
An Open QoS Architecture for CORBA Applications

Frank Siqueira and Vinny Cahill
Distributed Systems Group, Department of Computer Science, Trinity College Dublin, Ireland

Frank.Siqueira@cs.tcd.ie, Vinny.Cahill@cs.tcd.ie

Abstract

Distributed application programmers rely on

middleware such as CORBA in order to handle the
complexity that arises from the distributed and
heterogeneous nature of the underlying computing
platform. CORBA, in particular, provides a media
streaming mechanism that can be used for media
streaming and for associating QoS requirements with
media streams. Despite defining the interfaces of the
media streaming mechanism, the corresponding
specification does not prescribe how QoS is enforced at
low-level by the middleware. This paper describes the
design and implementation of a QoS architecture, called
Quartz, which has been integrated with CORBA in order
to provide a framework that allows applications to
transfer real-time media in open systems. This framework
is employed to model and simulate a pattern recognition
mechanism for use in an automated manufacturing cell,
which is also described and analysed in this paper.

1. Introduction

In the last decade we have observed the acceptance of

distributed object computing as a technique that allows
distributed applications to be developed for open,
heterogeneous platforms and to interoperate with other
applications through well-defined object-based interfaces.
In order to be deployed in this context, a distributed
application has to follow an object model defining how
objects are structured and how they interact with each
other.

Distributed object models are supported by
middleware that provides the programmer with powerful
tools for the development of distributed applications. This
middleware hides from the programmer the complexity
involved in network communication, handling of network
addresses, conversion between data formats, and other
issues arising from the distributed and heterogeneous
nature of the computing environment.

Many proposals for middleware for distributed object
computing can be found in the literature although few
have a large market acceptance. The CORBA architecture

[1], which was proposed in 1992 by the OMG, has
established itself as the de facto standard in this area. The
wide acceptance of CORBA is a result of its openness as
a standard, of the suitability of its object model for
heterogeneous systems, of the diversity of CORBA-
compatible products that are provided by several vendors,
and of the support given to this technology by the
approximately 800 members of the Object Management
Group (OMG).

Despite its adequacy for transmission of best-effort
data, CORBA did not initially provide support for
delivering real-time media (i.e., media that is associated
with timing constraints) due to the quality of service
(QoS) requirements that have to be fulfilled while
delivering this category of data traffic. The immediate
solution for the implementation of CORBA-compatible
multimedia applications subject to QoS requirements
would be the use of CORBA only for the transmission of
best-effort data such as control information, while the
media would have to be transferred using a lower-level
network protocol with provision for QoS specification
and enforcement. However, it is not reasonable to use
high-level middleware to provide protocol and
distribution transparency for best-effort data, and on the
other hand expose the programmer to the lower-level
protocols used for transmission of real-time media.

In order to make CORBA suitable for the transmission
of real-time media, OMG has defined a media streaming
mechanism that is integrated with the CORBA
architecture [2]. The A/V streams mechanism, when used
together with software that enables the administration of
computational resources with the intent of fulfilling the
QoS constraints imposed on the delivery of real-time
media data, allows CORBA applications to transfer media
data by using high-level CORBA-compatible
abstractions.

However, the mechanisms necessary for QoS
enforcement are not defined by the CORBA A/V streams
specification. In order to address this deficiency, we have
designed and implemented a QoS architecture, known as
Quartz, that, when integrated with CORBA, can provide a
complete framework for the development of distributed
multimedia applications. Besides providing mechanisms
for QoS enforcement, the integration of Quartz with

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on September 4, 2009 at 07:19 from IEEE Xplore. Restrictions apply.

CORBA makes the middleware more portable, and easier
to implement and maintain due to the separation between
mechanisms for data transmission and QoS enforcement.

This paper is organised as follows. Section 2
introduces the area of distributed object computing,
including CORBA and its media streaming mechanism.
Section 3 introduces the Quartz architecture, which has
been designed to provide mechanisms for specification
and enforcement of QoS constraints in open distributed
systems. Section 4 shows how Quartz has been integrated
with the CORBA architecture in order to fulfil the
requirements present in applications that handle
continuous media. Section 5 describes an example of the
use of CORBA and Quartz for pattern recognition in an
automated manufacturing cell. Finally, Section 6 presents
some conclusions.

