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Abstract
This paper examines the CORBA Naming, Event, Notifica-
tion, Trading, Time and Security Services, with the objec-
tive of identifying the issues that must be addressed in order
make these Services fault-tolerant. The reliability consid-
erations for each of these Services involves strategies for
replicating the Service objects, and for keeping the states
of the replicas consistent. Of particular interest are the
sources of non-determinism in each of these Services, along
with the means for addressing the non-deterministic behav-
ior in the interests of ensuring strong fault tolerance.

1 Introduction
The integration of distributed computing with object-
oriented programming leads to distributed object comput-
ing, where objects are distributed across machines, with
client objects invoking operations on, and receiving re-
sponses from, remote server objects. Both the client’s in-
vocations, and the server’s responses, are conveyed in the
form of messages sent across the network. The Common
Object Request Broker Architecture (CORBA) [18], was es-
tablished by the Object Management Group, as a standard
for distributed object computing.

CORBA uses a purely declarative language, the OMG
Interface Definition Language (IDL), to define interfaces
to objects. The IDL interfaces are subsequently mapped,
through an IDL compiler provided by an implementor of
CORBA, onto specific programming languages. These IDL
compilers respect the OMG-standardized IDL-to-language
mappings for C, C++, Java, Smalltalk, etc. CORBA’s lan-
guage transparency implies that client objects need to be
aware of only the IDL interface, and never of the language-
specific implementation, of a server object. CORBA’s in-
teroperability implies that a client object can interact with
a server object, despite differences in platforms and operat-
ing systems on which the client and the server objects are
hosted. CORBA’s location transparency implies that client
objects can invoke server objects, without worrying about
the actual locations of the server objects. The key com-

ponent of the CORBA model, the Object Request Broker
(ORB), acts as an intermediary between the client and the
server objects, and shields them from differences in plat-
form, programming language and location.

CORBA also encompasses a rich suite of basic services
that almost every application requires. CORBA’s Common
Object Services include Naming, Event, Notification, Time,
Trading and Security services, each of which is also spec-
ified in terms of standard IDL interfaces, and implementa-
tions of which are typically provided by ORB vendors for
ready use by CORBA application programmers. This frees
the CORBA application developer from the burden of hav-
ing to design and to write the code for such commonly-used
functionalities. More recently, the Object Management
Group adopted a Fault-Tolerant CORBA standard [15] that
allows CORBA applications to be made reliable through
the replication of the application objects, along with mech-
anisms and services for keeping the replicas consistent in
state, for detecting the failure of replicas, and for recov-
ering replicas that have failed. The Fault-Tolerant CORBA
standard is not an out-of-the-box solution for providing reli-
ability to CORBA applications; it requires that applications
support certain interfaces and that they exhibit deterministic
or reproducible behavior. Unfortunately, the specifications
of most of the CORBA Services, and consequently, the im-
plementations of these Services, were developed well be-
fore the Fault Tolerant CORBA standard emerged, and do
not necessarily exhibit the kind of behavior that the standard
mandates. The result is that most of the existing implemen-
tations of these Services do not lend themselves readily to
fault tolerance.

This makes it particularly difficult for application devel-
opers who have long enjoyed the freedom and the ability to
use any of the commercial off-the-shelf CORBA Services,
but who are now faced with the task of making their appli-
cations fault-tolerant. By introducing an unreliable imple-
mentation of a CORBA Service into their application, these
application programmers risk the failure of their applica-
tions. Thus, CORBA developers are forced to reconsider,
and perhaps even to forgo, employing these Services if fault
tolerance is essential for the operation of their application.



There has been considerable work in implementing fault-
tolerant CORBA systems, such as AQuA [1], DOORS [10],
Electra [5], Eternal [9], FRIENDS [2], FTS [4], IRL [7],
Newtop [8] and OGS [3]. For the most part, these systems
enhance normal CORBA applications with fault tolerance –
to the best of my knowledge, these systems have addressed
the challenges surrounding reliability for CORBA Services.
However, a fault-tolerant name server [6] was proposed for
a very early version of CORBA using the Electra ORB.

