
The Design and Implementation of A Real-Time Data Dispatching System

Nei-Chiung Perng, Neung-Tsung Tsai, Jen-Wei Hsieh, and Tei-Wei Kuo
fd90011,r89074,d90002,ktwg@csie.ntu.edu.tw

Department of Computer Science and Information Engineering
National Taiwan University Taipei, Taiwan, ROC 106

Abstract

This paper describes the design of a real-time data dis-
patching system (RTDDS), which is motivated by the needs
of a performance guarantee on real-time data services by
front-end clients. RTDDS consists of homogeneous ma-
chines with a quality of service performance guarantee. We
address the resource allocation problems and consider Bin-
Packing algorithms to assign requests to machines of RT-
DDS. Processes scheduling over each machine is done au-
tonomously by SRP-based algorithms. The goal is to maxi-
mize the number of concurrent clients and to meet the indi-
vidual quality of service requirements of clients at the same
time.

1. Introduction

The popularity of Internet has triggered the great de-
mand of information technology in recent years. Various
vendors now provide services in different styles over the
Internet, free or charged, to customers. Issues in how to
improve system performance in many ways, such as scala-
bility, availability, reliability, etc., are under serious inves-
tigation. Most work focuses on how to increase the capa-
bility of servers, clustered or not, to serve more clients, in-
stead of multicasting data to clients based on their individ-
ual quality-of-service requirements. Such an observation
underlies the goal of this research.

Clients over the Internet usually face different statuses of
networks and different qualities of services from providers.
They often need to deal with different specifications of
services, even under the same service type, such as mu-
sic, and have to search for service providers which provide
their needed services. Nodes with directory services and
quality control are needed in the entire infrastructure for
information-services over the Internet. The design and im-
plementation of the relaying-service system investigated in

this paper aims at meeting the quality of service (QoS) re-
quirements of selected clients with a scalable architecture.
We assume that the relaying-service nodes, at one end, are
attached to networks with a sufficient network bandwidth
to acquire services from service providers. At the other
end, the relaying-service nodes cache data from the service
providers and relay the data to clients according to the QoS
requirements of clients. The relaying-service nodes regulate
network traffic from the nodes to clients according to the re-
quirements of each client, e.g., a specified number of bytes
per specified time units (so that clients are not overflowed
with data). A naming service should be provided as well,
and multicasting services must also be supported to reduce
the workload of the relaying-service nodes. Different from
the research work in proxy servers, streaming services, or
network bandwidth management, this work is mainly on the
design and implementation of relaying services from ser-
vice providers to front-end clients, and it could be consid-
ered as an extension of ordinary proxy servers.

This paper aims at the design and implementation of a
relaying-service system from service providers to front-end
clients with QoS guarantees. A real-time data dispatching
system (RTDDS) is implemented to demonstrate the feasi-
bility of this work. RTDDS consists of a collection of ma-
chines, which collectively serve as relaying-service nodes to
regulate network traffic from the nodes to clients according
to the requirements of each client. RTDDS could be con-
sidered as a variation or an extension of proxies; the main
goal of RTDDS is to subscribe services on behalf of clients
and pass (or multicast) data to clients based on their indi-
vidual QoS requirements. The basic assumption is to have
sufficient network bandwidth for service delivery from ser-
vice providers, similar to that for powerful caching servers
for communities. We consider Bin-Packing approximation
algorithms to partition workload among machines of RT-
DDS. We adopt the stack-based resource protocol (SRP)
[2] for autonomous workload scheduling on each machine,
where SRP provides a uniform treatment of various multi-
unit resources and could be associated with dynamic and
fixed priority assignment schemes. RTDDS is designed

Proceedings of the Sixth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’03)
0-7695-1928-8/03 $17.00 © 2003 IEEE

as a message-oriented distributed system which provides
load balancing with a broker-based mechanism. We adopt
a pure-Java solution which delivers the promise of ”Write
Once, Run Anywhere” through the Java Virtual Machine
(JVM).

