Practical Considerations in Making CORBA Services Fault-Tolerant

Priya Narasimhan
Institute of Software Research International
School of Computer Science
Carnegie Mellon University, Pittsburgh, PA 15213-3890
priya@cs.cmu.edu

Abstract ponent of the CORBA model, the Object Request Broker

This paper examines the CORBA Naming, Event, Notifi¢2RB). acts as an intermediary between_the client gnd the
tion, Trading, Time and Security Services, with the objets vc" objects, and shields them from differences in plat-

tive of identifying the issues that must be addressed in or fm, programming language andllocatipn. . .
make these Services fault-tolerant. The reliability consig- CORBA also encompasses a rich suite of basic services

erations for each of these Services involves strategies faft 2lmost every application requires. CORBAs Common

replicating the Service objects, and for keeping the stafgQiect Services include Naming, Event, Notification, Time,

of the replicas consistent. Of particular interest are th&rading and Security services, each of which is also spec-

sources of non-determinism in each of these Services, alfllf§! N trms of standard IDL interfaces, and implementa-

with the means for addressing the non-deterministic beh&¢NS of which are typically provided by ORB vendors for

ior in the interests of ensuring strong fault tolerance. ~ '¢ady use by CORBA application programmers. This frees
the CORBA application developer from the burden of hav-

ing to design and to write the code for such commonly-used
. functionalities. More recently, the Object Management
1 Introduction Group adopted a Fault-Tolerant CORBA standard [15] that
The integration of distributed computing with objectallows CORBA applications to be made reliable through
oriented programming leads to distributed object comptite replication of the application objects, along with mech-
ing, where objects are distributed across machines, withisms and services for keeping the replicas consistent in
client objects invoking operations on, and receiving retate, for detecting the failure of replicas, and for recov-
sponses from, remote server objects. Both the client’s &ring replicas that have failed. The Fault-Tolerant CORBA
vocations, and the server’s responses, are conveyed insta@dard is not an out-of-the-box solution for providing reli-
form of messages sent across the network. The Comnadnility to CORBA applications; it requires that applications
Object Request Broker Architecture (CORBA) [18], was esupport certain interfaces and that they exhibit deterministic
tablished by the Object Management Group, as a standardeproducible behavior. Unfortunately, the specifications
for distributed object computing. of most of the CORBA Services, and consequently, the im-
CORBA uses a purely declarative language, the OMgementations of these Services, were developed well be-
Interface Definition Language (IDL), to define interfacefore the Fault Tolerant CORBA standard emerged, and do
to objects. The IDL interfaces are subsequently mappedf necessarily exhibit the kind of behavior that the standard
through an IDL compiler provided by an implementor ofandates. The result is that most of the existing implemen-
CORBA, onto specific programming languages. These IDations of these Services do not lend themselves readily to
compilers respect the OMG-standardized IDL-to-languaigellt tolerance.
mappings for C, C++, Java, Smalltalk, etc. CORBA’s lan- This makes it particularly difficult for application devel-
guage transparency implies that client objects need todyeers who have long enjoyed the freedom and the ability to
aware of only the IDL interface, and never of the languagese any of the commercial off-the-shelf CORBA Services,
specific implementation, of a server object. CORBA's irbut who are now faced with the task of making their appli-
teroperability implies that a client object can interact witbations fault-tolerant. By introducing an unreliable imple-
a server object, despite differences in platforms and operaentation of a CORBA Service into their application, these
ing systems on which the client and the server objects application programmers risk the failure of their applica-
hosted. CORBA's location transparency implies that clietibns. Thus, CORBA developers are forced to reconsider,
objects can invoke server objects, without worrying aboamd perhaps even to forgo, employing these Services if fault
the actual locations of the server objects. The key cotolerance is essential for the operation of their application.

There has been considerable work in implementing fault-For specific cases, the straightforward replication of the
tolerant CORBA systems, such as AQUA [1], DOORS [10gervice objects is simply not sufficient to guarantee fault
Electra [5], Eternal [9], FRIENDS [2], FTS [4], IRL [7], tolerance, primarily because the intrinsic behavior of the
Newtop [8] and OGS [3]. For the most part, these systel@srvice objects leads to problems when the objects are repli-
enhance normal CORBA applications with fault tolerancecated. Therfore, from a reliability perspective, it is essen-
to the best of my knowledge, these systems have addressddo identify the sources of the undesirable side-effects
the challenges surrounding reliability for CORBA Servicethat replication triggers in these Services, as well as to find
However, a fault-tolerant name server [6] was proposed &irategies to overcome these side-effects. In this paper, the
a very early version of CORBA using the Electra ORB. dependability of each Service is assessed along different as-