This paper takes an objective look at some of the more
commonly used CORBA Services, purely from the view-
point of fault tolerance. The focus of this study is to identify
the reliability issues and concerns that the specifications and
the implementations of these Services raise and, more im-
portantly, to present solutions that overcome the identified
fault tolerance problems in these Services. The primary ob-
jective of this paper is to inform both CORBA developers
and vendors alike of the reliability shortcomings of current
CORBA Services, and of ways to address these shortcom-
ings in order to build fault-tolerant Services.

2 Reliability for CORBA Services
Each CORBA Service is specified through a set of well-
defined IDL interfaces, along with a description of the ser-
vice’s behavior from the user’s perspective. A Service is
realized through one or more CORBA server objects which
can be invoked either locally or remotely. The application
objects typically exploit a CORBA Service by acting as the
clients of the Service’s objects – the idea is for the differ-
ent constituent objects of the Service to conspire together
to provide some useful functionality, when invoked by the
application.

In keeping with the spirit of CORBA, both the specifica-
tion and the implementation of a CORBA Service are inde-
pendent of the type, nature, or location of its clients. Also,
by virtue of its implementation through CORBA objects,
every CORBA Service upholds CORBA’s interoperability,
location transparency and language transparency. Thus,
CORBA Services are generic enough to be useful across
a wide variety of application domains. The basic CORBA
Services, such as Naming, Event,etc:, can also easily use
each other, and can be combined in new and interesting
ways to produce even more powerful functionality.

When a CORBA application that wishes to exploit a
CORBA Service, clearly, the objects of the application must
interact with, invoke, and respond to, the Service objects.
Thus, for the end-to-end dependability of the CORBA ap-
plication, the reliability of the application, as well as that
of the CORBA Service that it uses, must be considered. To
protect the application against fault using the Fault Tolerant
CORBA standard, both the application objects and the Ser-
vice objects must be replicated, with the replicas distributed
across different processors in the distributed system.

For specific cases, the straightforward replication of the
Service objects is simply not sufficient to guarantee fault
tolerance, primarily because the intrinsic behavior of the
Service objects leads to problems when the objects are repli-
cated. Therfore, from a reliability perspective, it is essen-
tial to identify the sources of the undesirable side-effects
that replication triggers in these Services, as well as to find
strategies to overcome these side-effects. In this paper, the
dependability of each Service is assessed along different as-
pects.

Dependability architecture. We will need to examine the
architecture of the CORBA Service, and to decide which of
the Service objects need to be replicated, and which of the
objects can be regarded as pure clients that do not need to be
replicated. As a part of this exercise, we will need to allo-
cate individual replicas of the objects onto different proces-
sors, in order to avoid a single point of failure. In keeping
with the Fault Tolerant CORBA standard, each object that
is to be replicated must support theMonitorable inter-
face (to allow it to be “pinged” periodically for liveness)
and theCheckpointable interface (to allow its state to
be captured periodically, and restored later during recov-
ery). A part of the dependability architecture involves iden-
tifying the nature of the operations of the Service objects
(whether they are idempotent or not) in order to determine
whether support for detecting and suppressing duplicate op-
erations (which are inevitable in a fault-tolerant system that
uses replication) is required.

State. For a true fault-tolerant system, replication alone
does not suffice. It is also necessary to enable the failed
replicas of an object to be re-instated to normal operation. If
a Service object’s replica has to be recovered, its state must
first be initalized to that of the other correctly functioning
replicas of the object. For this to be possible, we must first
be able to define the state of each of the Service objects; it
is this state that must be transferred ( through theCheck-
pointable interface) each time a new or failed replica is
recovered. Of course, an important factor in the definition
of state is the consideration of performance-related issues,
such as the size of the state, and the distribution of the en-
tire Service’s state across its different constituent objects.
These issues ultimately determine the speed of recovery of
a replica of a Service object and, therefore, the impact (la-
tency or delay in response perceived by the user) on the
application of the failure of a Service object’s replica.

Non-determinism. Non-determinism and reliability are
often regarded as mutually exclusive. In fact, a frequent
assumption in providing reliability for a component is that
the component is required to be deterministic in behavior.
This means that, if the component starts from a specified
initial state, and is fed a sequence of inputs, the compo-
nent will reach the same final state. It is this reproducible
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behavior of the component that lends itself well to reliabil-
ity techniques. Unfortunately, many applications, and the
CORBA Services themselves, do exhibit non-deterministic
behavior. Common sources of non-determinism include lo-
cal timers (e.g., when an application invokesgettimeof-
day ), input-output to local devices (e.g., CDROM drives,
floppy drives), multithreading, etc. For each of the CORBA
Services that we consider, we must also identify the non-
deterministic features of its constituent objects, and then
discover ways of “sanitizing” these features, in the interests
of providing strong fault tolerance.