The rest of the paper is organized as follows. Section 2
describes the detailed system design of RTDDS. The system
implementation issues are discussed in Section 3. Section 4
provides the experimental results of the system to demon-
strate the capability of RTDDS on quality-of-service guar-
antee and graceful degradation. Section 5 is the conclusion.

2. Real-Time Data Dispatching System

2.1 System Architecture

Figure 1. System Architecture

Figure 1 shows the system architecture of RTDDS.
The objective is to provide fixed-rate relaying-services for
clients over different platforms with different QoS require-
ments, independent of the data-transmission rates and vari-
ations of service providers. RTDDS consists of a collection
of homogeneous or heterogeneous machines over a local
area network to provide a scalable solution for on-time data
delivery. Note that these machines could be heterogeneous
in our design At this time we implement the system with ho-
mogeneous machines. A combination of master-slave and
broker-based architectures is adopted, where a master bro-
ker (MBroker) runs on one machine of RTDDS to assign
workloads to slave machines so that each slave machine will

then acquire data from service providers by itself and multi-
cast the acquired data to clients according to their individual
QoS requirements.

Two kinds of brokers for data acquisition and deliv-
ery called home broker (HBroker) and destination broker
(DBroker) are introduced. When a request comes from a
client, it first goes to MBroker. The MBroker will assign
a HBroker to acquire data from the corresponding service
provider and assign a DBroker to send data to the client ac-
cording the QoS requirements of the client. The HBroker
may cache data from the service provider at its residing ma-
chine, depending on the services (which will be discussed
in Section 2.2). The responsibility of a DBroker are to ac-
quire data from a proper HBroker and to send/multicast the
data to clients according to the QoS requirements of clients.
The criteria in the assignments of HBrokers and DBrokers
are not to overload each slave machine and to maximize
the number of serviced clients based on the capability of
machines and the QoS requirements of clients. The assign-
ment of HBrokers and DBrokers to slave machines will be
discussed in Section 2.3.

The naming service of RTDDS is provided by the MBro-
ker. It is the responsibility of the MBroker to keep a direc-
tory of services. When a client request does not come with
a specific host address, and the directory of the MBroker
does not contain service providers for the request, the cur-
rent design of the MBroker will simply reject the request.

2.2 Handling of Streams

Services in RTDDS can be roughly categorized into two
types: regular and timely services. Timely services are as-
sociated with services of data with aging problems so that
every piece of (continuous or discontinuous) data of the ser-
vices must be delivered to a selected front-end in an on-time
fashion. Note that data with aging considerations will have
their validity passing with time. For example, the delivery
of stock quotes is an timely service because no one wants to
complete a transaction with out-of-date data. Regular ser-
vices are services for data without aging problems, e.g., im-
pressive scenes of classic movies. However, we must point
out that there could be timing constraints in the delivery of
data under timely or regular services. For example, the de-
livery of a video stream is associated with timing constraints
for each frame or each group of frames although the deliv-
ery could be classified as a regular service.

Two kinds of delivery schemes are defined for timely and
regular services: non-cached-stream and cached-stream de-
liveries. Cached-stream delivery requires RTDDS to cache
data from the service providers during the services to the
clients. The HBroker who is responsible for acquiring a ser-

2

Proceedings of the Sixth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’03)
0-7695-1928-8/03 $17.00 © 2003 IEEE

Figure 2. Data Dispatching over RTDDS

vice (from a service provider) during a cached-stream deliv-
ery should do the caching, and the caching process should
include the notification to and a yes-or-no decision from
the MBroker. The cached data could be saved for later re-
quests from clients. When later on a new request on the
cached data comes in, MBroker would assign the HBro-
ker to handle the request. As astute readers may notice,
cached-stream delivery should only serve for regular ser-
vices because the reusing of cached data, e.g., video streams
or a popular song, implies that data have no aging prob-
lems. Obviously, each machine has a limited capacity in
the storage of cached data and the handling of cached data,
i.e., I/O operations on retrievals and saving of cached data.
The decision of caching should be done by the MBroker be-
cause it manages the entire workload of the system. When
the capacity of a machine is full, the corresponding HBro-
ker should notify the MBroker. The MBroker would deter-
mine the removing of the selected cached data and notify
the HBroker.