This paper takes an objective look at some of the mavects.
commonly used CORBA Services, purely from the view-
point of fault tolerance. The focus of this study is to identi
the reliability issues and concerns that the specifications
the implementations of these Services raise and, more

ependability architecture. We will need to examine the
ahitecture of the CORBA Service, and to decide which of
e Service objects need to be replicated, and which of the

portantly, to present solutions that overcome the identifi@ jects can be regarded as pure clients that do not need to be

fault tolerance problems in these Services. The primary JBE;"?a;e_d_aASI a p?rt of tfh,:ﬁ engc'ie' Wf v(\;|_lf[fneeci to allo-
jective of this paper is to inform both CORBA developer%a € individual replicas of the objects onto dilterent proces-

. s . rs, in order to avoid a single point of failure. In keeping
and vendors alike of the reliability shortcomings of curre P .
CORBA Services, and of ways to address these shortcél}q{[h the Fault Tolerant CORBA standard, each object that

ings in order to build fault-tolerant Services. IS to be rephcgted musf guppoﬂrt th@m@orable .|nter-

face (to allow it to be “pinged” periodically for liveness)
T . and theCheckpointable interface (to allow its state to
2 Re“ablllty for CORBA Services be captured periodically, and restored later during recov-
Each CORBA Service is specified through a set of wefy). A part of the dependability architecture involves iden-
defined IDL interfaces, along with a description of the selifying the nature of the operations of the Service objects
vice's behavior from the user’s perspective. A Service (whether they are idempotent or not) in order to determine
realized through one or more CORBA server objects whiwhe_ther support for_dete_cting <_':1nd suppressing duplicate op-
can be invoked either locally or remotely. The applicatig#tations (which are inevitable in a fault-tolerant system that
objects typically exploit a CORBA Service by acting as thgses replication) is required.
clients of_the Serv_|ces objects — the idea is for_ the dlf-fegtate. For a true fault-tolerant system, replication alone
ent constituent objects of the Service to conspire togetraer ' . :

oes not suffice. It is also necessary to enable the failed

te;)pglri(c)::t(ijsnsome useful functionality, when invoked by thr%plicas of an object to be re-instated to normal operation. If

: . i, ...__a Service object’s replica has to be recovered, its state must
In keepmg with the spirit of CORBA, both the specn‘_|caﬁrst be initalized to that of the other correctly functioning
dent of the t i locai fits clients. Al ?e'plicas of the object. For this to be possible, we must first
pendent ot the type, nature, orjocation of ItS Clients. AlSR, a6 1 define the state of each of the Service objects; it
by virtue of its implementation through CORBA ObJeCtsis this state that must be transferred (throughGheck-

leverty COtRBA Service UDQOIIdS CORB;A‘S 'ntemperab'l_:_tl?ointable interface) each time a new or failed replica is
ocation transparency and ‘anguage transparency. d2overed. Of course, an important factor in the definition

CO.F;BA Sgrt\ncefs arelz_ ge;_nerl(cj: eno_ugh _tr?] b‘; us_efgloeglrs ¥ state is the consideration of performance-related issues,
a wide variely of appliication domains. the basic ch as the size of the state, and the distribution of the en-

Ser\r/:cm'-.:[i, SUChc‘?S Nargnmg, E\?m%" can also eda.sn%/ usettire Service’s state across its different constituent objects.
eac f er,dan can be com |nef ||rf1 ne\t/_v anl't ItereSififese issues ultimately determine the speed of recovery of
ways 1o procuce even more poweriutiunctionalty. a replica of a Service object and, therefore, the impact (la-

When a CORBA application that wishes to exploit fincy or delay in response perceived by the user) on the
CORBA Service, clearly, the objects of the application mug y y P P y)

. o X . éSpIication of the failure of a Service object’s replica.
interact with, invoke, and respond to, the Service objects.

Thus, for the end-to-end dependability of the CORBA aplon-determinism. Non-determinism and reliability are
plication, the reliability of the application, as well as thatften regarded as mutually exclusive. In fact, a frequent
of the CORBA Service that it uses, must be considered. dssumption in providing reliability for a component is that
protect the application against fault using the Fault Tolerahe component is required to be deterministic in behavior.
CORBA standard, both the application objects and the S€his means that, if the component starts from a specified
vice objects must be replicated, with the replicas distributadtial state, and is fed a sequence of inputs, the compo-
across different processors in the distributed system. nent will reach the same final state. It is this reproducible

behavior of the component that lends itself well to reliabiBependability architecture. The fault tolerance archi-

ity techniques. Unfortunately, many applications, and thecture for the Naming Service is relatively straightfor-
CORBA Services themselves, do exhibit non-deterministi@rd because there is typically only one server process that
behavior. Common sources of non-determinism include leeds to be replicated, with multiple replicas distributed
cal timers €.g, when an application invokegettimeof- across distinct processors. To enable the recovery and
day), input-output to local devicee(g, CDROM drives, the fault detection of the Naming Service, each of the
floppy drives), multithreading, etc. For each of the CORB#hree server objectdlamingContext , Bindinglter-