2.1 CORBA Naming Service
Simplistic CORBA applications publish the server’s object
reference into a file, which the client then reads to discover
the server’s location, and to contact the server subsequently.
Clearly, this is not a satisfactory mechanism for field de-
ployment, particularly because we cannot assume that both
the client and the server will have access to the same shared
file system. To support the run-time discovery of server ob-
ject references in a much more elegant and scalable manner,
CORBA provides for a Naming Service.

The CORBA Naming Service [16] allows the application
programmer to associate the server objects of the applica-
tion with human-interpretable and more intuitive stringified
names. A name is represented by a CORBAName ob-
ject, which is constructed from a hierarchical sequence of
name components, each component being uniquely identi-
fiable within the naming context of its preceding compo-
nent, much in the way that file systems organize directories
and files within directories; for example, the name/usr/bin
contains the componentbin, which is uniquely identifiable
only within the naming context of its hierarchically preced-
ing component,usr. For each of its server objects, an appli-
cation can register, orbind, aNameobject within the Nam-
ing Service’s repository; a client of one of the server objects
can present the correspondingNameto the Naming Service,
which will thenresolvethe embedded name components to
discover the server’s reference, and to return the reference to
the client. Armed with the server’s reference, the client can
now contact the server, without needing to contact the Nam-
ing Service further (unless the client requires the reference
to some other server). The advantage is that while a server’s
reference (containing the server’s hostname and port num-
ber) can change over its lifetime, the server’s name can be
maintained relatively constant over the server’s lifetime.

Typically, the Naming Service is implemented as a sin-
gle server object that supports three interfaces: theNam-
ingContext (to bind, re-bind, unbind, resolve, list and
destroy names of objects) theBindingIterator (to tra-
verse sequentially the list of names stored within the Nam-
ing Service) and theNamingContextExt (to convert be-
tween the Naming Service’s representation of a name and a
human-readable name).

Dependability architecture. The fault tolerance archi-
tecture for the Naming Service is relatively straightfor-
ward because there is typically only one server process that
needs to be replicated, with multiple replicas distributed
across distinct processors. To enable the recovery and
the fault detection of the Naming Service, each of the
three server objects,NamingContext , BindingIter-
ator and NamingContextExt must support both the
Checkpointable and theMonitorable interfaces, as
required by the Fault Tolerant CORBA standard. For the
sake of efficiency, it might be appropriate to implement a
fourth collocated CORBA server object, calledFTCorba-
Support that supports only theCheckpointable and
theMonitorable interfaces, and whose only function is
to act as a front-end, handling all of the fault detection and
recovery communication on behalf of the other three ob-
jects. Some of the Naming Service’s methods are idempo-
tent,e:g:, two consecutive executions of theresolve()
operation will yield identical results. However, the Naming
Service’s interfaces do contain non-idempotent operations,
e:g:, the delete() operation is likely to lead to excep-
tions if performed twice in a row. Thus, there is the need to
log and to identify uniquely every operation before allowing
the Naming Service to execute it.

State. The Naming Service can contain a large amount of
state, depending on the size and the number of names that
have been registered with it. At the point of recovering a
new or a failed replica of the Naming Service, this entire
state first needs to be retrieved from an existing operational
Naming Service replica. The time to retrieve the state and,
therefore, the time to recover a new replica, will depend on
the format in which the names are stored. Note that, over the
course of its lifetime, the Naming Service instantiates many
internal CORBA objects, particularly theNameobjects that
have been registered with it. Thus, when a new replica of
the Naming Service is started, its recovery involves not only
transferring the list ofNameobjects registered with an ex-
isting replica, but also painstakingly instantiating each of
the name-related CORBA objects within the new replica.
In the interests of speeding up recovery, “smart” name stor-
age and list traversal mechanisms that improve performance
could, of course, be used to result in the efficient retrieval
and transfer of the Naming Service’s state. However, the
performance impact on recovery time due to the instanti-
ation of possibly hundreds ofNameobjects on the launch
of a new Naming Service replica is a significant source of
concern.

