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Abstract—An increasing number of real-time systems are
embedded in mission critical systems such as target tracking
systems, in which workloads may dynamically vary, for example,
depending on the number of targets in the area of interest. Feed-
back control has been applied to support real-time performance
in dynamic environments, producing promising initial results.
However, mathematical system modeling necessary for feedback
control is challenging. To reduce the difficulty of system modeling,
we apply fuzzy control for direct nonlinear mappings between the
utilization error (= target utilization − current utilization) and
the workload adjustment required to achieve the target utilization
via IF-THEN rules. Moreover, via online adaptation, our fuzzy
controller can amplify or dampen its own fuzzy control signal, if
necessary, to expedite the convergence to the desired utilization.
In our simulation study, our approach quickly converges to
the target utilization when the workload significantly changes.
In contrast, the tested baselines oscillate between overload and
underutilization.

I. I NTRODUCTION

A rapidly growing number of real-time systems, e.g., traf-
fic control, target tracking, agile manufacturing, or SCADA
(supervisory control and data acquisition) systems, run in
unpredictable environments where workloads are unknown in
advance and may significantly vary at run-time. For example,
workloads may vary depending on the volume of the traffic
or the number of targets in the area of interest [1]. During
a cascading power failure, SCADA systems managing an
electric grid may suffer a significant (up to an order of
magnitude) load increase [2].

Feedback control has recently been applied to support real-
time performance in the presence of unpredictable workloads
[3], [4]. However, feedback control of real-time performance is
not free of a drawback. Generally, real-time system behaviors
in dynamic environments are complex and nonlinear. For
example, many industrial processes are nonlinear [5]. Further,
computational system dynamics are often stochastic. Thus,
mathematical modeling of such systems required for feedback
control is challenging. An easier-to-use yet effective approach
is required for real-time performance management in dynamic
environments.

In this paper, we applyadaptive fuzzy controltechnology
to directly control nonlinear system behaviors to achieve the
desired utilization set-point in soft real-time systems poten-
tially having dynamic workloads. It is critical for a real-
time system to avoid overloads; however, traditional real-time
scheduling [6] is not directly applicable if the workload isnot

precisely knowna priori. Feedback-based utilization control
[3], [4] has been studied to avoid overloads by supporting
the desired utilization set-point such as 90%, while avoiding
severe underutilization. However, we are not aware of any
prior work that applies adaptive fuzzy control to alleviatethe
difficulty of modeling the real-time system controlled by a
feedback controller.

Fuzzy control is essentially a direct nonlinear mapping
between its input, e.g., the utilization error = utilization set-
point − current utilization, and output, e.g., the required
workload adjustment to achieve the utilization set-point,unlike
other controllers such as linear time invariant controllers, lead
lag controllers, or state feedback controllers [7]. Fuzzy control
provides formal techniques to represent, manipulate, and im-
plement human experts’ heuristic knowledge for controlling a
plant, e.g., a real-time system, via IF-THEN rules rather than
relying on mathematical modeling of the plant.

Notably, our fuzzy control system can automatically adapt
its own control actions considering the current system behav-
ior. This sharply contrasts to linear time invariant controllers
such as [3], [4], which use fixed control gains regardless of
the current system status. By applying adaptive fuzzy control,
we aim to support the utilization set-point even under large
workload variations, i.e., disturbances. In addition to the rule-
base computing the fuzzy utilization control signal, we design
another rule-base to either amplify or dampen the fuzzy control
signal, if necessary, to expedite the convergence to the set-
point, while avoiding oscillations.

We compare the performance of our adaptive fuzzy control
system, via an extensive simulation study, to several baseline
approaches including a linear PI controller for utilization con-
trol [3] and a non-adaptive fuzzy controller, which is similar to
[8]. Overall, the adaptive fuzzy controller considerably outper-
forms the baselines for workloads involving large disturbances
by consistently supporting the utilization set-point. In contrast,
the baselines show large utilization fluctuations when the load
varies.

The rest of the paper is organized as follows. Section II
describes the overall structure of our adaptive fuzzy control
system and gives backgrounds in fuzzy control. Section III
describes the design of our adaptive fuzzy controller and
rule-bases. Performance evaluation results are describedin
Section IV. Related work is discussed in Section V. Finally,
Section VI concludes the paper and discusses future work.



II. OVERALL STRUCTURE AND BACKGROUNDS

In this section, the overall structure of our adaptive fuzzy
control system, fuzzy control terminology, and basic fuzzy
control mechanisms are discussed.