Services that we consider, we must also identify the naator and NamingContextExt must support both the
deterministic features of its constituent objects, and th€heckpointable andtheMonitorable interfaces, as
discover ways of “sanitizing” these features, in the intereseqquired by the Fault Tolerant CORBA standard. For the

of providing strong fault tolerance. sake of efficiency, it might be appropriate to implement a
)] fourth collocated CORBA server object, callE@iCorba-
2.1 CORBA Naming Service Support that supports only th€heckpointable and

Simplistic CORBA applications publish the server’s objedfie Monitorable interfaces, and whose only function is
reference into a file, which the client then reads to discoveract as a front-end, handling all of the fault detection and
the server’s location, and to contact the server subsequengigovery communication on behalf of the other three ob-
Clearly, this is not a satisfactory mechanism for field décts. Some of the Naming Service's methods are idempo-
ployment, particularly because we cannot assume that bigtht, e.g., two consecutive executions of thesolve()
the client and the server will have access to the same shaeération will yield identical results. However, the Naming
file system. To support the run-time discovery of server obervice’s interfaces do contain non-idempotent operations,
ject references in a much more elegant and scalable mansigr, the delete() operation is likely to lead to excep-
CORBA provides for a Naming Service. tions if performed twice in a row. Thus, there is the need to
The CORBA Naming Service [16] allows the applicatiolpd and to identify uniquely every operation before allowing
programmer to associate the server objects of the applig¥® Naming Service to execute it.

tion with human-interpretable and more intuitive stringified]))
names A name is represented by a CORB¥ame ob- State. The Naming Service can contain a large amount of

ject, which is constructed from a hierarchical sequence$fte: depending on the size and the number of names that
name components, each component being uniquely ideRfve been registered with it. At the point of recovering a
fiable within the naming context of its preceding comp&eW or a failed replica of the Naming Service, this entire
nent, much in the way that file systems organize director@igte first needs to be retrieved from an existing operational
and files within directories; for example, the nafaer/bin Naming Service replica. The time to retrieve the state and,

contains the componebin, which is uniquely identifiable therefore, the time to recover a new replica, will depend on
only within the naming context of its hierarchically precedh® formatin which the names are stored. Note that, over the

ing componentysr. For each of its server objects, an applfOUrse of its Iifetimg, the Nam_ing Service instantiates many
cation can register, drind, aNameobject within the Nam- internal CORBA objects, particularly ti¢éameobjects that
ing Service’s repository; a client of one of the server objed}gve been registered with it. Thus, when a new replica of
can present the correspondMgmeto the Naming Service, the Naming Service is started,_ its recovery |nvol_/es notonly
which will thenresolvethe embedded name components fnsferring the list oNameobjects registered with an ex-
discover the server's reference, and to return the referenc#9 replica, but also painstakingly instantiating each of
the client. Armed with the server's reference, the client cHif name-related CORBA objects within the new replica.
now contact the server, without needing to contact the Nal}the interests of speeding up recovery, “smart” name stor-
ing Service further (unless the client requires the refererf@ and list traversal mechanisms thatimprove performance
to some other server). The advantage is that while a serv&P&!d, of course, be used to result in the efficient retrieval
reference (containing the server's hostname and port ni#fid transfer of the Naming Service’s state. However, the
ber) can change over its lifetime, the server’'s name Canqggformance_mpact on recovery time due to the instanti-
maintained relatively constant over the server's lifetime. ation of possibly hundreds ddameobjects on the launch
Typically, the Naming Service is implemented as a siRf @ new Naming Service replica is a significant source of

gle server object that supports three interfaces:Nam- €ONcem.

ingContext (to bind, re-bind, unbind, resolve, list an . . .

destroy names of objects) tBindinglterator (to tra- chon-determlm}sr.n. Anot.her.concer.n s the pos§|bll|ty of
non-deterministic behavior in the implementation of the

verse sequentially the list of names stored within the Naméming Service. It is likely that the Naming Service will

ing Service) and thBlamingContextExt (to convert be- S))
tween the Naming Service’s representation of a name anraage many application clients and servers (otherwise, there
human-readable name) would have been no need fora CORBA Naming Service be-

cause the simpler but less scalable strategy like the shatgaf service attributes on a per-channel or per-event basis,
file between the application’s clients and servers woudc. From a fault tolerance viewpoint, the Notification and
have sufficed). To maintain its scalability and its abilitiEvent Services are very much alike in architecture and in
to handle many clients simultaneously without substantthk reliability issues that they present. Thus, the reliability
performance degradation, most Naming Service implemeonsiderations for the Event Service are equally applicable
tations are multithreaded. Despite its many performartogthe Notification Service.