Non-determinism. Another concern is the possibility of
non-deterministic behavior in the implementation of the
Naming Service. It is likely that the Naming Service will
have many application clients and servers (otherwise, there
would have been no need for a CORBA Naming Service be-
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cause the simpler but less scalable strategy like the shared
file between the application’s clients and servers would
have sufficed). To maintain its scalability and its ability
to handle many clients simultaneously without substantial
performance degradation, most Naming Service implemen-
tations are multithreaded. Despite its many performance
advantages, multithreading is a significant source of non-
determinism if threads can modify shared data; unfortu-
nately, the list of registered names stored within the Nam-
ing Service constitutes data that threads might share. Thus,
the possibly different orders of thread execution within any
two replicas of the Naming Service can lead to inconsis-
tencies in their states. One solution is to allow concurrent
operations within the Name Server only if the operations
do not update any shared state. This implies that multiple
read-only operations (e:g:, resolve() ) can proceed con-
currently, but update operations (e:g:, a delete() and a
bind() ) cannot execute concurrently because they might
modify the shared data in different orders at different repli-
cas of the Name Server.

2.2 CORBA Event and Notification Services
The CORBA Event Service [14] provides support for de-
coupled distributed communication between the CORBA
objects of an application. There existsuppliersthat gener-
ate events, andconsumersthat have an interest in receiving
these events. The events may propagate from the suppli-
ers to the consumers through either a pull model, where the
consumers request events of the suppliers, or a push model,
where the suppliers automatically dispatch the events to the
suppliers, as they occur. Anevent channelis an interme-
diary object that allows multiple consumers and multiple
suppliers to communicate with each other asynchronously.

In their mediating role, event channels function simulta-
neously as both consumers and suppliers of events. Because
the decoupling of the supplier-to-consumer communication
occurs through the event channels, the suppliers and con-
sumers of events can produce and receive events, respec-
tively, without knowing of each others’ identities, locations
or types. The CORBA Event Service specification allows
for disconnected operation, where consumers and suppliers
may be unable to reach other sporadically. Unfortunately,
when the Event Service is used as a part of a CORBA ap-
plication that must be reliable, the intermittent operation of
the Event Service objects, accompanied by the possible loss
of event data, is unacceptable. In contrast to the two-tiered
Naming Service, the Event Service represents a more chal-
lenging three-tiered architecture, with the suppliers (first
tier) communicating with the event channels (second tier),
which, in turn, communicate with the consumers (third tier).

The CORBA Notification Service [11] extends the
CORBA Event Service with support for specific kinds of
notification, including the filtering of events, the defintion
of events as structured data types, the ability to define qual-

ity of service attributes on a per-channel or per-event basis,
etc: From a fault tolerance viewpoint, the Notification and
Event Services are very much alike in architecture and in
the reliability issues that they present. Thus, the reliability
considerations for the Event Service are equally applicable
to the Notification Service.

Dependability architecture. Clearly, the most critical el-
ements of the Event Service is the event channel. Thus,
the event channel objects must be replicated, with the repli-
cas distributed across the processors in the system. To
enable their recovery and fault detection, the event chan-
nel objects of the Event Service server object must support
both theCheckpointable and theMonitorable in-
terfaces, respectively, in accordance with the Fault Tolerant
CORBA standard.

State. The event channel maintains some state, in order
to perform the co-ordination between the suppliers and the
consumers. A part of this state includes the event data that
the consumers require, as well as the identities of the con-
sumers that have already received this data, and the identi-
ties of those that are yet to receive this data. When a new
replica of the event channel is started, in addition to receiv-
ing this state from an existing replica, the new replica must
also be provided with the order in which the existing replica
has formed connections with its event suppliers and event
consumers. This is important because if any two replicas
of the event channel have established connections in dif-
ferent orders, then, the two replicas will detect I/O activity
on those connections in different orders (by the very na-
ture of the operating system’s I/O polling routines, such as
select() , which polls connections in the order in which
they were formed). Thus, the order in which connections to
the suppliers and consumers were established must be made
known, and respected, at the new replica of the event chan-
nel. In the case of the Notification Service, a new replica
needs to instantiate, and then register, the appropriate notifi-
cation filters in the right order. The recovery of a new event
channel server object might be time-consuming because of
the overhead of instantiating multiple objects. Furthermore,
because the event channel plays the roles of both client (to
the consumers) and server (to the suppliers), the client-side
ORB-level state [9], which typically includes the value of
request identifier that is encapsulated into the most recent
outgoing IIOP request message, must be recovered and re-
stored at a new event channel replica.

