
Code Generation from Hybrid Systems Models for Distributed Embedded
Systems ∗

Madhukar Anand, Jesung Kim, and Insup Lee
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104

{anandm,jesung,lee}@saul.cis.upenn.edu

Abstract

Code generation from hybrid system models is a promis-
ing approach to producing reliable embedded systems. This
approach presents new challenges as the precise seman-
tics of the model are hard to capture in the code. A
framework for generating code was introduced for single
threaded/processor environments . Here, we extend it by
considering code generation for distributed environments.
We also define criteria for faithful implementation of the
model. To this end, we define faulty and missed transitions.
For preventing faulty transitions, we build on the idea of
instrumentation we have developed for sound simulation of
hybrid systems. Finally, we present sufficient conditions to
avoid missed transitions and provide examples.

1 Introduction

A model-based approach is an emerging paradigm for
developing robust embedded software, and has been the fo-
cus of increasing research effort. In this approach, models
are used during the design phase to ensure that systems un-
der consideration have desired properties. A software im-
plementation then can be produced automatically by com-
piling the model in many cases. This enhances the quality
of the end product significantly since it can eliminate time-
consuming and error-prone manual programming. Even
though manual programming may give a better opportu-
nity of fine tuning for performance optimization, the advan-
tage is easily offset in embedded computer systems where
proven safety is utmost important.

An embedded system typically consists of a collection
of digital programs that interact with each other and with
an analog environment. For such systems, hybrid sys-

∗This research was supported in part by NSF CCR-0086147, NSF
CCR-0209024, and ARO DAAD19-01-1-0473.

Update

Frequency

Specification

Code

Generator

Hybrid

Systems

Model

Code

Instrumented

Hybrid

Systems

Model

Missed

Transition

Analysis

Faulty

Transition

Analysis

Figure 1. Work flow of our framework.

tems [1, 15] is an appropriate modeling paradigm. In hybrid
systems, the state can be changed continuously as well as
discretely. In this model, continuous state evolution is spec-
ified by differential equations while discrete state changes
are modeled by the legacy finite state machine. Typically,
the code generator translates a hybrid systems model into a
set of functions that can be invoked periodically by the un-
derlying RTOS to simulate the original model. Intuitively,
as the period gets close to zero, the behavior of the gener-
ated code will get close to the model. However, it is gen-
erally not guaranteed that the discrepancy will be bounded
by using a smaller period due to the discrete nature of hy-
brid systems. For example, small errors in solving the dif-
ferential equations numerically may lead to a discrete state
change that should otherwise not occur, resulting in an en-
tirely different trace thereafter. Thus, validation of the gen-
erated code against the originating model is essential for
model-based code generation paradigm.

This paper proposes a framework for automatic code
generation and validation for hybrid systems models to dis-
tributed execution environment. Our framework combines
and extends previously proposed techniques [5, 12].

In our framework, the code is generated and validated
against hybrid systems models in three steps as illustrated
in Figure 1. First, the model is analyzed whether a transi-
tion that is not possible in the model may occur when it is
translated into code according to the user assigned update

Proceedings of the Eighth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’05)
0-7695-2356-0/05 $ 20.00 IEEE

Figure 2. Design Flow

frequency. To prevent such faulty transitions, the model is
instrumented such that transitions are taken conservatively
considering errors due to discreteness of the code. Second,
the instrumented model is analyzed to check whether a tran-
sition may be missed. In this stage, each transition is ana-
lyzed whether it is enabled long enough compared to the
user assigned update frequency. Finally, the instrumented
model is fed in to the code generator to produce the code.

The work flow described in the Figure 1 reflects a trans-
lation of the model to the code. Conceptually, this transla-
tion progresses from the hybrid systems model defined in
continuous time to the code that runs in a distributed dis-
crete environment. The semantic relationship is depicted in
Figure 2. At each stage, there is a successive relaxation of
behavioral semantics. Hence it is essential to carefully an-
alyze and identify criteria for a faithful implementation of
the model. This is the principal focus of this paper.