Non-cached-stream delivery could be associated with ei-
ther timely or regular services. No data are cached at any
machine. As a result, any such delivery only consumes
CPU time, memory space, and network bandwidth. Note
that DBrokers are not involved in the decision of caching of
data. The main responsibility of DBrokers is on the regulat-
ing of traffic to clients. All data are directly from HBrokers,
regarding of whether HBrokers supply DBrokers data di-
rectly from their caching storage or from the corresponding
service providers.

2.3 Resource Allocation

2.3.1 Workloads and Resource Requirements

HBorkers (and their corresponding machines) are units in
workload assignments. The workload of each client request
�i can be defined by two parameters Ni and Pi, where �i
requests RTDDS to provide the clientNi bytes per Pi units
of time. Several requests of the same data would be from

the same service provider (the same HBroker) but have dif-
ferent parameters Ni and Pi. When one or multiple clients
request a data, the corresponding HBroker must acquire a
service from a proper service provider. The service provider
could have fixed or variable rates in passing data to the
HBroker.

Let us use three parameters to model the workload from
a service provider: Nmax, Nmin and P . Nmax and
Nmin denote the maximum and minimumnumbers of bytes
transferred from the service provider within each P units
of time. Given a collection of n client requests Ti =
f(Ni;1; Pi;1); � � � ; (Ni;ni

; Pi;ni
)g, let Nmax

i , Nmin
i and Pi

be the parameters modelling the workload of the HBroker
(where Nmax

i and Nmin
i denote the maximum and mini-

mum numbers of bytes transferred from the service provider
within each Pi units of time). Suppose that a well-known
dual buffer scheme, which uses one buffer to receive data
and another to send data, is adopted1. The following for-
mula must be satisfied for the minimum size of the buffer:

Nmin
i �

n
max
j=1

d
Pi

P1;j
eNi;j

where Pi � Pi;j for all 1 � j � n. For the simplicity
of implementation, let Pj jPi;j for all 1 � j � n. The
buffer requirement of the HBroker on the above service is
2Nmax

i . Let the workloads of the client requests Ti =
f(Ni;1; Pi;1); � � � ; (Ni;ni

; Pi;ni
)g and their corresponding

HBroker workload (Nmax
i ; Nmin

i ; Pi) be denoted collec-
tively as DWi = ((Nmax

i ; Nmin
i ; Pi); Ti). Each DWi is

called a HBroker delivery workload in the system.

Suppose that the ith HBroker is as-
signed a collection of mi services Hi =
f(Nmax

i;1 ; Nmin
i;1 ; Pi;1); � � � ; (N

max
i;mi

; Nmin
i;mi

; Pi;mi
)g for

clients. The minimum memory space (for the dual
buffer scheme) for the HBroker is 2

Pmi

j=1 Nmax
i;j .

Let Ti;j = f(Ni;j;1; Pi;j;1); � � � ; (Ni;j;ni;j
; Pi;j;ni;j

)g
be the collection of client requests which cor-
responds to a workload from a service provider
Si;j = (Nmax

i;j ; Nmin
i;j ; Pi;j) 2 Hi. Let CHi be the

maximum subset of Hi for cached-stream service. When
the Stack-Based Resource Policy (SRP) is used for schedul-
ing of all resources on one machine, where SRP could
use either a dynamic priority assignment scheme (such
as the earliest deadline first algorithm) or a fixed priority
scheduling scheme (such as the rate monotonic algorithm)
[7]. The minimum I/O bandwidth requirement is

1The implementation of the dual buffer scheme could be done by a
well-known circular buffering approach where a less amount of memory
space is needed. However, when the variation of data transmission from the
service provider is large, then the buffer size must be increased to prevent
the overflowing of the buffer.