Non-determinism. Because the event channel must han-
dle multiple consumers and suppliers simultaneously, it is
often multithreaded. As with the Naming Service, the mul-
tithreading of the event channel represents a source of non-
determinism. One solution to this problem would be to se-
rialize all of the operations within the event channel object,
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thereby ensuring that all of its replicas behave determinis-
tically and, therefore, reach the same states as they execute
method invocations. However, this might be rather an ex-
treme solution, particularly because of its implications on
performance; a better alternative might be to ensure that
the event channel objects are implemented so that any two
concurrently executing operations do not modify or access
shared state. This might involve implementing the event
channel to respect the following conditions:

� The event channel must use distinct internal objects
(each object with its exclusive region of allocated
memory) to handle the different suppliers and con-
sumers,i:e:, for every supplier or consumer that it han-
dles, the event channel should restrict the interactions
with that supplier or consumer to a distinct region of
memory within its process. This would ensure that the
event channel’s interactions with suppliers and con-
sumers would not require simultaneous access to, or
update of, the same region of memory.

� The event channel must adopt a thread-per-object
model for each of its constituent objects (where each
object represents a consumer or supplier of events).
This ensures that there will be at most one thread ac-
cessing any object within the event channel at any
time. The implication of this is that the event channel
can allow for the simultaneous execution of any two
operations, as long as both do not pertain to the same
consumer or supplier. On the other hand, this ensures
that the replicas of the event channel will be consistent
in state because there will never occur different orders
of operations on the same region of memory in two
different replicas of the event channel.

� Any operations on the event channel that must deal
with all of the producers and consumers at once (for
instance, an operation that deletes all of the consumer-
related objects) must be allowed to execute only when
all of the other threads have quiesced, and all of the
other operations currently being executed by the event
channel have completed.

2.3 CORBA Trading Object Service
The CORBA Trading Service [13] facilitates the offering
and subsequent discovery of the instances of services of par-
ticular types. In this context, atrader is an object that ad-
vertises the capabilities of other objects in the system, and
allows objects to match their needs against advertised ca-
pabilities. An object that desires to advertise, or export, a
service simply contacts the trader with a description of the
service, and the location in the system of an interface that
supports the service. An object desirous of using, or im-
porting, a service contacts the trader with a description of
the characteristics of the service that it seeks, and the trader

responds with the location of such a service, if it exists. One
of the challenging aspects of a trading service is the fact
that its data, or state, can be partitioned into multiple differ-
ent servers. The reason for such an implementation of the
trader is that it is likely that service offerings themselves can
be partitioned into some sensible groupings and, moreover,
such a partitioning would make the trading service scalable,
and simultaneously accessible to many users. Each parti-
tion consists of a group of importers and exporters that are
interested in a service with specific kinds of characteristics.
If the service offerings within a partition are found to be
inadequate, the importers can seek other partitions. This
hierarchical structuring of traders is often referred to as a
federationof traders. Once an importer makes explicit con-
tact with an exporter of a service, the Trading Service can
step out of the way.

Dependability architecture. For the Trading Service,
each of the traders must be replicated, with replicas dis-
tributed across the system. Because there are multiple dis-
tinct traders that must communicate with each other, there
exist a number of networked replicated objects that hold
some information about each other. Each trader object must
support theCheckpointable and Monitorable in-
terfaces.

State. Each trader must maintain links to other traders in
its federation, and must also maintain exhaustive lists of the
services that exporters in its partition have registered. The
trader must maintain information about its exporters and its
importers. The state of each trader also consists of the list of
traders offering services outside of its partition. Thus, when
a new trader replica needs to be recovered, this state must
be restored, as well as its connections with other traders in
the system. The order of registration of, and connection
establishment to, external traders within the federation is
important for recovery, because it decides the search order
of services. This order must be captured and restored to new
trader replicas. Furthermore, because each trader plays the
roles of both client (to the traders outside its partition) and
server (to the exporters and importers within its partition),
the client-side ORB-level state, which typically includes the
value of request identifier that is encapsulated into the most
recent outgoing IIOP request message, must be recovered
and restored at a new trader replica.