Related works. Commercial modeling tools such as
SIMULINK also support code generation and address the
effect of errors in the code. However, their concerns are
largely limited to numerical errors occurring each step dur-
ing simulation. That is, an estimation of local numerical
errors are checked against the user-given tolerance repre-
sented in the form of relative errors and absolute errors,
but the effect of such errors on discrete behavior is not ad-
dressed rigorously. Therefore, even if the simulation and/or
automatically generated code satisfies local error tolerance,
it is generally not guaranteed that the behavior is consistent
to the mathematical model.

Synchronous languages for reactive systems, such as

STATECHARTS [11], ESTEREL [7], and LUSTRE [10], also
support code generation. However, these languages do not
support specification of continuous activities, and thus the
semantic difference between the model and the code is not
a main issue. SHIFT is a language for dynamic networks of
hybrid automata [8], and it also supports code generation,
but the focus is not on correctness issues. Model-based de-
velopment of embedded systems is also promoted by other
projects with orthogonal concerns: Ptolemy supports inte-
gration of heterogeneous models of computation [9] and
GME supports meta-modeling for development of domain-
specific modeling languages [13].

In [5], code generation from hybrid models was intro-
duced with focus on single-thread execution. This was ex-
tended to multithreaded models accounting for faulty tran-
sitions in [12]. Here we extend the previous work by
first identifying criteria for faithful implementation of the
model. Then, we analyze both faulty and missed transi-
tions for the case of distributed execution and propose nec-
essary extensions: For the case of faulty transitions, we
eliminate the necessity of EDF scheduling when the guard
sets are disjoint. For missed transitions, we generalize the
theorem introduced in [5] for the case of different step
sizes/multithreaded execution.

Organization of the paper. The remainder of this paper
is organized as follows. The next section gives an overview
of hybrid systems models along with an introduction of our
hybrid systems modeling language CHARON. We then de-
scribe the code generation procedure and related correctness
issues. In the following, we describe our approach to vali-
dating the generated code against the model. The final sec-
tion gives a concluding remark and suggests future works.

2 Hybrid Systems Model

Hybrid systems is a formal model that combines contin-
uous dynamics specified in differential equations and finite
state machine based discrete control. Formally, a hybrid
model consists of a real vector x = (x1, x2, . . . , xn) de-
noting the continuous state, a finite set of discrete states P
that associates x with a differential equation ẋ = fp(x)
for each p ∈ P , and a set of transitions E ⊆ P × P .
The continuous state x evolves according to the differen-
tial equation ẋ = fp(x) when the current discrete state is
p. When the current discrete state is changed from p to p′,
x is optionally reset to a new value R(x, p, p′) defined by
a map R : R

n × P × P → R
n, and continues evolution

in accordance with the differential equation ẋ = fp′(x) as-
sociated with p′. To control the discrete behavior, discrete
transitions can be guarded by predicates over x. That is,
a set G((p, p′)) ⊆ R

n for each (p, p′) ∈ E specifies the

Proceedings of the Eighth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’05)
0-7695-2356-0/05 $ 20.00 IEEE

x = 10
x ≤ 25

z=x/180⋅π

.
x = -10
x ≥ -25

z=x/180⋅π

.

x ≥ 22

x ≤ -22

x

Figure 3. Hybrid model for a robot dog.

necessary condition on the continuous state that the transi-
tion (p, p′) can be taken. Note that a discrete transition is
not necessarily taken immediately even if the guard is true.
To enforce a transition, an invariant set I(p) ⊆ R

n is as-
sociated for each p ∈ P to specify the condition that the
discrete state can stay in p (that is, the condition that x will
follow ẋ = fp(x)).A transition out of the current discrete
state should be taken before the continuous state goes out
of the invariant set.

For example, Figure 3 shows a simple hybrid model
for a robot dog panning its head. It consists of two po-
sitions or discrete states, each of which specifies constant
increase/decrease (±10◦/s) of variable x, which represents
the angular position of the head. Transitions cause the direc-
tion of the movement of the head to be reversed by switch-
ing the position (and hence dynamics) when the head is
moved beyond a certain degree (±22◦). The transitions can
be taken any time while the guard is true (i.e., the time when
the transition is taken can be non-deterministic). The invari-
ant of each location specifies that the switch should occur
before the head moves beyond its allowed range (x ≤ 25
and x ≥ −25).