A. Overall Structure
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Fig. 1. Closed-Loop Real-Time System

The high level structure of our closed-loop real-time system
is shown in Figure 1. Real-time tasks are scheduled in an EDF
(earliest deadline first) [9] manner. To achieve the utilization
set-pointUs, our AFPIC (Adaptive Fuzzy Proportional and
Integral Controller) in Figure 1 computes the acceptable
workload thresholdθ(k) based on the errore(k) and change
of the error∆e(k) for the utilization u(k) measured in the
kth sampling period where:

e(k) = Us − u(k) (1)

and
∆e(k) = e(k) − e(k − 1). (2)

Specifically,θ(k) is computed at thekth sampling instance,
i.e., the end of thekth sampling period, based one(k) and
∆e(k). The feedback control signalθ(k) will be used to
supportUs in the (k + 1)th sampling period. This feedback
control procedure is repeated at every sampling instance to
supportUs.

In this paper, we consider a periodic task model. A taskTi

is defined by< Ci, Pi,Di, Ui, Qi > whereCi is theestimated
execution time, Pi is the task period,Di is the deadline, andQi

is the task QoS (quality of service) level. The actual execution
time of Ti is not precisely known in advance. Thus, only the
estimated utilizationUi = Ci/Pi is known. Further,Di = Pi.
In our task model, a taskTi consists of a mandatory part and
an optional part, following the imprecise computation model
[10]. Under overload, only the mandatory part ofTi can be
executed to reduce the workload, for example, by producing
a low quality image for traffic control or target tracking. Asa
result,Ci, Ui, andQi are reduced. Specifically, the real-time
system computes the total estimated utilizationUt =

∑N

i=1
Ui

for all the tasks currently in the system at thekth sampling
instance. IfUt > θ(k), the QoS manager in Figure 1 degrades
the QoS ofTi in the system and decreasesUt by Ci,o/Pi where
Ci,o(< Ci) is the estimated execution time ofTi’s optional
part. It repeats this step for the other tasks in the system aslong

as Ut > θ(k). Under severe overload,Ut > θ(k) even after
degrading every task in the system. In this case, incoming tasks
are rejected. By adapting the QoS before applying admission
control, we can accept more tasks.

The admission controller (AC) in Figure 1 admits tasks
based on the estimated utilization. To supportUs, it accepts
a taskTj arriving in the (k + 1)th sampling period only if
Uj + Ut ≤ θ(k). In an open-loop approach without feedback
control, θ(k) = Us for arbitrary k. As a result, the system
could be overloaded (or underutilized), if the actual execution
time is longer (or shorter) than the estimated execution time.
In contrast, our approach adapts the acceptable load threshold
to supportUs for dynamic workloads.
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Fig. 2. Adaptive Fuzzy PI Controller

Figure 2 shows the structure of the AFPIC considered
in this paper. Our AFPIC consists of a fuzzy utilization
controller and a scaling factor controller for utilizationcontrol
and adaptation, respectively. Although a fuzzy PI controller
works well for linear and first order systems, it shows poor
performance for nonlinear systems [5]. For this reason, we
have a scaling factor controller that continuously adapts the
scaling factorα(k), if necessary, to meet the set-point in the
presence of dynamic workloads. Based one(k) and ∆e(k)
(Eq 1 and Eq 2), the fuzzy utilization controller in Figure 2
computes the required threshold adjustment∆θ(k) for the next
sampling period.∆θ(k) is multiplied byα(k)K∆t where the
scaling factor controller computesα(k) at thekth sampling
instance for adaptation. In contrast,Ke,K∆e, and K∆t are
fixed.

Fuzzy logic controllers (FLCs) are used very widely in in-
dustry. Especially, PID (proportional, integral, and derivative),
PI, and PD type FLCs are most common. In this paper, we
consider a fuzzy PI controller, as PD FLCs are only suitable for
a limited class of systems [11]. Moreover, rule-base designand
tuning for PID FLCs are complicated due to many parameters
[5]. Our controller shown in Figure 2 has two inputs, i.e.,
the utilization error and derivative of the error. It also has an
integrator at its output. Without an integrator, the controller
would be a PD type FLC. One may think that, since our
controller containse(k) and∆e(k) as input and an integrator
at the output, it is a PID controller. In fact, however, it is aPI
controller. A standard PID controller computes an exemplar
control signalc(k) at thekth sampling instance as follows:

c(k) = Kpe(k) + Ki

k∑

j=0

e(j) + Kd∆e(k)



and its iterative form, which is more efficient, is obtained by
taking the derivative of the both sides of the equation:

∆c(k) = Kp∆e(k) + Kie(k) + Kd∆
2e(k).

Since∆c(k) = c(k) − c(k − 1), the above equation can be
rewritten as:

c(k) = c(k − 1) + Kp∆e(k) + Kie(k) + Kd∆
2e(k).

Compared to this equation, one can observe that our controller
in Figure 2 hase(k) and∆e(k) terms, but it has no∆2e(k)
term. Thus, it is a PI controller. A description of fuzzy control
terminology and basic fuzzy control mechanisms shown in
Figure 2 follows.