Non-determinism. A significant reliability concern with
the trading service is the multithreading that is inevitable
because the trader must support multiple importers and ex-
porters. The trader supports two different kinds of opera-
tions – read-only operations when an importer looks up a
service offering, and update operations, when an exporter
registers on unregisters a service. Read-only operations
can proceed concurrently because they do not modify any
shared state across different threads; however, the update
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operations are trickier because they manipulate the list of
services registered with the trader. Furthermore, because
the trader pairs up an importer with an exporter, both of
which are explicitly aware of each other (unlike the Event
Service, where the consumer and supplier are decoupled
from each other), there exists the possibility that certain
trader implementations use short-cuts to share data between
an importer and an exporter, in the interests of efficiency.
Care must be taken in the implementation of the Trading
Service to respect the protection of memory across multiple
executing threads that update shared data; in the absence
of such guarantees, the serialization of invocations on the
trader, and its negative impact on performance, are unavoid-
able.

2.4 CORBA Security Service
The CORBA Security Service [17] allows the protection of
CORBA objects in the system, allowing authorized users to
access objects, protecting confidential data from access by
unauthorized users, ensuring that users cannot masquerade
as each other and gain illegal access to data, and protecting
data and inter-object communication from being tampered
by users. To this end, the security interfaces proposed by
the specification are often not visible to the application as
they are buried within the ORB. Thus, an ORB that pur-
ports to support the CORBA Security Service specifications
is significantly different from an insecure ORB, and embeds
mechanisms for audit, authentication, access control, repu-
diation and secure messaging.

Security and reliability are pervasive system properties in
the sense that they both require end-to-end consideration of
not only the application, but the ORB, the processors, the
network, and the distributed system itself. Thus, in contrast
to the other CORBA Services, which merely provide addi-
tional functionality to an existing application, the Security
Service has more far-reaching implications on the system
architecture and system properties. Furthermore, security
and reliability are sometimes conflicting goals, and the re-
sulting trade-offs must be taken into account when the two
properties are simultaneously required.

2.4.1 Reliability Considerations

One of the first sources of conflict between the Security
Service’s definition and reliability is the fact that the Se-
curity Service rightfully does not allow for the tampering of
communication between objects, in the interests of ensuring
the secure exchange of messages. Unfortunately, reliability
necessarily requires some degree of probing at the message
level, because a reliable system must protect the application
from message loss, and must be able to ascertain if mes-
sages are duplicates of each other,etc:

This calls for a secure way of allowing messages to be in-
spected and possibly modified, in the interests of reliability.

One approach to this is to use Portable Interceptors, which
form a part of standard CORBA implementations. Portable
interceptors can be used to examine requests, replies and
messages in the system. This requires the Security Service
to support the concept of portable interceptors, and further-
more, to allow for requests, replies and messages to be ma-
nipulated, before enforcing any security policies on them.

Another source of conflict is that the presence of corrup-
tion in the system presents a source of non-determinism.
For instance, it might be possible for a three-way replicated
object to have one of its replicas running on a maliciously
corrupted processor, and to have its other two replicas run-
ning on correctly functioning processors. In this case, it
is likely that the corrupted replica will behave differently
from the correct replicas, and could generate different re-
sponses to incoming requests. Thus, in the presence of cor-
ruption, determinism can no longer be guaranteed. To pro-
tect against corruption, and simultaneously to eliminate the
effect of non-determinism, some form of majority voting on
the messages sent by the replicas of an object is required.
Thus, both the objects of the Security Service, as well as
the objects of the application, must be actively replicated,1

with majority voting applied on both their requests and re-
sponses. On the other hand, the introduction of replication
also poses a threat to security; the fact that there exist iden-
tical copies of data distributed across the system increases
the possibility of compromise of the data through any one
of the multiple copies. These are the kinds of trade-offs that
must be taken into account when incorporating the Security
Service into an application that is simultaneously required
to be reliable.

Another reliability consideration is the fact that a se-
cure ORB contains additional state, over and above a nor-
mal CORBA-compliant ORB. This state might comprise
the ORB’s security policies, the list of authenticated users,
the cryptographic mechanisms required for authentication,
etc:. In the case of recovering a new replica of an applica-
tion object, this additional ORB-level state must be taken
into consideration. Of course, we must exercise caution in
transferring this ORB state onto a fresh processor that has
not yet been authenticated. As a part of initializing the ORB
of a new replica, we might need to have the new replica, its
ORB, and its hosting processor authenticated before allow-
ing the new replica to be re-instated to normal operation.