We have been developing the modeling language
CHARON, a design environment for specification and analy-
sis of hybrid systems [2]. As a language, CHARON has
many object-oriented features to aid design of complex hy-
brid systems. In CHARON, the building block for describing
the system architecture is an agent that communicates with
its environment via shared variables. The language supports
the operations of composition of agents to model concur-
rency, hiding of variables to restrict sharing of information,
and instantiation of agents to support reuse. The building
block for describing flow of control inside an atomic agent
is a mode. A mode is basically a hierarchical state machine,
that is, a mode can have sub-modes and transitions connect-
ing them. Variables can be declared locally inside any mode
with the standard scoping rules for visibility. Modes can be
connected to each other only via well-defined entry and exit
points. We allow sharing of modes so that the same mode
definition can be instantiated in multiple contexts. Discrete
updates in CHARON are specified by guarded actions label-
ing transitions connecting the modes. Some of the variables
in CHARON can be declared analog, and they flow con-

.cn .cc

.cc

.cc

.bin
code

generator
target

compiler

CHARON
model

generated
C++ code scheduler

API interface

binary code

Figure 4. Code generation process.

tinuously during continuous updates that model passage of
time. The evolution of analog variables can be constrained
in three ways: differential constraints, algebraic constraints,
and invariants which limit the allowed durations of flows.
CHARON supports compositional trace semantics for both
modes and agents [4]. For analysis it supports simulation,
and formal verification of safety properties for a restricted
subset, namely, models with finite discrete state and linear
continuous dynamics in every mode [2, 3].

Figure 4 illustrates the code generation process in
CHARON. The code generator translates high-level models
written in CHARON into C++ programs as we will review in
the next section. The generated programs are compiled by
the target compiler along with support programs that han-
dle the platform dependency such as device access and task
scheduling. See [5, 14] for details.

3 Code Generation

This section gives a brief overview of the procedure of
code generation from hybrid models. See [5, 14] for details.
We first present translation of continuous behavior specified
by differential equations and algebraic equations, and then
explain translation of discrete actions specified by guarded
transitions. Later in this section, we discuss the issue of
discrepancy between the model and the generated code.

3.1 Code Generation Procedure

A differential equation of the form of ẋ = f(x) spec-
ifies continuous change of variable x at the rate specified
as the first derivative f(x) of x with respect to time (i.e.,
dx/dt = f(x)). Continuous change of a variable can be
simulated by stepwise update of the variable based on a nu-
merical method that computes an approximate value of the
variable after a discrete time step (e.g., Runge-Kutta method
[16]). The simplest numerical method is the one known as
Euler’s method, which projects the value of the variable at
the next time step through linear extrapolation. For exam-
ple, a differential equation ẋ = 2 is translated into an as-
signment statement x := x + 2 × h, where h is the step
size. In fact, no more sophisticated method is necessary if
the right-hand side of the differential equation is a constant.

Once the differential equations are solved, algebraic
equations are evaluated to reflect the change due to differ-
ential equations. The general form of algebraic equations

Proceedings of the Eighth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’05)
0-7695-2356-0/05 $ 20.00 IEEE

is y = g(x). An algebraic equation can be implemented
by an assignment statement of the same form. That is, an
algebraic equation y = g(x) is simply translated into an
assignment of the form y := g(x).

Discrete actions of hybrid automata specify instanta-
neous switching of system dynamics and optional reset of
variables. Discrete actions are specified by transitions be-
tween positions, where each position defines different dy-
namics. The transition has a guard that specifies the neces-
sary condition for the transition to be taken, and may have
optional assignments to variables that are performed at the
moment when the transition is taken. When a transition is
taken, differential equations and algebraic equations defined
in the source position become no longer active, and those
defined in the destination position take effect immediately.