advantages, multithreading is a significant source of non-

determinism if threads can modify shared data; unfortependability architecture. Clearly, the most critical el-
nately, the list of registered names stored within the Naements of the Event Service is the event channel. Thus,
ing Service constitutes data that threads might share. THbs,event channel objects must be replicated, with the repli-
the possibly different orders of thread execution within amas distributed across the processors in the system. To
two replicas of the Naming Service can lead to inconsignable their recovery and fault detection, the event chan-
tencies in their states. One solution is to allow concurrgrel objects of the Event Service server object must support
operations within the Name Server only if the operatioteth theCheckpointable and theMonitorable in-

do not update any shared state. This implies that multijdefaces, respectively, in accordance with the Fault Tolerant
read-only operationg(g., resolve()) can proceed con- CORBA standard.

currently, but update operations.4., adelete() and a

bind()) cannot execute concurrently because they mightate. The event channel maintains some state, in order

modify the shared data in different orders at different reptP perform the co-ordination between the suppliers and the
cas of the Name Server. consumers. A part of this state includes the event data that

e L . the consumers require, as well as the identities of the con-

2.2 CORBA Event and Notification Services g mers that have already received this data, and the identi-
The CORBA Event Service [14] provides support for deies of those that are yet to receive this data. When a new
coupled distributed communication between the CORB#plica of the event channel is started, in addition to receiv-
objects of an application. There ex&tppliersthat gener- ing this state from an existing replica, the new replica must
ate events, andonsumershat have an interest in receivingalso be provided with the order in which the existing replica
these events. The events may propagate from the supwis formed connections with its event suppliers and event
ers to the consumers through either a pull model, where shsumers. This is important because if any two replicas
consumers request events of the suppliers, or a push moglethe event channel have established connections in dif-
where the suppliers automatically dispatch the events to tBeent orders, then, the two replicas will detect I/O activity
suppliers, as they occur. Aevent channels an interme- on those connections in different orders (by the very na-
diary object that allows multiple consumers and multiptare of the operating system’s 1/O polling routines, such as
suppliers to communicate with each other asynchronousglect() , which polls connections in the order in which

In their mediating role, event channels function simultéhey were formed). Thus, the order in which connections to
neously as both consumers and suppliers of events. Becahgguppliers and consumers were established must be made
the decoupling of the supplier-to-consumer communicati@hown, and respected, at the new replica of the event chan-
occurs through the event channels, the suppliers and cast. In the case of the Notification Service, a new replica
sumers of events can produce and receive events, respeeds to instantiate, and then register, the appropriate notifi-
tively, without knowing of each others’ identities, locationsation filters in the right order. The recovery of a new event
or types. The CORBA Event Service specification allovghannel server object might be time-consuming because of
for disconnected operation, where consumers and suppliesoverhead of instantiating multiple objects. Furthermore,
may be unable to reach other sporadically. Unfortunatefiecause the event channel plays the roles of both client (to
when the Event Service is used as a part of a CORBA ape consumers) and server (to the suppliers), the client-side
plication that must be reliable, the intermittent operation GfRB-level state [9], which typically includes the value of
the Event Service objects, accompanied by the possible lasguest identifier that is encapsulated into the most recent
of event data, is unacceptable. In contrast to the two-tiestgoing 110OP request message, must be recovered and re-
Naming Service, the Event Service represents a more cli@bred at a new event channel replica.
lenging three-tiered architecture, with the suppliers (first
tier) communicating with the event channels (second tieNpn-determinism. Because the event channel must han-
which, in turn, communicate with the consumers (third tieglle multiple consumers and suppliers simultaneously, it is

The CORBA Notification Service [11] extends theften multithreaded. As with the Naming Service, the mul-
CORBA Event Service with support for specific kinds dithreading of the event channel represents a source of non-
notification, including the filtering of events, the defintiodeterminism. One solution to this problem would be to se-
of events as structured data types, the ability to define quédiize all of the operations within the event channel object,

thereby ensuring that all of its replicas behave determinissponds with the location of such a service, if it exists. One
tically and, therefore, reach the same states as they exeofitthe challenging aspects of a trading service is the fact
method invocations. However, this might be rather an ekat its data, or state, can be partitioned into multiple differ-
treme solution, particularly because of its implications ant servers. The reason for such an implementation of the
performance; a better alternative might be to ensure thatder is that itis likely that service offerings themselves can
the event channel objects are implemented so that any tveopartitioned into some sensible groupings and, moreover,
concurrently executing operations do not modify or accessch a partitioning would make the trading service scalable,
shared state. This might involve implementing the evesmid simultaneously accessible to many users. Each parti-
channel to respect the following conditions: tion consists of a group of importers and exporters that are
o] _ interested in a service with specific kinds of characteristics.

e The event channel must use distinct internal objegishe service offerings within a partition are found to be
(each object with its exclusive region of allocateghagequate, the importers can seek other partitions. This
memory) to handle the different suppliers and CORjerarchical structuring of traders is often referred to as a

sumers.e., for every supplier or consumer that it hang gerationof traders. Once an importer makes explicit con-

dles, the event channel should restrict the interactiog; with an exporter of a service, the Trading Service can
with that supplier or consumer to a distinct region @‘tep out of the way.