2. Distributed object computing

In the last decade the development of software, which

was typically based on the use of structured design and
procedural languages, has rapidly migrated towards the
adoption of object-oriented design and programming
techniques.

With the widespread adoption of object-oriented
design and programming techniques for application
development, it was natural that this tendency extended to
the area of distributed computing. The adoption of object-
based approaches in distributed programming was
reinforced by the availability of standards proposed by the
OMG, a consortium created by software vendors,
developers and end-users to promote object technology
for the development of distributed computing systems.

The OMG has proposed a set of standards for
distributed object computing, which are described by the
Object Management Architecture (OMA) [3]. The OMA
is a framework of standards and concepts for open
systems, centred around the concept of the Object
Request Broker (ORB). In this architecture, methods of
remote objects can be invoked transparently in a
distributed and heterogeneous environment through the
ORB.

The OMG also specifies a series of standard services
that complement the ORB, such as a naming service, a
life cycle service, an event service, a transaction service
and a security service, which are often necessary in a
distributed environment.

2.1. CORBA

The Common Object Request Broker Architecture is

the standard ORB defined by the OMG [1]. The CORBA
specification establishes the roles of the components of
the ORB and defines their interfaces. By introducing a

common architecture, the OMG makes transparent for
applications the differences between distinct CORBA
implementations and lower-level systems.

In the CORBA environment, each object
implementation has its interface specified in IDL
(Interface Definition Language). Clients issue remote
method invocations as if they were local object calls.
These calls are transferred to the server object through the
ORB, which acts like an “object bus”, establishing a
“network of objects”.

A communication protocol called IIOP (Internet Inter-
ORB Protocol) is used to allow interoperability between
different CORBA implementations. In addition, the OMG
has approved mappings of the IDL interfaces for the main
programming languages in order to allow objects written
in different languages to interoperate.

CORBA has become a de facto standard for distributed
object computing. Several legacy applications in sensitive
areas such as banking and telecommunications have been
ported to CORBA platforms, and new applications have
been built based on CORBA in order to obtain easy
interoperability with other applications and to improve
portability and reuse.

2.2. The CORBA streaming mechanism

The CORBA streaming mechanism [2] was proposed

by the OMG in order to provide support for delivery of
continuous media data in CORBA-based systems. This
mechanism defines a group of abstractions to deal with
stream data in multimedia systems. These abstractions are
illustrated in Figure 1.

Flow

Stream
Control

Stream
Endpoint

Flow
Endpoint

Virtual
Device

Stream
Endpoint

Flow
Endpoint

Virtual
Device

Object Request Broker

 Figure 1. The CORBA streaming mechanism

Virtual device objects abstract multimedia devices (i.e.
cameras, speakers, etc) used by a multimedia application.
A stream control object allows the user to control media
flows (i.e., start and stop them) as well as add/remove
parties to/from multi-party connections.

Stream endpoints transfer stream data through the
network, getting data from and delivering data to virtual
devices. Each endpoint has one or more associated media
flows, which are abstracted as flow endpoint objects
located at each end of the flow. Flow endpoints are
classified as producers and consumers according to the
role performed by them in the transfer of data.

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on September 4, 2009 at 07:19 from IEEE Xplore. Restrictions apply.

The data delivery is subject to QoS constraints
described during the creation of the stream, i.e., during
the binding of two or more virtual devices. A binding
operation establishes a stream between two virtual
multimedia devices, defining the QoS parameters
associated to the stream. Two binding semantics are
allowed. The simple local binding uses the virtual device
and returns a stream control object. In the third party
binding mechanism, a stream control object can bind two
(or more) remote virtual devices and keep control over the
data flow.

The QoS parameters associated with a stream (such as
video resolution and the number of audio channels) can
be specified through the stream control object, through
the stream endpoint or through individual flow endpoints.