As explained in the previous section, the guard enables
or disables a transition, rather than immediately triggers
a transition in hybrid systems models. This means that
enabled transitions may be taken delayed as long as the
invariant is satisfied. Conceptually, transitions are non-
deterministic in the model, and the implementation deter-
mines exactly when a transition is taken. This introduces
various transition policies, as illustrated in Figure 5. An
obvious policy is an urgent transition policy where a transi-
tion is taken as soon as the guard evaluates true. We have
proposed a transition policy what we call instrumentation
[12] that enforces transitions to be taken some time ∆ af-
ter the transition is enabled but no later than ∆ before the
transition is disabled. Yet another possibility is not to take a
transition. Indeed, this policy makes sense when there will
be a chance of taking another transition before the invariant
is violated. Conversely, a policy that enforces a transition
once it is enabled. We call such a policy an eager transi-
tion policy. Surely, the urgent transition policy is an ea-
ger transition policy. The instrumented transition policy is
an eager transition policy if the instrumented guard set is a
non-empty set. We only consider an eager transition policy
in this paper.

We translate a transition into an if-then statement where
the guard becomes the if-condition and the statement block
contains the assignments, essentially implementing the ur-
gent transition policy. The then-block also contains an addi-
tional statement that updates an internal variable storing the
current position. If the user specifies a constant ∆ for instru-
mentation, the if-block is modified such that the condition
becomes true at time ∆ after the original condition becomes
true. Assuming that the guard sets are rectangular as in Fig-
ure 5, that is, the predicates are of the form x ∼ c where c
is a constant and ∼ is one of ≤, <, >, and ≥, the modifi-
cation is simple. For example, if the guard 10 ≤ x ≤ 20
with the dynamics ẋ = 2 is instrumented by ∆, it becomes
10+2∆ ≤ x ≤ 20− 2∆. Note that the instrumented guard
is always a subset of the original guard. Note also that the

State space

Invariant

Guard

Instrumented
guard

Trajectory

d(x)=f1(x)

d(x)=f2(x)

Urgent transition

Instrumented
transition

d(x)=f2(x)

d(x)=f2(x)

Figure 5. Transition policies.

guard set may be so small that it becomes an empty set after
instrumentation. In this case, the transition is permanently
disabled, and the eager transition policy is violated. We will
address this issue in Section 4.2.

Conceptually, the if-block should be executed continu-
ously (i.e., infinitely frequently), since continuous variables
can be updated any time. In the generated code, however,
variables are updated synchronous to execution of differen-
tial equations and algebraic equations. Therefore, the code
for transitions is executed only once after continuous ac-
tions are performed at every step. However, this strategy is
not safe in a distributed / multithreaded execution environ-
ment where shared variables can be updated asynchronous
to the testing of the guards.

3.2 Correctness of the Generated Code

The behavioral semantics of hybrid systems is defined
in the continuous time domain as explained in the previ-
ous section, and thus it is generally not possible for the
generated code to capture the semantics precisely. That is,
hybrid systems models specify continuous change of vari-
ables, whereas the code can update variables only discretely.
Moreover, even if we take discrete update for granted, com-
putation of the values of variables are subject to errors be-
cause (1) the code normally relies on numerical algorithms
and floating-point operations to solve differential equations,
and (2) variables may be updated at different times due to
scheduling decision and different update frequency. Thus,
it is possible that the code, even if it is generated automat-
ically from the model, exhibits a behavior that is not ex-
pected from the model.

For example, consider a hybrid model shown in Figure 6.
The model specifies a simple behavior of a robot dog turn-
ing its head towards the left and upwards, and conditionally
turning on the LED on the face of the robot. The model
consists of three positions and three variables. Variables θ

Proceedings of the Eighth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’05)
0-7695-2356-0/05 $ 20.00 IEEE

Figure 6. Faulty transitions due to numerical
errors

and φ represent the tilt of the head of a robot towards the
left and upwards, respectively, and the variable LED repre-
sents the status of the LED. At the initial position, variables
φ and θ evolve continuously according to the differential
equations θ̇ = 10 and φ̇ = 50/(φ + 1), making the head
moves towards the left and upwards with the rate given by
the expression at the right-hand side of the equations (i.e.,
dθ/dt = 10 and dφ/dt = 50/(φ(t) + 1)). As time elapses,
the condition associated with each transition becomes true
and a transition will be taken either to “good” or “bad”,
and stays there forever. Specifically, transition to “good”
is enabled at time t = 2.5, while transition to “bad” is en-
abled later at time t = 2.55.1 Since the invariant condition
θ < 25.4 specifies that control cannot stay at the initial po-
sition beyond t ≥ 2.54, transition to “bad” should never oc-
cur. Unfortunately, if we translate the model to code using
a numerical method that approximates a differential equa-
tion in a discrete fashion, it is possible that the transition
to “bad” is detected enabled before the time when the tran-
sition to “good” is enabled due to numerical errors. For
example, if the code employs Euler’s method with the step
size of 0.032, transition to “bad” is detected enabled at time
t = 2.496, when the transition to “good” is not enabled yet.
Hence, it is possible that automatically generated code takes
the wrong transition and turns on the LED.