B. Fuzzy Control Terminology and Mechanisms
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Fig. 3. Input and Output Membership Functions for the Utilization Controller

• Universe of Discourse:The universe of discourse is the
domain of the inputs to a fuzzy controller. As shown in
Figure 3, the universe of discourse for utilization errors
is [-1, 1], sincee(k) = −1 if the set-pointUs = 0 and
current utilizationu(k) = 1 in Eq. 1.1 On the other hand,
e(k) = 1 if Us = 1 and u(k) = 0. In this paper, the
universe of discourse for∆e(k) is [-1, 1] too.

• Linguistic Variables: Linguistic variables describe the
inputs and output(s) of a fuzzy controller. For instance,
two inputs to the fuzzy controller at thekth sampling in-
stance are described aserror (fuzzified e(k)) andchange
in error (fuzzified ∆e(k)), while the output from the
fuzzy system iscontrol signal, i.e., the load threshold
adjustment required to achieve the set-pointUs expressed
linguistically. The fuzzification interface in Figure 2
convertse(k) and∆e(k) to the corresponding linguistic
values defined next. (A description of the fuzzification
process is discussed in Section III.)

• Linguistic Values: Linguistic variables are associated
with linguistic values to describe characteristics of the
variables. A linguistic variableerror, for example, could
be associated with linguistic values Large, Small, or Zero
at a sampling instance. Figure 3 shows linguistic values

1Although settingUs to 0 is impractical in reality, we intend to consider
the full range of possible error values for fuzzy control as recommended by
[5].

for the linguistic variableserror, change in error, and
thresholdcontrol signalused in this paper.

• Linguistic Rules: A set of IFpremiseTHEN consequent
rules are used to map the inputs to output(s) of a fuzzy
controller. For example, iferror = NL (negative large)
andchange in error= NL at thekth sampling instance,
then the system is overloaded, i.e.,Us < u(k), and the
degree of overload is increasing significantly. Thus, the
corresponding rule generates aNL signal to significantly
reduce the workload by largely decreasing the acceptable
load thresholdθ(k). In fact,error andchange in errorcan
only beNL for a low Us such as 0.3. For a highUs such
as 0.9,NS (negative small) already indicates overload. To
avoid potential performance oscillations under overload,
for a highUs, our controller generates a relatively small
control signal rather than generating aggressive control
signals. Thus, our controller can be used for a broad
range of set-points. This flexibility is another virtue of
fuzzy control. Although we have verified that AFPIC can
support various set-points, in Section IV, we only present
the performance evaluation results for a relatively high
Us = 0.9, which is hard to support without saturating the
CPU.

• Rule-Base: The rule-basein Figure 2 has a set of IF-
THEN rules dictating how to achieveUs according to
the fuzzified linguistic values ofe(k) and ∆e(k), i.e.,
error and change in error. The inference mechanismin
Figure 2 evaluates which control rules are relevant at the
current time. It also decides what the fuzzy control signal
should be by looking up the rule-base table based on
the fuzzifiede(k) and∆e(k) values. Thedefuzzification
interface in Figure 2 converts the fuzzycontrol signal
reached by the inference mechanism into the control
signal∆θ(k) expressed as a real number.θ(k) in Figure 2
is the control input to the real-time system that adjusts
the workload according toθ(k) by QoS adaptation and
admission control. Our linguistic rules, inference, and
defuzzification are described in Section III.

• Membership Functions: The horizontal axis of Figure 3
representse(k), ∆e(k), or ∆θ(k) and the vertical axis
indicates the membership value. A membership function
(MF) quantifies thecertainty an e(k), ∆e(k), or ∆θ(k)
value to be associated with a certain linguistic value. For
MFs, we use symmetric triangles of an equal base and
50% overlap with adjacent MFs, similar to [5], [7]. In
Figure 3, for example, ife(k) = 0.25, the membership
function for PS (Positive Small)µPS(0.25) = 1 and it
is 0 for the other linguistic values. If∆e(k) = 0.0625,
µZE(0.0625) = 0.75, µPS(0.0625) = 0.25, and it is 0
for the other linguistic values.

III. A DAPTIVE FUZZY UTILIZATION CONTROL

In this section, the design of our adaptive fuzzy control
system is discussed.
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Fig. 5. Output MFs for the Scaling Factor Controller

A. Fuzzification, Inference, and Defuzzification

All MFs for the utilization controller’s inputs and output as
well as the scaling factor controller’s inputs, i.e.,e(k), ∆e(k),
and ∆θ(k) at the kth sampling instance, are defined in the
common normalized domain [-1, 1] as shown in Figures 3
and 4. In contrast, as shown in Figure 5, the MFs for the
scaling factor controller’s output are defined in the normalized
domain [0, 2], because the scaling factor either amplifies or
shrinks the fuzzy control signal∆θ(k) in Figure 2 without
changing the sign.