With the introduction of the stream mechanism, the
CORBA architecture becomes suitable for describing
applications that handle real-time media, and can be
adopted as the common middleware for control and
transfer of media. Nevertheless, despite allowing CORBA
applications to handle real-time media, the CORBA
streaming mechanism does not specify how QoS
constraints imposed on the delivery of media data are
enforced. In order to allow QoS constraints to be
interpreted and enforced, we have proposed a framework
that integrates a QoS architecture, called Quartz, into the
CORBA architecture.

3. The Quartz architecture

Many distributed applications can function properly on

currently available networking platforms and operating
systems. However, there exists a category of applications
that is not satisfied by the best-effort resource
management policies provided by the majority of the
computing platforms that are currently available. For
these applications, the availability of resources provided
by the underlying system is required to be predictable.
These applications are said to have quality of service
(QoS) requirements, and include applications varying
from real-time control systems to distributed multimedia
systems.

Applications that require a certain level of QoS must
specify their requirements in a clear and accurate manner
by using QoS parameters. The values of these parameters
reflect the requirements imposed by the application, and
can be stored in pre-defined user profiles containing the
QoS constraints imposed on the behaviour of the
application or can be obtained by the application through
direct interaction with the user.

The achievement of the specified level of QoS is
typically made possible through the reservation of the
resources managed by the underlying system that are
necessary to provide the network and operating system

services used by the application with the requested level
of quality. These resources include network bandwidth,
processing time, physical memory, and access to
multimedia hardware.

Several operating systems and network protocols
incorporate mechanisms that allow applications to retain
resources for their exclusive use. These mechanisms,
called resource reservation protocols, are the key
elements that support the provision of QoS guarantees.
Unfortunately, most applications do not benefit from
these mechanisms because the distributed computing
middleware on which they rely is still being adapted to
make use of such mechanisms. Furthermore, multiple
resource reservation protocols coexist in open systems.
Consequently, allowing applications to reserve resources
via a middleware layer implies that the differences
between reservation protocols have to be handled by the
middleware.

Middleware components, usually referred to as QoS
architectures, are responsible for providing mechanisms
for specification and enforcement of QoS that make use
of the resource reservation protocols provided by the
underlying system. QoS architectures deal with issues
such as the translation of QoS parameters comprehensible
at the application-level into the parameters understood by
the underlying reservation protocols that control access to
the resources provided by the system. Without the
services provided by a QoS architecture, these issues
would have to be dealt with by the application.

Research on QoS architectures has resulted in several
proposals that can be found in the literature (see [4] for a
survey and [5] for an analysis of the open issues in this
area of research). We have identified four main
limitations that prevent the use of the existing QoS
architectures in open systems. These limitations are:
• most existing QoS architectures require QoS to be

specified using a low-level format that is not
appropriate for applications with a more high-level
notion of QoS, or use a format appropriate only for one
specific area of application;

• QoS enforcement often occurs at either network or
operating system level, instead of both, and in some
cases the underlying system is not made completely
transparent for the application, which still has to deal
with low-level issues;

• the use of most existing architectures in open,
heterogeneous systems is prevented due to their close
integration with the underlying system; and

• most QoS architectures ignore the possibility of
dynamic resource adaptation, which can occur due to
factors such as resource failure or system
reconfiguration.
A QoS architecture that addresses these limitations

would, besides handling the complexity originating from
the necessity of obtaining QoS-constrained services from

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on September 4, 2009 at 07:19 from IEEE Xplore. Restrictions apply.

the underlying platform on behalf of applications, make
applications easier to implement and increase their
portability between different underlying platforms. In
addition, such a QoS architecture would allow
application programmers to use the same high-level
interface for specifying QoS requirements for
applications inserted in different application contexts and
making use of different networking infrastructures and
operating systems.

Quartz is a generic architecture for the specification
and enforcement of QoS that provides mechanisms
necessary for building applications with QoS
requirements in open systems.

3.1. Overview of Quartz

The Quartz QoS architecture [6] is composed of a QoS

Agent running on top of the several resource reservation
protocols available in the target system. QoS applications
use the services provided by the QoS Agent to obtain the
desired level of QoS.

Application
Level

Middleware
Level

Underlying
System

Network
Resources

O.S.
Resources

O.S.
Resources

Network
Resources

Quartz QoS Agent

CSCW
Application

Real-Time
ApplicationMultimedia

Application #2

Multimedia
Application #1

Applet #3
Applet #2

Applet #1

...