Figure 7 shows another example of wrong transitions.
In this example, the model consists of two parallel compo-
nents. Unlike the previous example, the dynamics is con-
stant, and hence numerical errors are no longer a concern.
However, a faulty transition may occur when each compo-
nent is translated into code separately and executed concur-
rently, possibly with different step sizes. For example, if
we assign step sizes hx = 1 and hy = 2, the transition is
enabled in the code when (x, y) = (3, 14), while the tran-
sition is never enabled in the model. Even if we assign the
same step size hx = 2 and hy = 2, a faulty transition may

1(φ̇ = 50/(φ + 1), φ0 = 0 is equivalent to φ =
√

100t + 1 − 1, and√
100t + 1 − 1 = 15 gives t = 2.55).

x = 1

x 0

.
y = 4

y 0

.

y = -4

y 0

y = 0

y 0

.

.

x > 3 y 14

x 3 y 14

x > 3 y 14

x 3 y 14

(3, 16)

(3, 14)

(3, 12)

(4, 16)

x

y

falsely enabled

x = 4, y = 1

x = 2

y = 1

. .

Figure 7. Faulty transition due to timing er-
rors.

occur when (x, y) = (3, 16).
Thus, we need a new criterion to validate the code

against the model from which the code originates. In partic-
ular, we need to allow a certain degree of errors in variables,
yet we may want to enforce discrete states to be correct.

Definition 1. (Faithful Implementation) We define that the
code is a faithful implementation of the model if there exists
a constant error bound on the variables in the code and the
discrete states are equivalent modulo the timing of execu-
tion in the code.

We have given a informal definition here. For a formal
treatment of the system including definitions and proofs of
theorems, we refer the reader to [6].

Note that even if we use the relaxed notion of cor-
rectness, validation of correct implementation is still non-
trivial. The reasons include the following.

• Only a small class of differential equations can be
solved exactly. For most cases, numerical methods
yield an approximate solution. Hence, obtaining nu-
merical bounds on error is often not possible. Errors
due to numerical integration of differential equations
are thus generally analyzed and represented by the O
notation, and a constant error bound can be rarely an-
alyzed if not impossible. The problem is even more
complex when we consider switching of differential
equations and the precision of the floating-point unit.

• Errors in variables may cause a transition that should
otherwise not be taken.

Proceedings of the Eighth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’05)
0-7695-2356-0/05 $ 20.00 IEEE

• Variables may be updated at different times due to dif-
ferent update frequency and scheduling decision, and
may cause a transition that should otherwise not be
taken.

• A transition that must be taken to satisfy the invariant
may be missed because the transition condition is not
evaluated frequently enough.

We believe that a general solution that addresses all the
problems in the general hybrid systems is unlikely to ex-
ist, because a general solution for a constant error bound
of numerical integration is not known. However, for some
limited class of hybrid systems (e.g., linear hybrid systems),
a constant error bound can be easily obtained. We have ad-
dressed the other issues in the previous works, but not in the
same framework.

4 Validation of the Generated Code

4.1 Model assumptions

In this paper, we limit our attention to the case of the
model with constant dynamics i.e., hybrid systems where
the right-hand side of every differential equation is a con-
stant. This is needed to avoid errors in numerical integration
and it also makes instrumentation analysis easier. We con-
sider a distributed system of agents having different sam-
pling frequencies. We also assume that the system free from
clock drift. Further, the times for sensing and communica-
tion have been assumed to be small enough to be included in
the execution time. Each of the guard sets is assumed to be
a rectangular set. This makes the instrumentation easy.We
also assume that the guard sets are disjoint with each other.
The reason is twofold: First, we can relax the need for an
EDF like execution with this assumption [12] since at most
one agent has an enabled transition at any moment. Sec-
ondly, within the same agent, the disjoint condition prevents
non-deterministic choice, since at most one transition is en-
abled at any position.