memory within its process. This would ensure that the

event channel’s interactions with suppliers and coRependability architecture. For the Trading Service,

sumers would not require simultaneous access to,e@ch of the traders must be replicated, with replicas dis-

update of, the same region of memory. tributed across the system. Because there are multiple dis-
tinct traders that must communicate with each other, there

The event channel must adopt a thread-per-objeGiet 4 number of networked replicated objects that hold

model for each of its constituent objects (where eagfyq information about each other. Each trader object must

object represents a consumer or supplier of evemﬁ)pport theCheckpointable and Monitorable in-
This ensures that there will be at most one thread 3Cifaces

cessing any object within the event channel at any

time. The implication of this is that the event chann@tate. Each trader must maintain links to other traders in
can allow for the simultaneous execution of any twits federation, and must also maintain exhaustive lists of the
operations, as long as both do not pertain to the sassvices that exporters in its partition have registered. The
consumer or supplier. On the other hand, this ensutesler must maintain information about its exporters and its
that the replicas of the event channel will be consistamporters. The state of each trader also consists of the list of
in state because there will never occur different orddraders offering services outside of its partition. Thus, when
of operations on the same region of memory in twa new trader replica needs to be recovered, this state must
different replicas of the event channel. be restored, as well as its connections with other traders in

« Any operations on the event channel that must detg system. The order of registration of, and connection

. establishment to, external traders within the federation is
with all of the producers and consumers at once (for . :
. . important for recovery, because it decides the search order
instance, an operation that deletes all of the consumey= . :
. of services. This order must be captured and restored to new
related objects) must be allowed to execute only when .
. rader replicas. Furthermore, because each trader plays the
all of the other threads have quiesced, and all of t . L -
. : roles of both client (to the traders outside its partition) and
other operations currently being executed by the even . R -
server (to the exporters and importers within its partition),
channel have completed.

the client-side ORB-level state, which typically includes the

2.3 CORBA Trading Object Service value of request identifier that is encapsulated into the most

. . . . recent outgoing IIOP request message, must be recovered
The CORBA Trading Service [13] facilitates the offerin going d g

. ; . 9nd restored at a new trader replica.
and subsequent discovery of the instances of services of par-

ticular types. In this context, ader is an object that ad- Non-determinism. A significant reliability concern with
vertises the capabilities of other objects in the system, ahd trading service is the multithreading that is inevitable
allows objects to match their needs against advertised bacause the trader must support multiple importers and ex-
pabilities. An object that desires to advertise, or exportparters. The trader supports two different kinds of opera-
service simply contacts the trader with a description of ttiens — read-only operations when an importer looks up a
service, and the location in the system of an interface tisatvice offering, and update operations, when an exporter
supports the service. An object desirous of using, or imegisters on unregisters a service. Read-only operations
porting, a service contacts the trader with a descriptionasn proceed concurrently because they do not modify any
the characteristics of the service that it seeks, and the tragteared state across different threads; however, the update

operations are trickier because they manipulate the list@fie approach to this is to use Portable Interceptors, which
services registered with the trader. Furthermore, becatmen a part of standard CORBA implementations. Portable
the trader pairs up an importer with an exporter, both witerceptors can be used to examine requests, replies and
which are explicitly aware of each other (unlike the Eventessages in the system. This requires the Security Service
Service, where the consumer and supplier are decougledupport the concept of portable interceptors, and further-
from each other), there exists the possibility that certaimore, to allow for requests, replies and messages to be ma-
trader implementations use short-cuts to share data betweipnlated, before enforcing any security policies on them.
an importer and an exporter, in the interests of efficiency.Another source of conflict is that the presence of corrup-
Care must be taken in the implementation of the Traditign in the system presents a source of non-determinism.
Service to respect the protection of memory across multifler instance, it might be possible for a three-way replicated
executing threads that update shared data; in the absesigject to have one of its replicas running on a maliciously
of such guarantees, the serialization of invocations on #@rupted processor, and to have its other two replicas run-
trader, and its negative impact on performance, are unavaithg on correctly functioning processors. In this case, it
able. is likely that the corrupted replica will behave differently
. . from the correct replicas, and could generate different re-

2.4 CORBA Security Service sponses to incoming requests. Thus, in the presence of cor-
The CORBA Security Service [17] allows the protection g{iption, determinism can no longer be guaranteed. To pro-
CORBA objects in the system, allowing authorized usersggxt against corruption, and simultaneously to eliminate the
access objects, protecting confidential data from accessgléct of non-determinism, some form of majority voting on
unauthorized users, ensuring that users cannot masquefgél@nessages sent by the replicas of an object is required.
as each other and gain illegal access to data, and protectifgs, both the objects of the Security Service, as well as
data and inter-object communication from being tampergfk objects of the application, must be actively replicdted,
by users. To this end, the security interfaces proposed\piyh majority voting applied on both their requests and re-
the specification are often not visible to the application ggonses. On the other hand, the introduction of replication
they are buried within the ORB. Thus, an ORB that pugiso poses a threat to security; the fact that there exist iden-
ports to support the CORBA Security Service specificatiofigal copies of data distributed across the system increases
is Significantly different from an insecure ORSB, and embeﬂﬁ:} pOSS|b|I|ty of Compromise of the data through any one
mechanisms for audit, authentication, access control, reggithe multiple copies. These are the kinds of trade-offs that
diation and secure messaging. must be taken into account when incorporating the Security