3

Proceedings of the Sixth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’03)
0-7695-1928-8/03 $17.00 © 2003 IEEE

X
(Nmax

i;j
;Nmin

i;j
;Pi;j)2CHi

Nmax
i;j

DiskAccessRate

Pi;j

+
X

(Ni;j;k;Pi;j;k)2Ti;j

Ni;j;k

DiskAccessRate

Pi;j;k

1
A+ Bi

where DiskAccessRate is the worst-case disk access
rate (i.e., that including the worst-case seek time and latency
delay, unless a good placement scheme is adopted).

Note that Bi = OneBlockAccessT ime
MinPeriod

, where
OneBlockAccessT ime is the worst-case access time
for one block access, and MinPeriod is the minimum
periods of all client and service workloads. The correctness
of the above formula follows from the schedulability
analysis results in the research results of the stack-based
resource policy and the constant utilization servers [4] and
when the earliest-deadline-first algorithm (EDF) is used in
scheduling disk I/O operations. Note that EDF assigns the
request (or process) with the closest deadline the highest
priority. We assume that CPU time is always sufficient for
each HBroker under the assumption that disk I/O could
be handled for the HBroker because I/O is much slower
(However, when the assumption is improper, the formula
for the CPU bandwidth requirement could be derived in a
similar way as that for I/O bandwidth requirement).

2.3.2 Assignments of HBrokers and DBrokers

For the simplicity of implementation, we assume that each
machine is assigned a HBroker in this paper. The technical
question here is how to assign service workloads to HBro-
kers without overloading any HBroker. Given a fixed set of
service workloads, the HBroker assignment problem could
be shown as a NP-Complete problem.

Theorem 1 The HBroker assignment problem is NP-
Complete.

Proof. An instance of the HBroker assignment prob-
lem has a collection of workloads f(Nmax

1 ; Nmin
1 ; P1), ...,

(Nmax
n ; Nmin

n ; Pn)g. It is to partition the n service notices
over a given number of HBrokers, under the constraint that
the total utilization of each HBroker does not exceed its ca-
pacity of corresponding HBroker. This problem is a NP
problem since we could guess a partition and verify it in a
polynomial time.

We could show that the HBroker assignment problem is
NP-Complete by reducing it from the Bin-Packing problem.

An instance of the Bin-Packing problem has a finite set U of
items, a size s(u) 2 Z+ for each u 2 U , a positive integer
bin capacity B, and a positive integer K [3, 6]. The Bin-
Packing problem asks to have a partition of U into disjoint
setsU1; U2; :::; Uk such that the sum of the sizes of the items
in each Ui is no more than B?

The reduction is straight forward because the HBroker
assignment problem is exactly the same as the Bin-Packing
problem withDiskAccessRate being a very large number
such that the I/O bandwidth requirement could be virtually
removed. 2

Since the HBroker assignment problem is NP-Complete,
approximation algorithms are needed for the assignments.
There are excellent approximation algorithms already exist
for the Bin-Packing problem, such as Next-Fit and First-Fit
[9]. Because the advance of hardware technology already
makes memory space a minor issue, compared to the perfor-
mance of disks, we propose to apply Bin-Packing approx-
imation algorithms to assign workloads to HBrokers with
only the considerations of I/O bandwidth requirements. We
assume that the memory space is sufficient in the implemen-
tation.