4.2 Preventing faulty transition

A faulty transition is a transition that has occurred in the
code, but there is no corresponding transition in the model.

Definition 2. (Faulty Transition) Let p0, . . . pn be a se-
quence of positions in the trace of the code. We say that
(pn−1, pn) is a faulty transition if p0, p1, ..., pn−1 is a valid
sequence of positions in the model, but p0, p1, ..., pn is
not.

A faulty transition is a violation of equivalency of dis-
crete states in a faithful implementation. It may occur due
to the following reasons.

Figure 8. Faulty transitions due to error in
variables.

1. Errors in the variables cause the guard to be evaluated
true that should otherwise be false.

2. Variables are updated at different times due to schedul-
ing and/or different update frequencies, causing the
guard to be evaluated to be true.

Figure 8 illustrates faulty transitions due to error in vari-
ables. The dashed curve above (f

′
) and below (f

′′
) repre-

sent the upper and lower bounds on the error. At time t,
the guard is enabled as per the value specified by f

′
and

not enabled as per f and a transition c results. Clearly, this
transition is a faulty transition, since such a transition is not
possible in the model.. These kinds of faulty transitions can
be avoided if we limit the class of hybrid models to the one
explained in Section 4.1.

Figure 7 in Section 3 presented a case of faulty transi-
tions due to timing. To prevent the this from occurring,
we have proposed a technique what we call instrumentation
[12]. The essence of that technique is to refine the model
by tightening transition conditions according to the maxi-
mum errors due to numerical and different sampling rates.
The approach enforces a strict execution order to ensure that
transitions occur in an order consistent to the model. While
the execution order constraint can be relatively easily satis-
fied by using the EDF scheduler in a centralized execution
environment, in a distributed execution environment, it in-
curs severe overheads because it requires synchronization
operation to enforce execution order between tasks running
on different machines.

To use the technique in a distributed system, we propose
to analyze the model before code generation if execution
order needs to be strictly enforced. The key idea is that
execution order need not be enforced to when there is no
transition between the time when a variable is written and
the time when the variable is read. This condition is always
true when the guard sets are disjoint with each other. This
ensures that, while a guard is being true, transitions that
would reset the variables involved in the guard will not be
taken. Thus, in this case, tasks can be executed asynchro-

Proceedings of the Eighth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’05)
0-7695-2356-0/05 $ 20.00 IEEE

A
1

0
ε Rx

1
x ε Rx : = 0

x = 1 x = 2

x := 0

x := 0

x > 0.003

z ε R

z = 1

z : = 0

A0

:G

G2:

1

p0

q q

z < 0.002

x > 0.018

Figure 9. Missed transition Example.

nously yet still free from faulty transition if the guards are
instrumented, because it is guaranteed that there will be no
transition between the time that a variable is written and the
time that a variable is read.

Theorem 1. Consider a distributed system of agents. Let
the guard set of every agent be disjoint. Further, let the
guard sets be instrumented with δ where δ is the upper
bound on numerical and synchronization errors. Then, the
instrumented guard sets will ensure that there will be no
faulty transitions.

4.3 Preventing Missed Transition

A faithful implementation of the code must not only con-
sider faulty transitions but also the possibility of missed
transitions. A missed transition is a transition that must be
taken to satisfy the invariant, but is not taken by the code.

Definition 3. (Missed Transition) Let p0, . . . pn be a se-
quence of positions in a terminated trace of the code. i.e.,
pn =⊥, where ⊥ denotes a state that violates the invari-
ant. We say that there is a missed transition at pn−1,
if p0, p1, ..., pn−1 is a valid sequence of positions in the
model, but p0, p1, ..., pn is not.

A missed transition occurs due to the following reasons:

• The guard is not evaluated sufficiently frequently.

• Evaluation of the guard may be scheduled before an
update of a variable that enables the transition and after
an update of a variable that disables the transition, and
thus misses the chance to detect that the transition has
been enabled.