...

...

...

Figure 2. Overview of the Quartz architecture

Figure 2 situates the Quartz architecture in a
computational system. At the application level,
applications with QoS constraints (such as multimedia
applications, real-time applications, etc.) interact with
Quartz through interfaces that are specialised for the
corresponding area of application.

The QoS Agent, the major component of the Quartz
architecture, receives the QoS constraints imposed by
applications, interprets them, and interacts with the
underlying system in order to enforce these QoS
constraints.

The underlying system contains resources that are used
by the application. It is typically composed of several
sub-systems, which can be grouped into two main areas:
the network infrastructure (e.g., ATM or Internet
protocols) and the operating system (e.g., a real-time or
desktop operating system with reservation capabilities).
The QoS Agent sees networks and operating systems as
resource providers. Each resource provider allows its
resources to be allocated through a resource reservation
protocol. The QoS Agent must know how to interact with
each of the resource reservation protocols present in the

computing environment, using their interfaces in order to
allocate resources for applications.

The QoS Agent is a placeholder into which other
components can be plugged in order to interact with the
surrounding environment. It is responsible for two main
tasks:
• Interpreting the QoS requirements specified by the

application in the form of QoS parameters, translating
them from a format understood by the application into
a format suitable for performing resource reservations;
and

• Interacting with the underlying resource reservation
mechanisms in order to allocate the necessary
resources for performing the service subject to QoS
requirements.
Being just a placeholder for other components, the

QoS Agent does not perform these tasks directly. Instead,
it relies on other components that are specialised for
translation of QoS parameters and interaction with
resource reservation protocols. Since the translation
process depends directly on the application and on the
resource being used, and the interaction with reservation
protocols depends on the interface provided by this
particular protocol, specialised components will be used
in each case. These components will be plugged into the
QoS Agent whenever necessary.

3.2. QoS specification and translation

In an open environment, different forms of expressing

QoS are present in different abstraction levels and are
used by distinct applications and platforms. A QoS
architecture has to be able to interpret (i.e. translate and
understand) these different QoS parameter formats to be
used in multiple application fields and to enforce QoS
using different resource reservation protocols.

In order to avoid having a translator for each
combination of application field and reservation protocol,
Quartz adopts a three-step translation mechanism. The
QoS requirements of the application are specified in the
form of application-specific QoS parameters, which are
first translated into a set of generic application-level QoS
parameters defined by Quartz. These parameters are
further translated into a set of generic system-level QoS
parameters and balanced between the network and the
operating system. Finally, generic system-level
parameters are translated into the system-specific QoS
parameters understood by each of the reservation
protocols used by the application.

Table 1 illustrates the transformation undergone by a
parameter at the different levels of the translation process
(in this case, video quality is translated into a set of ATM
parameters). Table 2 illustrates the case of a parameter (in
this example, the overall delay) that must be balanced
between the network and the operating system.

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on September 4, 2009 at 07:19 from IEEE Xplore. Restrictions apply.

Table 1. Example of parameter translation

Parameter Set Parameter Values
Application-specific
Parameters

Video::Quality = VHS (352x240
pixels; 24 bits/pixel; 30 frames/sec)

Generic Application-
level Parameters

App::DataUnitSize = 247.5 Kb;
App::DataUnitRate = 30 units/sec.

Generic System-level
Parameters

Net::Bandwidth = 7.425 Mb/sec.

System-specific
Parameters

ATM::PeakCellRate = 155 cells/sec.

Table 2. Example of parameter balancing

Parameter Set Parameter Values
Generic Application-
level Parameters.

App::EndToEndDelay = 500 msec.

Generic System-level
Parameters

Net::Delay = 300 msec.;
OS::Delay = 200 msec.

3.3. Internal structure of Quartz

The internal structure of the QoS Agent is illustrated in

Figure 3.

 Quartz QoS Agent

 Network O.S.