The assignment of DBrokers to machines in RTDDS is
independent of the assignment of HBrokers in the consid-
erations of the architecture design. However, when imple-
mentations are considered, each DBroker should be resi-
dent on the same machine as the HBroker which is assigned
client requests corresponding to the workloads of the HBro-
ker. When several requests of the same data come from
clients with a distance such that they had better to receiv-
ing data from different machines in RTDDS, the assignment
of DBrokers, once again, becomes a very difficult problem
(which can be, in fact, reduced from a weighted set cover-
ing problem given the following informal definition for the
DBroker assignment problem):

Let each DBroker have a set of client requests, and each
HBroker have a set of workloads for the client requests,
where the sets of some DBrokers could have non-empty
overlapped subsets. Assume that the underlying network
is a broadcast network such that the considerations of net-
work overheads could be ignored. When a DBroker and a
HBroker are assigned on the same machine, the number of
overlapped client requests (for the DBroker) and workloads
(for the HBroker) is called the matched number. The prob-
lem is how to assign DBrokers to machines, where the as-
signment of HBrokers on machines given, such that the sum
of matched numbers of all machines is maximized. Note that
each machine will be assigned exactly one HBroker and one
DBroker.

For the purpose of the design goals of RTDDS, we as-
sume that each machine is equally good in servicing any

4

Proceedings of the Sixth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’03)
0-7695-1928-8/03 $17.00 © 2003 IEEE

client request, where RTDDS is mainly designed to reg-
ulate network traffic according the QoS requirements of
clients. Machines of RTDDS work as an integrated clus-
tered ”virtual” machine in processing client requests. We
do not allow client requests of the same data being as-
signed to more than one DBroker. Furthermore, let a DBro-
ker reside at the same machine as the HBroker which ser-
vices its client requests. The HBroker assignment problem
defined above could be extended as the HBroker/DBroker
assignment problem, except that the minimum memory
space (for the dual buffer scheme) for the HBroker becomes
2
P

j=1;mi
N

max
i;j + 2

P
(Ni;j;k;Pi;j;k)2Ti;j

Ni;j;k. The ap-
proximation algorithms discussed in the previous para-
graphs could be used similarly.

3. System Implementation

3.1 A Master-Slave Architecture

An asymmetric master-slave architecture is adopted in
the design and implementation of RTDDS. One master ma-
chine is assigned to run MBroker. MBroker must assign
workloads to HBroker and DBrokers. The system archi-
tecture of RTDDS could be supported by two well-known
distributed system architectures: OMG’s Common Object
Request Broker Architecture (CORBA) [8] and Sun Mi-
crosystem’s Java Message Service (JMS) [5]. CORBA is
an open, vendor-independent specification for an architec-
ture and infrastructure which applications can adopt to work
together over networks. With the OMG Interface Defini-
tion Language and standardized protocols GIOP and IIOP,
CORBA allow any CORBA-based program from any ven-
dor, operating system, and programming language to co-
operate with other CORBA-based programs. JMS, which
consists of a set of APIs, provides a reliable, flexible service
for the asynchronous exchange of critical business data and
events throughout an enterprise. JMS also provides a com-
mon API and provider framework that enables the devel-
opment of portable, message based applications in the Java
programming language.

CORBA and JMS are products designed for different
purposes. We choose JMS for the implementation of RT-
DDS for two reasons: (1) JMS, which is mainly based
on asynchronous communication, provides a connectionless
communication approach, where most CORBA implemen-
tations depend on TCP-based communications. Note that
TCP-based communication is better for reliable communi-
cation, but connectionless communication, such as UDP, in
general provide better performance over reliable network-
ing environments. Since the implementation of RTDDS is
over reliable intranet, JMS is chosen as the implementa-
tion framework and platform. (2) Java and JMS together

provide a better cross-platform development environment.
They provide better portability for the implementations of
RTDDS.