Now, let us consider a numerical example presenting
each of the above possibilities.

Example 1: Consider a system consisting of two agents
A0 and A2 as shown in Figure 9. Let the sampling fre-
quency A0 be 0.001 and that of A1 be 0.003. Let us denote

the current position of agent A as PA.Then a possible run
is:

t z PA0 x PA1

0.001 0.001 p0 0.000 q0

0.002 0.002 p0 0.000 q0

0.003 0.003 p0 0.009 q0

0.004 0.004 p0 0.009 q0

Clearly, if the guard in A1 was sampled more often, then
at t = 0.002, it would have made a transition to state q1. This
transition is missed because of insufficient sampling.

The following example shows that missed transitions can
also occur due to scheduling decisions.

Example 2: Now consider the same system as in Figure
9 but also consider the effect of scheduling. Let the sam-
pling frequency of A0 be 0.001 and that of A1 be 0.002.
Now, with scheduling considerations, let us assume that A1

is always scheduled ahead of A0. We would hava run as:

t z PA0 x PA1

0.001 0.001 p0 0.000 q0

0.002 0.002 p0 0.006 q1

0.003 0.003 p0 0.006 q0

0.004 0.004 p0 0.012 q0

However, if we reverse the order, i.e., assume that A0

is always scheduled ahead of A1 then, it can be easily seen
that the transition will be missed. Therefore,even though the
guard is tested sufficiently frequently, the choice of schedul-
ing could result in missed transitions.

We have identified a sufficient condition to prevent the
former case [5] when the code is executed with a single fre-
quency and with a single thread. In this paper, we generalize
the idea to the case with different frequencies and with mul-
tiple threads possibly on distributed systems.. The previous
result indicates that the absence of missed transition is as-
sured if the guard and the invariant overlaps at least time h,
where h is the step size (i.e., inverse of the frequency). In
the case where variables have different sampling frequen-
cies, the following theorem gives us a sufficient condition
for no missed transitions.

Theorem 2. Consider a distributed system of agents with
an eager policy on transitions. If the guards are disjoint,
and the guard and the invariant overlap by at least 2(h +
h′), where h is the frequency of evaluation of the guard and
h

′
is the frequency of updates of the variables in the guard,

then, there will be no missed transitions.

Proof. (sketch) The evaluation of the guard might be sched-
uled at some time jh, j ∈ Z

+ but a guard may be enabled
immediately after that i.e., at time jh+ε, ε > 0. This will be
detected in the code during the next evaluation which may
be scheduled as late as (j+2)h−η. Since we assume eager

Proceedings of the Eighth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’05)
0-7695-2356-0/05 $ 20.00 IEEE

transition policy, this transition will be taken at (j+2)h−η.
Letting η, ε → 0, and observing that in the model the guard
may be enabled as early as updates to the variables which
in the worst case takes another 2h

′
to reflect in the code, we

get the desired result.

Example 3: Consider the system in Example 1. Here, we
have that the guard G1, depends on variables x and z. The
guard holds for time (0.003 - 0.002) = 0.001. Now, Apply-
ing Theorem 2 here we find, 2(0.002) = 0.004 (> 0.001)
and hence we cannot guarantee no missed transitions.

Example 4: Now consider yet another example. Con-
sider the same system as in the previous example but differ-
ent guard set. G1 : z < 0.01 ∧ x > 0.003. In this case, the
guard is enabled for (0.01-0.003) = 0.007 (> 0.004). Hence,
by Theorem 2, we can say that there will be no missed tran-
sitions. Indeed, it is easy to verify for any scheduling order,
that the transition will not be missed.

Note that for the implementation to be faithful, we need
to guarantee both no missed as well as no faulty transitions
and Theorems 1 and 2 give us a sufficient condition.

Theorem 3. Consider a distributed system of agents. Let
the guard set of every agent be disjoint and every invariant
be instrumented with some constant. Let the instrumented
guard and the invariant overlap at least 2(h + h

′
). And if

all the variables in the code have a constant error bounded
by δ, then the implementation is a faithful implementation
with no missed transitions.