Quartz Application

 Translation Unit
Application Filter

QoS Interpreter

Application-Specific QoS Parameters

Generic Application-Level QoS Parameters

System Filter System Filter

Generic System-Level QoS Parameters

System Agent System Agent

Reservation
Protocol

Reservation
Protocol

System-Specific QoS Parameters

Figure 3. Detailed structure of the QoS agent

The translation unit performs the translation of QoS
parameters between the different formats used at different
levels in the architecture. In addition, the translation unit
balances the usage of interchangeable resources provided
by the different sub-systems (i.e., the network and the
operating system) that are present in the underlying
system. The translation unit contains QoS Filters and a
QoS Interpreter. QoS Filters can be subdivided into

application and system filters, one for each application
field and for each sub-system present at the lower level,
respectively. Filters are responsible for translating
between QoS parameters represented internally by Quartz
and any external format. The QoS Interpreter handles
parameters formats used internally by Quartz at different
abstraction levels and balances the use of resources
provided by the underlying system.

The QoS Agent also encapsulates multiple system
agents, which are responsible for interacting with the
reservation protocols administering the use of the
resources provided by the underlying system. The system-
specific agents get the values of QoS parameters
determined by the translation unit and perform the
reservation of the resources provided by the
corresponding sub-system using the associated
reservation protocol.

3.4. Analysis of Quartz

The Quartz architecture supports heterogeneity by

encapsulating the QoS mechanisms necessary for
interacting with a specific resource reservation protocol or
application area into a replaceable component with a
standardised interface. These components are plugged
into the architecture whenever the associated protocol or
application area is in use. As a result, the architectural
core is highly portable, reusable and extensible because
the specifics of the application area and of the reservation
protocols present in the underlying system are
encapsulated by application filters and by system filters
and system agents respectively. Replacing the application
filter can accommodate changes at application level.
Similarly, changes at system level imply the replacement
of system filters and system agents. Filters and system
agents may be selected from a component library
provided by Quartz or implemented by the application
programmer.

In addition, the characteristics of the translation
mechanism result in a compromise between the needs of
different application fields regarding the manner in which
QoS constraints are expressed and the generalisation
necessary for the architecture to be deployed over
heterogeneous platforms. In fact, the QoS interpreter,
much like the other components, can be extended to
recognise new QoS parameters and implement new
balancing policies, or it can even be entirely replaced by
the user in order to implement a whole new QoS
specification mechanism.

Support for dynamic resource adaptation is also
provided by Quartz. In the event of adaptation, Quartz
tries to perform transparent resource adaptation at system
level by rebalancing interchangeable resources. When
adaptation at system level is not feasible, the application
is notified and asked to adapt its requirements.

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on September 4, 2009 at 07:19 from IEEE Xplore. Restrictions apply.

We have implemented a functional prototype of the
Quartz architecture in order to analyse its behaviour while
supporting applications with QoS requirements in a
heterogeneous environment. This prototype has
component agents and filters for the RSVP protocol
(using PC-RSVP provided by Intel), for ATM Networks
(using ForeSystem’s ATM ForeRunner LE 155 Mbps PC
cards and a Fore Systems ASX 100 switch), and for the
real-time mechanisms provided by Windows NT©.

4. Integration with CORBA

Quartz has been integrated with the CORBA

architecture in order to provide a complete framework for
the deployment of applications with QoS constraints.

The Quartz/CORBA framework relies on the CORBA
streaming mechanism, which was described in section
Figure 4, for transferring continuous media data between
CORBA objects distributed over the network. The data
delivery is subject to QoS constraints described during the
creation of the stream, i.e. during the binding of two or
more virtual devices.

The process of QoS specification, translation and
enforcement are delegated to the instances of the Quartz
QoS Agent that are associated with each flow endpoint.
The stream endpoint linking the partners has knowledge
about the quality of the communication service that has to
be provided in order to achieve the QoS specified by the
application. All of this information is transferred to the
QoS Agent, which interprets this information, balances
requirements between components, and then passes these
requirements to the corresponding system agents.