Figure 3. Control Flow of RTDDS

Numerous vendors provide JMS products which follows
the JMS standard. OpenJMS [1] version 0.7.2 build 14 was
used to implement RTDDS, where OpenJMS is an open
source implementation of JMS API 1.0.2 specification de-
veloped by ExoLab Group. Over the bottom structures pro-
vided by OpenJMS, brokers negotiate with each another by
instant message exchanging. Figure 3 is the flow of con-
trol information when a service provider publishes data to
RTDDS: The first step is a registration to the MBroker, in
which a service provider sends a service notice to MBro-
ker. A service notice consists of the host address, binding
port number, and service name of the provider. After receiv-
ing a request from a client for a published service (Step 2),
MBroker chooses a suitable HBroker and a suitable DBro-
ker for service, with the methodology described in the pre-
vious section (Step 3). The assignment of a HBroker and
the DBroker is done by an invoke message to the HBroker
and the DBroker (Step 4). The HBroker and the DBroker
both need to send back an acknowledgement back to the
MBroker (Step 5). The HBroker then acquires data from
the service provider (Steps 6 and 7) and sends the data to
the DBroker (Step 8). The DBroker then sends the data to
the client based on its QoS requirements (Step 9).

3.2 Implementations of Brokers

To regulate the traffics of real-time data dispatching to
clients, each broker is designed as a multithreaded server to
handle concurrent client requests to increase responsiveness
and to reduce blocking, as shown in Figure 4. Whenever a
new client request comes in for a HBroker or DBroker, a
thread is assigned to handle the request. A thread pool is
maintained.

The communication between a service provider and a
HBroker is done by a TCP-based connection to provide

5

Proceedings of the Sixth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’03)
0-7695-1928-8/03 $17.00 © 2003 IEEE

Figure 4. Broker Design Diagram

a reliable communication. The communication between a
DBroker and its client is also done by a TCP-based con-
nection because of the same reason. The communication
between a HBroker and its corresponding DBroker is done
by JMS-based asynchronous communication to maximize
the performance, where we assume the existence of reliable
intranet for HBrokers and DBrokers. Note that when clients
and servers adopt the Real-Time Transport Protocol (RTP)
(which is over TCP and UDP), the implementation of RT-
DDS could utilize the flow control of RTP for multimedia
data transmissions.

MBroker, HBrokers and DBrokers adopt the following
JMS framework for the exchanging of asynchronous mes-
sages. MBroker, HBrokers, and DBrokers which send
and receive asynchronous messages inherit the interface
javax.jms.MessageListener. Users should implement the
onMessage method. While a message delivered to brokers,
onMessage method will be called.

import javax.jms.*;
public class RtddsBroker implements MessageListener f
...
public void onMessage(Message message) f
/ * write todo jobs here */

g
...

g

4. Performance Evaluation

4.1 Experimental Environments and Perfor-
mance Metrics

The purpose of the experiments was to evaluate the per-
formance (or QoS guarantee) of RTDDS and its overheads.

The RTDDS was implemented in pure-Java over ExoLab
OpenJMS version 0.7.2 build 14. The evaluation platform
was over several Pentium-III 600MHZ personal comput-
ers. In the current version, we generated dedicated Service
providers to provide data periodically. They were deployed
over a remote network. One of them was connected directly
to Hinet (which is provided by Chung-Hwa Telecom ISP)
with ADSL (64kbps uplink and 512kbps downlink). Our
RTDDS was set up at the Real-Time and Embedded Sys-
tems Laboratory at the National Taiwan University. RTDDS
was connected to a LAN in the laboratory. The LAN was
connected to Hinet through TANET (which is provided by
the ROC EducationMinistry). Clients of RTDDS were con-
nected to RTDDS over LAN in the laboratory.

The major performance metric was the stability of traf-
fics, i.e. the QoS guarantee, from RTDDS to clients. Clients
requested for 4096, 8192 and 16384 bytes of data transfer
for every 20 ms from RTDDS (or service providers). When
RTDDS was adopted, RTDDS acquired data from the ser-
vice providers on behalf of clients and forwarded to clients
according to the requirements of clients. We run the re-
quests for 1000 times with or without RTDDS. We then
take the results in the middle 500 samples to remove im-
proper experimental factors. We also evaluated the over-
heads of RTDDS, which was mainly the delay of data trans-
missions from the receiving of data (from service providers)
and the forwarding of data (from RTDDS). The overheads
were measured five times and averaged.