2.5 CORBA Time Service
The Time Service [12] provides for a way for CORBA ap-
plication objects to obtain the current time, or to obtain a
time interval that they can use for other purposes. With the
CORBA Time Service, theTimeService object manages
Universal Time Objects (UTOs) and Time Interval Objects

1With active replication, all of the replicas receive, process, and re-
spond to all invocations.
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CORBA
Service

Replication Architecture State Non-Determinism

Naming Replicate the server process (containing
the three objects,NamingContext ,
BindingIterator and Naming-
ContextExt ). Add a fourth collo-
cated server object solely to support
the Checkpointable and Moni-
torable interfaces, and to handle all
the fault detection and checkpointing
for the other three objects.

List of registered names, as well
as the individualNameobjects,
need to be restored within ev-
ery new replica. This might be
time-consuming because several
Nameobjects might need to be
instantiated during recovery.

To overcome non-determinism
due to multiple threads updating
shared data (such as the list of reg-
istered names), allow read-only
operations (e:g:, resolve() )
to proceed concurrently, but
not update operations (e:g:, a
delete() and abind() ).

Event and
Notification

Replicate the event channel server
process, and ensure that the event
channel object supports theCheck-
pointable and Monitorable in-
terfaces.

Identities of consumers, event
data that needs to be sent, selec-
tive notification event filters, as
well as ORB-level state, such as
the order of connection establish-
ment with consumers and sup-
pliers, and the client-side ORB’s
most recent outgoing request
identifier to each consumer

To overcome non-determinism
due to multithreading, implement
the event channel object to (i)
create distinct objects to represent
each supplier and consumer inter-
nally, (ii) use a thread-per-object
model, and (iii) serialize concur-
rent operations that necessarily
share data.

Trading
Object

Replicate each of the multiple trader
objects within the federation, and en-
sure that each trader objectCheck-
pointable and Monitorable in-
terfaces.

List of services registered by ex-
porters in its partition, list of
traders (and their service offer-
ings) in other partitions, as well
as ORB-level state, consisting of
the order of connection establish-
ment with external traders, and
the client-side ORB’s most re-
cent outgoing request identifier
to each external trader.

Read-only service lookup opera-
tions from importers can proceed
concurrently, while service regis-
tration and unregistration opera-
tions from exporters must be seri-
alized because they modify shared
state (the trader’s list of service of-
ferings).

Security Because the Security Service is built
into the ORB, dependability requires
the replication of objects that use a se-
cure ORB.

ORB’s security policies, list
of authenticated users, crypto-
graphic mechanisms, all of which
are buried within the ORB, and
not easy to access from the appli-
cation.

Security requires per-host-level
authentication, which is a source
of non-determinism. Active
replication with majority voting
can tolerate value faults, and
hide processor-level security vio-
lations.

Time Replicate theTimeService and the
TimerEventService objects, and
have them both support theCheck-
pointable and Monitorable in-
terfaces.

List of TIOs and UTOs for
a TimeService object, and
the list of the timer-event han-
dler objects and the associ-
ated event channel objects for a
TimerEventService object

Passive replication of theTime-
Service object, along with
checkpointing of its state, over-
comes the non-deterministic na-
ture of time itself. Alterna-
tively, the TimeService ob-
jects should use a GPS facility.

Table 1: Considerations in providing dependability for various CORBA Services.

(TIOs). Each UTO represents a time, and each TIO repre-
sents a time interval. The Time Service returns the time,
along with an uncertainty interval. The CORBA Time Ser-
vice acknowledges that the time obtained by a client of the
TimeService object may be obsolete by the time that the
client receives the response over the network. Possible so-
lutions that have been proposed to overcome this problem
include the provision of a localTimeService object col-
located within the process of each of its clients.

The TimerEventService object manages timer-
event handler objects. Each timer-event handler is born as-
sociated with an push-mode event channel (one of the com-
ponents of the CORBA Event Service, as described in Sec-
tion 2.2). The timer-event handler can be used to manip-
ulate the timing and content of the events associated with
its event channel. Typically, at the expiration of the timers,

events will be pushed through the associated event channel
to all interested event consumers.