We have an in-house implementation of the A/V
streams mechanism [7] that supports the light profile of
the standard defined by the OMG. The support was
written in C++ using Iona’s Orbix 2.3. The
implementation was carried out on top of Windows NT
4.0 using Microsoft’s Visual Development Studio 5.0.
The implementations of the TCP/IP and UDP/IP protocols
(including IP multicast) provided by the operating system
were used for the transmission of continuous media data.
This implementation of the CORBA A/V streams
mechanism was adapted in order to use Quartz for
provision of QoS. This is done through the flow endpoint,
which interacts with Quartz in order to specify the QoS
requirements imposed by the application. By separating
the support for QoS from the communication support (i.e.,
from the implementation of the A/V streams mechanism)
we have made the middleware more portable and easier to
implement, test and maintain.

The interaction between flow endpoints and Quartz
comprises the following tasks:
• initialisation of Quartz, at which point the

communication port and the process that will avail of

the services on which QoS requirements will be
imposed are identified;

• request for enforcement of QoS requirements during
the establishment of a connection between flow
endpoints; and

• receipt of upcalls from the QoS agent, which are issued
in order to report QoS adaptation, errors or warnings.
By performing these tasks, flow endpoints make the

use of Quartz completely transparent to applications,
which continue to specify their QoS requirements through
the QoS specification mechanisms that are provided by
CORBA A/V streams.

The A/V streams filter imports parameters and values
from the AVStreams::QoS class defined by the A/V
streams specification and translates them into generic
application QoS parameters. Reverse translation is also
executed by the filter in case of QoS adaptation. The A/V
streams QoS parameters are listed in Table 3.

Table 3. A/V streams QoS parameters

Parameter Name Description
A/V::AudioSampleSize Size of audio sample
A/V::AudioSampleRate Number of audio samples
A/V::AudioNumChannels Number of audio channels
A/V::AudioQuantisation Quantisation (linear, u-law, ...)
A/V::VideoFrameRate Number of video frames
A/V::VideoColourDepth Number of bits per pixel
A/V::VideoColourModel Color encoding (RGB, CMY, ...)
A/V::VideoResolutionHorz Horizontal resolution
A/V::VideoResolutionVert Vertical resolution

The A/V streams QoS parameters, after being

translated by the A/V streams filter, are further translated
by the Quartz translation unit and handed to the system
agents corresponding to the reservation mechanisms
present in the system. At this point, the corresponding
system agents use the available resource reservation
protocols in order to enforce QoS.

The use of Quartz for enforcing QoS on behalf of
CORBA makes the middleware more portable and
simplifies testing and maintenance due to the separation
between QoS enforcement and actual data transfer.

Flow

Stream
Control

Stream
Endpoint

Flow
Endpoint

Virtual
Device

Stream
Endpoint

Flow
Endpoint

Virtual
Device

Object Request Broker

QoS
Agent

QoS
Agent

Figure 4. The Quartz/CORBA framework

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on September 4, 2009 at 07:19 from IEEE Xplore. Restrictions apply.

By way of example, Figure 4 shows an application
scenario in which a video conferencing application is
implemented using the Quartz/CORBA framework. The
application specifies the characteristics of the media
stream, i.e. the number of flows of audio and video and
their expected quality. The CORBA streaming
mechanism handles the transmission of media between
partners, and controls the flow of media and the
membership of the conference. Quartz is informed of the
QoS requirements associated to the media flows and
handles them accordingly.

5. Application

We have used the Quartz/CORBA framework to

simulate an automated manufacturing cell in which
manufactured parts placed on a conveyor belt are
classified by a robot. The classification process is done by
analysing the image generated from a video camera using
pattern recognition software that employs techniques
based on neural networks.

In this scenario, which is illustrated by Figure 5, the
image generated by the camera is transferred to a
computer in the control room, which then instructs the
robot to place parts in the correct storage bin or to discard
parts in case they are found to be damaged. Due to the
dynamics of the manufacturing process, the image has to
be transferred through the network and analysed in a
limited time so that the robot does not miss parts or
discard them unnecessarily.

Oven

Robot

Bin

Camera

Figure 5. Automated manufacture cell

We can simulate this scenario in the context of the
Quartz/CORBA Framework by imposing QoS constraints
on a virtual camera device, which ensures that the video
will be transferred by the camera in time for the pattern
recognition process to occur.