Security and reliability are pervasive system propertiesgigrvice into an application that is simultaneously required
the sense that they both require end-to-end consideratiofhe reliable.
not only the application, but the ORB, the processors, theanother reliability consideration is the fact that a se-
network, and the distributed SyStem itself. ThUS, in Contrqﬁjre ORB contains additional state, over and above a nor-
to the other CORBA Services, which merely provide addiha] CORBA-compliant ORB. This state might comprise
tional functionality to an existing application, the Securifhe ORB’s security policies, the list of authenticated users,
Service has more far-reaching implications on the systghg cryptographic mechanisms required for authentication,
architecture and System pl’Opel’tieS. Furthermore, SeCUéw_ In the case Of recovering a hew rep”ca Of an app"ca_
and reliability are sometimes conflicting goals, and the fggn object, this additional ORB-level state must be taken
sulting trade-offs must be taken into account when the tyfo consideration. Of course, we must exercise caution in

properties are simultaneously required. transferring this ORB state onto a fresh processor that has
notyet been authenticated. As a part of initializing the ORB
2.4.1 Reliability Considerations of a new replica, we might need to have the new replica, its

ORB, and its hosting processor authenticated before allow-

One of the first sources of conflict between the Securjfy; the new replica to be re-instated to normal operation.
Service’s definition and reliability is the fact that the Se-

curity Serwcg rightfully does_ not a_IIow fo_r the tampering O§.5 CORBA Time Service

communication between objects, in the interests of ensuring” _]

the secure exchange of messages. Unfortunately, reliabififje Time Service [12] provides for a way for CORBA ap-
necessarily requires some degree of probing at the mess%lt?@tion objects to obtain the current time, or to obtain a
level, because a reliable system must protect the applicafifif interval that they can use for other purposes. With the

from message loss, and must be able to ascertain if me&QRBA Time Service, th&imeService object manages
sages are duplicates of each other, Universal Time Objects (UTOs) and Time Interval Objects

This calls for a secure way of gllowing messages t_o b_e_'n'1With active replication, all of the replicas receive, process, and re-
spected and possibly modified, in the interests of reliabiligpond to all invocations.

(TIOs). Each UTO represents a time, and each TIO repexents will be pushed through the associated event channel

Table 1: Considerations in providing dependability for various CORBA Services.

sents a time interval. The Time Service returns the tinte,all interested event consumers.
along with an uncertainty interval. The CORBA Time Ser-

CORBA Replication Architecture State Non-Determinism

Service

Naming Replicate the server process (containing.ist of registered names, as wellTo overcome non-determinism
the three objectsNamingContext , | as the individualName objects, | due to multiple threads updating
Bindinglterator and Naming- | need to be restored within ey- shared data (such as the list of reg-
ContextExt). Add a fourth collo-| ery new replica. This might be istered names), allow read-only
cated server object solely to suppartime-consuming because severabperations €.g., resolve())
the Checkpointable and Moni- Name objects might need to be¢ to proceed concurrently, byt
torable interfaces, and to handle all instantiated during recovery. not update operationse.g., a
the fault detection and checkpointing delete() and abind()).
for the other three objects.

Eventand | Replicaie the event channel serefdentitieS of consumers, evemi1o Overcome non-determinism

Notification] process, and ensure that the everdata that needs to be sent, sel¢cdue to multithreading, implement
channel object supports théheck- | tive notification event filters, as the event channel object to ({)
pointable and Monitorable in- | well as ORB-level state, such ascreate distinct objects to represent
terfaces. the order of connection establish-each supplier and consumer inter-

ment with consumers and sup-nally, (i) use a thread-per-object
pliers, and the client-side ORB’s model, and (iii) serialize concury
most recent outgoing requestrent operations that necessarily
identifier to each consumer share data.

Trading Replicaie each of the multiple tradérList of Services registered by ex- Read-only Service [oOKup opera-

Object objects within the federation, and en-porters in its partition, list of| tions from importers can proceed
sure that each trader objeGheck- | traders (and their service offef- concurrently, while service regis-
pointable and Monitorable in- | ings) in other partitions, as well tration and unregistration opera-
terfaces. as ORB-level state, consisting oftions from exporters must be serj-

the order of connection establish-alized because they modify shared
ment with external traders, and state (the trader’s list of service of-
the client-side ORB’s most re- ferings).

cent outgoing request identifigr

to each external trader.