Dependability architecture. The critical elements of the
CORBA Time Service are theTimeService and the
TimerEventService objects. If these are in separate
server processes, then, each of the two objects needs to
support theCheckpointable and Monitorable in-
terfaces, and both server processes should then be repli-
cated. It might happen that both theTimeService and
theTimerEventService objects are collocated within
the same process, in which case, the process itself can
be replicated. In this case, for the sake of efficiency, a
third object supporting theCheckpointable andMon-
itorable interfaces can handle the fault detection and the
state transfer on behalf of the two Time Service-related ob-
jects.
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State. Each of these two objects manages other CORBA
Time Service objects, including the TIOs, UTOs and timer-
event handler objects. Thus, there is some amount of
state that is associated with theTimeService and the
TimerEventService objects. Because theTimeSer-
vice and theTimerEventService create additional
CORBA objects within their processes, their state must in-
clude the list of these additionally created objects and the
order in which these objects were created. To recover a
newTimeService replica, the list of the TIOs and UTOs
managed by an existing replica must be transferred to the
new replica, where these TIO and UTO objects must be
instantiated afresh within the new replica. To recover a
newTimerEventService replica, the list of the timer-
event handler objects and the associated event channel ob-
jects managed by an existing replica must be transferred to
the new replica, where these additional objects must be in-
stantiated afresh within the new replica. The performance
implications of this object instantiation on the speed of re-
covery of a new replica of either theTimeService or the
TimerEventService is a significant concern.

Non-determinism. Time, by its very nature, is non-
deterministic because the local clocks of different proces-
sors in a distributed system cannot be assumed to be always
synchronized. Thus, when the Time Service is replicated,
and its replicas are distributed across distinct processors in
the system, the replicas are likely produce different values
of the current time, each based on the local clock of its pro-
cessor. Clients of the Time Service might receive responses
from different replicas (depending on which replica is the
fastest) with different invocations of the Time Service. In
fact, it is quite possible that successive invocations of the
Time Service result in clients obtaining monotonically de-
creasing values of time!

There are two ways of ensuring that the replication of
the Time Service objects does not lead to confusing results
at its clients. One approach is to use some kind of Global
Positioning Service (GPS) support within the Time Service
to avoid dependence on processors’ local clocks. Another
approach, which assumes the more typical lack of access
to a GPS system, is to use passive replication2 for the ob-
jects of the Time Service so that only one copy of the Time
Service determines the time to be returned to the clients.
However, the backup replicas also need to be informed of
the primary’s current value of time so that they can main-
tain offsets of their respective local times with that of the
primary’s. Thus, even if the primary fails, and one of the
backups takes over as the new primary, the new primary
will know the correct value of time to return to the clients.

2With passive replication, one of the replicas, called the primary, re-
ceives and processes all invocations, while the other replicas, called the
backups, have their states synchronized periodically with that of the pri-
mary. One of the backups will take over if the primary fails.

3 Conclusion
The CORBA standard encompasses the Common Object
Services, where each Service represents some useful func-
tionality required by a variety of CORBA applications. The
standardization of these Services allows CORBA vendors
to provide implementations of these Services, thereby free-
ing application developers from having to write the code for
such functionality themselves. When these Services form
part of a CORBA application that is required to be fault-
tolerant, the reliability of the Services is also essential. Un-
fortunately, most of the CORBA Services were specified
and implemented well before the adoption of the Fault Tol-
erant CORBA standard, with the result that the issues un-
derlying the Services’ reliability have been largely ignored.

This paper examines the specifications of the CORBA
Naming, Event, Notification, Trading, Time and Security
Services, purely from a fault tolerance perspective. For each
of these Services, we examine the strategies for replicating
the Service objects, and for keeping the states of the repli-
cas consistent. These results include the means of enforcing
deterministic behavior of the Service objects, recommenda-
tions for implementing these Services, and performance is-
sues that impact the speed of recovery of new or failed repli-
cas of the Service objects. Of all of these Services, perhaps
the most challenging is the Security Service because it does
not merely add new functionality to an existing CORBA ap-
plication, but also requires consideration of the distributed
system as a whole. This is likely to be true when we con-
sider the reliability of CORBA implementations that exhibit
system properties such as real-time, security,etc:
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