5 Conclusion

We have been developing a code generation and valida-
tion framework for hybrid systems models. In this paper,
we have presented an extension of this framework to dis-
tributed embedded systems. We have defined criteria for
faithful implementation of the model and identified suffi-
cient conditions to guarantee this.

There are several possible directions for future research.
In a distributed implementation, communication delay is a
concern and has to be considered, perhaps at the model-
level. Here we have considered systems with constant dy-
namics, we are currently trying to extend this to include
larger class of systems. We are also working on a dynamic
instrumentation technique that will extend code generation
to systems for which local error can be estimated. Since
embedded systems are resource constrained, it is natural to
also consider code optimization as a logical next step.

With the framework itself, we are planning to imple-
ment it in a more integrated form by using a general IDE
(e.g., Eclipse). We are also planning to extend the architec-
tural description facility of our framework by incorporating
modeling languages specialized for architecture description
(e.g., AADL).

References

[1] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger,
P. Ho, X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The
algorithmic analysis of hybrid systems. Theoretical Comp.
Science, 138:3–34, 1995.

[2] R. Alur, T. Dang, J. M. Esposito, Y. Hur, F. Ivancic, V. Ku-
mar, I. Lee, P. Mishra, G. J. Pappas, and O. Sokolsky. Hier-
archical modeling and analysis of embedded systems. Pro-
ceedings of the IEEE, 91(1):11–28, Jan. 2003.

[3] R. Alur, T. Dang, and F. Ivančić. Counter-example guided
predicate abstraction of hybrid systems. In Proceedings of
the Ninth International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, LNCS 2619,
pages 208–223. Springer-Verlag, 2003.

[4] R. Alur, R. Grosu, I. Lee, and O. Sokolsky. Compositioal re-
finement of hierarchical hybrid systems. In Hybrid Systems:
Computation and Control, Fourth International Workshop,
LNCS 2034, pages 33–48, 2001.

[5] R. Alur, F. Ivančić, J. Kim, I. Lee, and O. Sokolsky. Gener-
ating embedded software from hierarchial hybrid models. In
Proceedings of ACM Conference on Languages, Compilers,
and Tools for Embedded Systems (LCTES), 2003.

[6] M. Anand, J.Kim, and I.Lee. Sound code generation from
hybrid system models: Some theoretical results. In Techni-
cal report, MS-CIS-05-03, University of Pennsylvania, 2005.

[7] G. Berry and G. Gonthier. The synchronous program-
ming language ESTEREL: design, semantics, implementa-
tion. Technical Report 842, INRIA, 1988.

[8] A. Deshpande, A. Göllu, and P. Varaiya. SHIFT: a for-
malism and a programming language for dynamic networks
of hybrid automata. In Hybrid Systems V, LNCS 1567.
Springer, 1996.

[9] J. Eker, J. Janneck, E. Lee, J. Liu, X. Liu, J. Luvig, S. Neuen-
dorffer, S. Sachs, and Y. Xiong. Taming heterogeneity–the
Ptolemy approach. Proceedings of the IEEE, 91(1):127–
144, 2003.

[10] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The
synchronous dataflow programming language Lustre. Pro-
ceedings of the IEEE, 79:1305–1320, 1991.

[11] D. Harel. Statecharts: A visual formalism for complex sys-
tems. Science of Computer Programming, 8:231–274, 1987.

[12] Y. Hur, J. Kim, I. Lee, and J.-Y. Choi. Sound code genera-
tion from communicating hybrid models. In Proceedings of
HSCC, LNCS 2993, pages 432–447, 2004.

[13] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty. Model-
integrated development of embedded software. Proceedings
of the IEEE, 91(1):145–164, 2003.

[14] J. Kim and I. Lee. Modular code generation from hybrid au-
tomata based on data dependency. In Proceedings of RTAS,
2003.

[15] O. Maler, Z. Manna, and A. Pnueli. From timed to hybrid
systems. In Real-Time: Theory in Practice, REX Workshop,
LNCS 600. Springer-Verlag, 1991.

[16] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery. Numerical Recipes in C: the Art of Scientific Com-
puting, 2nd Ed. Cambridge University Press, Cambridge,
UK, 1999.

Proceedings of the Eighth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’05)
0-7695-2356-0/05 $ 20.00 IEEE