Security Because the Security Service 1S bUilfORB'S security policies, [isf Security requires per-host-level
into the ORB, dependability requirgsof authenticated users, cryptg-authentication, which is a sourde
the replication of objects that use a segraphic mechanisms, all of which of non-determinism. Active
cure ORB. are buried within the ORB, and replication with majority voting

not easy to access from the appli-can tolerate value faults, and
cation. hide processor-level security vig-
lations.

Time Replicate theTimeService and the| List of 110s and UTOS for| Passive replicafion of théime-
TimerEventService objects, and| a TimeService object, and| Service object, along with
have them both support theheck- | the list of the timer-event han- checkpointing of its state, over-
pointable and Monitorable in- | dler objects and the assodi-comes the non-deterministic na-
terfaces. ated event channel objects for|ature of time itself. Alterna-

TimerEventService object | tively, the TimeService ob-
jects should use a GPS facility.

vice acknowledges that the time obtained by a client of (g nengapility architecture. The critical elements of the
TimeService object may be obsolete by the time thatthe orga Time Service are th@imeService and the
client receives the response over the network. PossiblefprerEventService objects. If these are in separate
lutions that have been proposed to overcome this problegy, o processes, then, each of the two objects needs to
include the provision of a locdlimeService object col- support theCheckpointable and Monitorable in-
located within the process of each of its clients. terfaces, and both server processes should then be repli-
cated. It might happen that both thiémeService and

The TimerEventService object manages tlmer'theTimerEventService objects are collocated within

event handler objects. Each timer-event handler is bornﬁ,ﬁe— same process, in which case, the process itself can
sociated with an push-mode event _channel (ong of th.e cq5B- replicated. In 'Ehis case, for th’e sake of efficiency, a
ponents of the CORBA Event Service, as described in Sﬁ%’rd object supporting th€heckpointable andMon-

tion 2.2). The timer-event handler can be used to man|fs able interfaces can handle the fault detection and the

_ulate the timing and cpntent of the ev_ent_s assomatgd WHte transfer on behalf of the two Time Service-related ob-
its event channel. Typically, at the expiration of the t'merj‘?}cts

7

State. Each of these two objects manages other CORER\ Conclusion

Time Service obje_cts, including the TIO_s, UTOs and tlmerr—hfe CORBA standard encompasses the Common Object
event handler objects. Thus, there is some amount

) Soerwces, where each Service represents some useful func-
state that is associated with ti@meService and the : . : L
) . . . tionality required by a variety of CORBA applications. The
TimerEventService objects. Because thEmeSer- o :
: . . . standardization of these Services allows CORBA vendors
vice and theTimerEventService create additional . .)
. -) : to provide implementations of these Services, thereby free-
CORBA objects within their processes, their state must ”llf application developers from having to write the code for
clude the list of these additionally created objects and g app P 9

order in which these objects were created. To recove?%Ch functionality themselves. When these Services form

newTimeService replica, the list of the TIOs and UTO part of a CORBA application that is required to be fault-

S L o .
o . lerant, the reliability of the Services is also essential. Un-
managed by an existing replica must be transferred to the . -
. . ortunately, most of the CORBA Services were specified
new replica, where these TIO and UTO objects must be .)
. ! i) and implemented well before the adoption of the Fault Tol-
instantiated afresh within the new replica. To recover a : :
: . . . : erant CORBA standard, with the result that the issues un-
new TimerEventService replica, the list of the timer- . ST :
. ' derlying the Services’ reliability have been largely ignored.
event handler objects and the associated event channel 0 i) th ificati f the CORBA
jects managed by an existing replica must be transferrech:a IS paper examines the specifications of the

the new replica, where these additional objects must be aming, Event, Notification, Trading, Time ar)d Security
stantiated afresh within the new replica. The performan rvices, purely from a fault tolerance perspective. For each

implications of this object instantiation on the speed of nt% thSese _Servg:_es:[we eé(a;mlr;e th? St:ﬁtegt'ef for][?E I'Cat":.g
covery of a new replica of either tAigmeService orthe € erw_c:: otjt?rchs, an Olrt ?eFIJITjQ the states Of efrep -
TimerEventService is a significant concern. cas consistent. These results include the means of enforcing

deterministic behavior of the Service objects, recommenda-
Non-determinism. Time, by its very nature, is non-tions forimplementing these Services, and performance is-