4.2 Experimental Results

Figure 5. The distributions of data transmis-
sions without RTDDS

Figure 5 shows the distributions of data transmissions for
clients without RTDDS. In 20 ms, clients requested 4096,
8192 and 16384 bytes respectively. Figure 6 reports the re-
sults of the same experiments with RTDDS. When clients

6

Proceedings of the Sixth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’03)
0-7695-1928-8/03 $17.00 © 2003 IEEE

Figure 6. The distributions of data transmis-
sions with RTDDS

Run 1 Run 2 Run 3 Run 4 Run 5 Average
Delay 2804 2684 2524 2784 2664 2692ms

Table 1. The overheads of RTDDS in transmis-
sion delay

requested data through RTDDS, they always received a very
stable transmission rate according to the requests of clients.
When RTDDS was not adopted, the data transmission rates
fluctuated with a wide scale. During most of the experiment
time, the rates could go up and down violently.

Table 1 shows the overheads of RTDDS, which was
mainly the delay of data transmissions from the receiving
of data (from service providers) and the forwarding of data
(from RTDDS). The delay was about 2.5 seconds. We must
emphasize that the delay only occurred when the service
was first delivered. Once services were delivered, clients
would no longer feel any delay. The delay could also be
called start-up delay of services. It was the price paid for
traffic regulation under RTDDS. The large fluctuation in the
beginning of Figure 6 were due to the delay of data trans-
missions, as shown in Table 1.

5. Conclusion

This paper proposes the design and implementation of
a relaying-service system from service providers to front-
end clients with QoS guarantees. RTDDS consists of a col-
lection of machines, which collectively serve as relaying-
service nodes to regulate network traffic from the nodes to
clients according to the requirements of each client. We
consider Bin-Packing approximation algorithms to parti-
tion workload among machines of RTDDS. We adopt the
stack-based resource protocol (SRP) for autonomous work-

load scheduling on each machine. RTDDS is designed as
a message-oriented distributed system which provides load
balancing with a broker-based mechanism over JVM. We
conducted a series of experiments to show the overheads in
adopting the RTDDS solution and to demonstrate the capa-
bility of RTDDS in regulating traffic for clients.

RTDDS provides extended services over ordinary proxy
servers in relaying data streams from service providers to
front-end clients. For future research, we shall further ex-
plore pulling services from service providers for clients
with QoS supports.

References

[1] J. Alateras, T. Anderson, and J. Mourikis. OpenJMS User
Guide. ExoLab Group, February 2002.

[2] T. P. Baker. A stack-based resource allocation policy for real-
time processes. IEEE Real-Time Systems Symposium, pages
191–200, 1990.

[3] E. G. Coffman, J. M. R. Garey, and D. S. Johnson. Ap-
proximation algorithms for bin packing: A survey. In
D. Hochbaum, editor, Approximation Algorithms for NP-
Hard Problems, chapter 2, pages 46–93. PWS Publishing
Company, 1997.

[4] Z. Deng and J. Liu. Scheduling real-time applications in
an open environment. IEEE Real-Time Systems Symposium,
pages 308–319, December 1997.

[5] M. Hapner, R. Burridge, R. Sharma, J. Fialli, and K. Stout.
Java Message Service Specification. Sun Microsystems, 1.1
edition, April 2002.

[6] L. T. Kou and G. Markowsky. Multidimensional bin packing
algorithms. IBM J. RES. Dev. 21, pages 443–448, 1977.

[7] C. L. Liu and J. W. Layland. Scheduling algorithms for multi-
programming in a hard real-time environment. Journal of the
Association for Computing Machinery, 20(1):46–61, January
1973.

[8] Object Management Group. Common Object Request Broker
Architecture (CORBA/IIOP), 3.0.2 edition, December 2002.

[9] P. W. Shor. How to pack better than best fit: Tight bounds
for average-case on-line bin packing. Proceedings of the
32nd Annual Symposium on Foundations of Computer Sci-
ence, pages 752–759, 1991.

7

Proceedings of the Sixth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’03)
0-7695-1928-8/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