Constraints are also imposed on the computer in the
control room in order to ensure that the input device will
be ready to receive the image, and that the image will be
analysed in time by imposing constraints on the duration
of the pattern recognition process. These QoS constraints
are interpreted and enforced by the Quartz QoS Agent
corresponding to the flow endpoints that are attached to
each of the virtual devices. The software model that was
just described is illustrated in Figure 6.

 Controller Camera

 Video

Stream
Control

Stream
Endpoint

Flow
Endpoint

Output
Device

Stream
Endpoint

Flow
Endpoint

Input
Device

Object Request Broker

QoS
Agent

QoS
Agent

Pattern
Recognition

Software

Figure 6. Software model of the pattern
recognition mechanism

0

2

4

6

8

10

0 128 256 512 1K 2K 4K 8K 16K 32K 64K

Packet Size (bytes)

T
ra

n
sf

er
 R

at
e

(M
b

it
s/

se
c)

0

200

400

600

800

1000

1K 2K 4K 8K 16K 32K 64K

Packet Size (bytes)

P
ac

ke
t

R
at

e
(p

ac
ke

t/
se

c)

Figure 7.Transmission capacity of the
A/V streams mechanism

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on September 4, 2009 at 07:19 from IEEE Xplore. Restrictions apply.

Figure 7 shows the performance that can be obtained
with our implementation of the CORBA streaming
mechanism in terms of bandwidth per packet size. These
performance measurements were obtained in a 10Mbps
Ethernet local area network working with a light load.
Similar performance can be guaranteed even under heavy
load conditions by using Quartz and RSVP for
performing resource reservations, provided that the frame
size and frame rate of the video produced by the camera
are within the area of operation displayed in the graph.

For the pattern recognition process, which is a very
time-consuming process based on neural networks, we
assume that it should not exceed a well-known deadline
for each part being analysed with the processor working
under unloaded conditions. Despite the fact that Windows
NT does not provide deadline-based real-time scheduling
algorithms, Quartz can guarantee unloaded behaviour by
using the real-time scheduling class provided by the
Windows NT scheduler.

This example shows how Quartz can be used together
with CORBA in order to provide mechanisms for QoS
enforcement for video transfer and real-time computing.
Quartz can also provide support for QoS enforcement in
different application areas and computing platforms by
rearranging its internal structure.

6. Conclusions

In this paper we have presented a QoS architecture

that, when integrated with CORBA, provides a complete
framework for the transmission of real-time media data in
open systems. In this environment, QoS requirements
imposed on the flow of media data are enforced by
Quartz, while CORBA is responsible for the transmission
of control and media data.

The Quartz/CORBA framework has been implemented
and employed to simulate a pattern recognition
mechanism used in an automated manufacture cell. This
application shows the usefulness and the efficiency of the
framework as a tool for building CORBA-compatible
applications that handle real-time media.

Acknowledgements

The authors would like to thank Iona Technologies

(http://www.iona.com) and the Capes foundation
(http://www.capes.gov.br) for supporting this project.

References

[1] Object Management Group “CORBA 2.0 Specification”,
OMG Technical Document 96-03-04, USA, March 1996.

[2] Iona Technologies, Lucent Technologies and Siemens-
Nixdorf, “Control and Management of Audio/Video
Streams”, OMG Doc. Telecom/97–05–07, July 1997.

[3] Object Management Group “The Object Management
Architecture Guide”, OMG Technical Document 92-11-1,
September 1992.

[4] C. Aurrecoechea, A. Campbell and L. Hauw “A Survey of
Quality of Service Architectures”, MPG Group, University
of Lancaster, Tech. Report MPG-95-18, 1995.

[5] R. Steinmetz and L.C. Wolf “Quality of Service: Where are
We?”, IWQoS’97 Proceedings, May 1997.

[6] F. Siqueira and V. Cahill “Quartz: A QoS Architecture for
Open Systems”, Proceedings of the 20th IEEE International
Conference on Distributed Computing Systems (to appear),
2000.

[7] David O’Flanagan “An Implementation of the CORBA
Audio/Video Streaming Service using RSVP”, M.Sc.
Dissertation, University of Dublin – Trinity College,
Department of Computer Science, Technical Report TCD-
CS-1999-32, October 1998.

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on September 4, 2009 at 07:19 from IEEE Xplore. Restrictions apply.