deterministic because the local clocks of different procedies thatimpactthe speed of recovery of new or failed repli-
sors in a distributed system cannot be assumed to be al of the Service objects. Of all of these Services, perhaps
synchronized. Thus, when the Time Service is replicatdd® most challenging is the Security Service because it does
and its replicas are distributed across distinct processorg i merely add new functionality to an existing CORBA ap-
the system, the replicas are likely produce different valulcation, but also requires cpn5|derat|on of the distributed
of the current time, each based on the local clock of its pr)Stém as & whole. This is likely to be true when we con-
cessor. Clients of the Time Service might receive respon8kier the reliability of CORBA implementations that exhibit
from different replicas (depending on which replica is thyStém properties such as real-time, security,
fastest) with different invocations of the Time Service. |
fact, it is quite possible that successive invocations of tf%.;knOWIedgementS
Time Service result in clients obtaining monotonically dd-would like to thank Luis E. T. Rodrigues for his feedback
creasing values of time! and his suggestions which greatly improved this paper.
There are two ways of ensuring that the replication of
the_ Tim.e Service objects doe.s not lead to confusing resfeferences
at its clients. One approach is to use some kind of Global _)
Positioning Service (GPS) support within the Time Servic€t! M. Cukier, J. Ren, C. Sabnis, W. H. Sanders, D. E. Bakken,
to avoid dependence on processors’ local clocks. Another M: E. Berman, D. A. Karr, and R. Schantz. AQUA: An
approach, which assumes the more typical lack of access adaptlve archltectgre that provides dependable_ distributed
t0 a GPS system, is to use passive replicziti‘@m the ob- c_)bjects._ Inl?roceedmgs of the IEEE 17th Symposium on Re-
; X ') . liable Distributed Systempages 245-253, West Lafayette,
jects of the Time Service so that only one copy of the Time |\ october 1998.
Service determines the time to be returned to the clients. _ _
However, the backup replicas also need to be informed & *f] cl:t. tF?bre f‘gd tT_.thergnnotu. A mTe;ao'?é:cEtNaé?tecture E’r
the primary’s current value of time so that they can main- o -o'erant distributed systems. 1he approach.
tain offsets of their respective local times with that of the IEEE Transactions on Computer7(1):78-95, 1998.
primary’s. Thus, even if the primary fails, and one of thd3] P.Felber.The CORBA Object Group Service: A Service Ap-
backups takes over as the new primary, the new primary Proach to Object Groups in CORBARhD thesis, Swiss Fed-
will know the correct value of time to return to the clients. ~ eral Institute of Technology, Lausanne, Switzerland, 1998.

Wi - - . . [4] R. Friedman and E. Hadad. FTS: A high performance
ith passive replication, one of the replicas, called the primary, re* . .

ceives and processes all invocations, while the other replicas, called the CORBA fault tolerance service. IRroceedings of IEEE
backups, have their states synchronized periodically with that of the pri- Workshop on Object-oriented Real-time Dependable Sys-
mary. One of the backups will take over if the primary fails. tems San Diego, CA, January 2002.

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

S. Maffeis. Run-Time Support for Object-Oriented Dis-
tributed Programming PhD thesis, University of Zurich,
Feb. 1995.

S. Maffeis. A fault-tolerant CORBA name server. Rmo-
ceedings of the IEEE Symposium on Reliable Distributed
Systems pages 188-197, Niagara-on-the-Lake, Ontario,
Canada, 1996.

C. Marchetti, M. Mecella, A. Virgillito, and R. Baldoni. An
interoperable replication logic for corba systems. Piro-
ceedings of the 2nd International Symposium on Distributed
Objects and Applications (DOA'0Opages 7—16, Feb. 2000.

G. Morgan, S. Shrivastava, P. Ezhilchelvan, and M. Little.
Design and implementation of a CORBA fault-tolerant ob-
ject group service. IProceedings of the Second IFIP WG
6.1 International Working Conference on Distributed Appli-
cations and Interoperable Systent$elsinki, Finland, June
1999.

P. Narasimhan. Transparent Fault Tolerance for CORBA
PhD thesis, Department of Electrical and Computer Engi-
neering, University of California, Santa Barbara, December
1999.

B. Natarajan, A. Gokhale, S. Yajnik, and D. C. Schmidt.
Doors: Towards high-performance fault tolerant corba. In
Proceedings of the 2nd International Symposium on Dis-
tributed Objects and Applications (DOA'QOpages 3948,
Feb. 2000.

Object Management Group. The Notification Service
specification. OMG Technical Committee Document
formal/2000-06-20, June 2000.

Object Management Group. The Time Service specification.
OMG Technical Committee Document formal/2000-06-26,
June 2000.

Object Management Group. The Trading Object Ser-
vice specification. OMG Technical Committee Document
formal/2000-06-27, June 2000.

Object Management Group. The Event Service specification.
OMG Technical Committee Document formal/2001-03-01,
March 2001.

Object Management Group. Fault tolerant CORBA.
OMG Technical Committee Document formal/2001-09-29,
September 2001.

Object Management Group. The Naming Service specifica-
tion. OMG Technical Committee Document formal/2001-
02-65, February 2001.

Object Management Group. The Security Service specifica-
tion. OMG Technical Committee Document formal/2001-
03-08, March 2001.

Object Management Group. The Common Object Request
Broker: Architecture and specification, 2.6 edition. OMG
Technical Committee Document formal/02-01-02, jan 2002.

