encapsulated by application filters and by system filters 
and system agents respectively. Replacing the application 
filter can accommodate changes at application level. 
Similarly, changes at system level imply the replacement 
of system filters and system agents. Filters and system 
agents may be selected from a component library 
provided by Quartz or implemented by the application 
programmer.  

In addition, the characteristics of the translation 
mechanism result in a compromise between the needs of 
different application fields regarding the manner in which 
QoS constraints are expressed and the generalisation 
necessary for the architecture to be deployed over 
heterogeneous platforms. In fact, the QoS interpreter, 
much like the other components, can be extended to 
recognise new QoS parameters and implement new 
balancing policies, or it can even be entirely replaced by 
the user in order to implement a whole new QoS 
specification mechanism. 

Support for dynamic resource adaptation is also 
provided by Quartz. In the event of adaptation, Quartz 
tries to perform transparent resource adaptation at system 
level by rebalancing interchangeable resources. When 
adaptation at system level is not feasible, the application 
is notified and asked to adapt its requirements.  
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We have implemented a functional prototype of the 
Quartz architecture in order to analyse its behaviour while 
supporting applications with QoS requirements in a 
heterogeneous environment. This prototype has 
component agents and filters for the RSVP protocol 
(using PC-RSVP provided by Intel), for ATM Networks 
(using ForeSystem’s ATM ForeRunner LE 155 Mbps PC 
cards and a Fore Systems ASX 100 switch), and for the 
real-time mechanisms provided by Windows NT©.  

 
 

4. Integration with CORBA 
 
Quartz has been integrated with the CORBA 

architecture in order to provide a complete framework for 
the deployment of applications with QoS constraints.  

The Quartz/CORBA framework relies on the CORBA 
streaming mechanism, which was described in section 
Figure 4, for transferring continuous media data between 
CORBA objects distributed over the network. The data 
delivery is subject to QoS constraints described during the 
creation of the stream, i.e. during the binding of two or 
more virtual devices.  

The process of QoS specification, translation and 
enforcement are delegated to the instances of the Quartz 
QoS Agent that are associated with each flow endpoint. 
The stream endpoint linking the partners has knowledge 
about the quality of the communication service that has to 
be provided in order to achieve the QoS specified by the 
application. All of this information is transferred to the 
QoS Agent, which interprets this information, balances 
requirements between components, and then passes these 
requirements to the corresponding system agents.  

We have an in-house implementation of the A/V 
streams mechanism [7] that supports the light profile of 
the standard defined by the OMG. The support was 
written in C++ using Iona’s Orbix 2.3. The 
implementation was carried out on top of Windows NT 
4.0 using Microsoft’s Visual Development Studio 5.0. 
The implementations of the TCP/IP and UDP/IP protocols 
(including IP multicast) provided by the operating system 
were used for the transmission of continuous media data. 
This implementation of the CORBA A/V streams 
mechanism was adapted in order to use Quartz for 
provision of QoS. This is done through the flow endpoint, 
which interacts with Quartz in order to specify the QoS 
requirements imposed by the application. By separating 
the support for QoS from the communication support (i.e., 
from the implementation of the A/V streams mechanism) 
we have made the middleware more portable and easier to 
implement, test and maintain. 

The interaction between flow endpoints and Quartz 
comprises the following tasks: 
• initialisation of Quartz, at which point the 

communication port and the process that will avail of 

the services on which QoS requirements will be 
imposed are identified; 

• request for enforcement of QoS requirements during 
the establishment of a connection between flow 
endpoints; and 

• receipt of upcalls from the QoS agent, which are issued 
in order to report QoS adaptation, errors or warnings. 
By performing these tasks, flow endpoints make the 

use of Quartz completely transparent to applications, 
which continue to specify their QoS requirements through 
the QoS specification mechanisms that are provided by 
CORBA A/V streams. 

The A/V streams filter imports parameters and values 
from the AVStreams::QoS class defined by the A/V 
streams specification and translates them into generic 
application QoS parameters. Reverse translation is also 
executed by the filter in case of QoS adaptation. The A/V 
streams QoS parameters are listed in Table 3.  

Table 3. A/V streams QoS parameters  

Parameter Name Description 
A/V::AudioSampleSize Size of audio sample  
A/V::AudioSampleRate Number of audio samples 
A/V::AudioNumChannels Number of audio channels 
A/V::AudioQuantisation Quantisation (linear, u-law, ...) 
A/V::VideoFrameRate Number of video frames  
A/V::VideoColourDepth Number of bits per pixel 
A/V::VideoColourModel Color encoding (RGB, CMY, ...) 
A/V::VideoResolutionHorz Horizontal resolution  
A/V::VideoResolutionVert Vertical resolution  

 
The A/V streams QoS parameters, after being 

translated by the A/V streams filter, are further translated 
by the Quartz translation unit and handed to the system 
agents corresponding to the reservation mechanisms 
present in the system. At this point, the corresponding 
system agents use the available resource reservation 
protocols in order to enforce QoS.  

The use of Quartz for enforcing QoS on behalf of 
CORBA makes the middleware more portable and 
simplifies testing and maintenance due to the separation 
between QoS enforcement and actual data transfer. 
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By way of example, Figure 4 shows an application 
scenario in which a video conferencing application is 
implemented using the Quartz/CORBA framework. The 
application specifies the characteristics of the media 
stream, i.e. the number of flows of audio and video and 
their expected quality. The CORBA streaming 
mechanism handles the transmission of media between 
partners, and controls the flow of media and the 
membership of the conference. Quartz is informed of the 
QoS requirements associated to the media flows and 
handles them accordingly.   

 
 

5. Application 
 
We have used the Quartz/CORBA framework to 

simulate an automated manufacturing cell in which 
manufactured parts placed on a conveyor belt are 
classified by a robot. The classification process is done by 
analysing the image generated from a video camera using 
pattern recognition software that employs techniques 
based on neural networks.  

In this scenario, which is illustrated by Figure 5, the 
image generated by the camera is transferred to a 
computer in the control room, which then instructs the 
robot to place parts in the correct storage bin or to discard 
parts in case they are found to be damaged. Due to the 
dynamics of the manufacturing process, the image has to 
be transferred through the network and analysed in a 
limited time so that the robot does not miss parts or 
discard them unnecessarily.  

 

Oven

Robot

Bin

Camera

 

Figure 5. Automated manufacture cell 

We can simulate this scenario in the context of the 
Quartz/CORBA Framework by imposing QoS constraints 
on a virtual camera device, which ensures that the video 
will be transferred by the camera in time for the pattern 
recognition process to occur.  

Constraints are also imposed on the computer in the 
control room in order to ensure that the input device will 
be ready to receive the image, and that the image will be 
analysed in time by imposing constraints on the duration 
of the pattern recognition process. These QoS constraints 
are interpreted and enforced by the Quartz QoS Agent 
corresponding to the flow endpoints that are attached to 
each of the virtual devices. The software model that was 
just described is illustrated in Figure 6. 
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Figure 6. Software model of the pattern  
recognition mechanism 
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Figure 7.Transmission capacity of the  
A/V streams mechanism 
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Figure 7 shows the performance that can be obtained 
with our implementation of the CORBA streaming 
mechanism in terms of bandwidth per packet size. These 
performance measurements were obtained in a 10Mbps 
Ethernet local area network working with a light load. 
Similar performance can be guaranteed even under heavy 
load conditions by using Quartz and RSVP for 
performing resource reservations, provided that the frame 
size and frame rate of the video produced by the camera 
are within the area of operation displayed in the graph. 

For the pattern recognition process, which is a very 
time-consuming process based on neural networks, we 
assume that it should not exceed a well-known deadline 
for each part being analysed with the processor working 
under unloaded conditions. Despite the fact that Windows 
NT does not provide deadline-based real-time scheduling 
algorithms, Quartz can guarantee unloaded behaviour by 
using the real-time scheduling class provided by the 
Windows NT scheduler. 

This example shows how Quartz can be used together 
with CORBA in order to provide mechanisms for QoS 
enforcement for video transfer and real-time computing. 
Quartz can also provide support for QoS enforcement in 
different application areas and computing platforms by 
rearranging its internal structure. 

 
 

6. Conclusions 
 
In this paper we have presented a QoS architecture 

that, when integrated with CORBA, provides a complete 
framework for the transmission of real-time media data in 
open systems. In this environment, QoS requirements 
imposed on the flow of media data are enforced by 
Quartz, while CORBA is responsible for the transmission 
of control and media data.  

The Quartz/CORBA framework has been implemented 
and employed to simulate a pattern recognition 
mechanism used in an automated manufacture cell. This 
application shows the usefulness and the efficiency of the 
framework as a tool for building CORBA-compatible 
applications that handle real-time media. 
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