Based on the fuzzifiede(k) and ∆e(k), the inference
mechanism in Figure 2 determines which rules to apply
at the kth sampling instance. For example, supposee(k)
= 0.25 and∆e(k) = 0.0625. According to Figure 3, the
certainty µPS(0.25) = 1 for e(k) and µZE(0.0625) = 0.75
and µPS(0.0625) = 0.25 for ∆e(k) as discussed in Sec-
tion II-B. To compute the certainty value of the premise in
the corresponding IFpremiseTHEN consequentrule(s), we
take the minimum between the certainty values ofe(k) and
∆e(k), following one of the most common approaches [7],
[5], [12]. Thus, µ(PS,ZE) = min{1, 0.75} = 0.75 and
µ(PS, PS) = min{1, 0.25} = 0.25.

The inference engine looks Table I up to find that
rule(PS,ZE) = PS and rule(PS, PS) = PM . Let µ(i, j)
denote the membership function andc(i, j) denote the center
of the MF of the consequent of therule(i, j). For triangle
MFs, the center is the value on the x axis at the middle of the
triangle and the fuzzy utilization control output is [7]:

∆θ(k) =

∑
i,j c(i, j) · µ(i, j)
∑

i,j µ(i, j)
(3)

For example, in Figure 3, the center ofPS andPM is 0.25
and 0.5, respectively. Thus,∆θ(k) = (0.25 · 0.75 + 0.5 ·

0.25)/(0.75 + 0.25) = 0.3125. The scaling factor controller
computes the scaling factor in a similar way usinge(k),
∆e(k), and the rule-base for scaling factor control shown in
Table II. A detailed discussion of the rule-bases for utilization
and scaling factor control follows.

B. Fuzzy Rules

For utilization control, we define fuzzy control rules using
linguistic variables associated with linguistic values NL, NM,
NS, ZE, PS, PM, and PL as shown in Figure 3 where each
value has a different sign and/or size from the others. As shown
in Figure 6, there are five zones that characterize the utilization
controller’s action, from which we derive therule-base for
fuzzy utilization control described in Table I as follows.
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Fig. 6. Fuzzy Utilization Control Characteristics

1) e(k) > 0 and∆e(k) < 0 at thekth sampling instance:
In this zone, the actual utilization is smaller than the
target utilization, but it comes closer to the set-point
according to Eq. 1 and Eq. 2. The utilization controller
should apply a small positive∆θ(k) to avoid a potential
overshoot, i.e., overload, while increasing the utilization.

2) e(k) < 0 and ∆e(k) < 0: In this zone, the actual
utilization is larger than the set-point and it is further in-
creasing. Hence, the controller should apply∆θ(k) < 0
to reverse the current trend.

3) e(k) < 0 and ∆e(k) > 0: In this zone, the actual
utilization is higher than the target utilization, but it
comes closer to the set-point. Since the actual utilization
is converging to the target, the controller should apply
a small negative∆θ(k) to avoid a potential undershoot,
i.e., underutilization, while reducing the utilization.

4) e(k) > 0 and ∆e(k) > 0: In this zone, the actual
utilization is lower than the set-point and it is further
decreasing. Thus,∆θ(k) > 0 to reverse the current
trend.

5) |e(k)| < ǫ and |∆e(k)| < ǫ where ǫ is a predefined
small positive real number: The utilization converges to
the set-point and|e| and|∆e| are small. This means that
the real-time system is in the steady state. Therefore, the
controller applies a zero control signal.

Table II shows therule-base for scaling factor control. The
linguistic variables of scaling factor control assume linguistic
values NL, NS, ZE, PS, PL for input and ZE, SM, MD, LG,
VL for output as shown in Figures 4 and 5. Note that the output
of the scaling factor controller does not have any negative



e/∆e NL NM NS ZE PS PM PL
NL NL NL NL NL NM NS ZE
NM NL NL NL NM NS ZE PS
NS NL NL NM NS ZE PS PM
ZE NL NM NS ZE PS PM PL
PS NM NS ZE PS PM PL PL
PM NS ZE PS PM PL PL PL
PL ZE PS PM PL PL PL PL

TABLE I
UTILIZATION CONTROL RULES

e/∆e NL NS ZE PS PL
NL MD LG VL LG MD
NS SM MD LG MD SM
ZE SM SM ZE SM SM
PS SM MD LG MD SM
PL MD LG VL LG MD

TABLE II
SCALING FACTOR CONTROL RULES

linguistic value, because it either amplifies or shrinks the
control signal∆θ(k) without changing the sign to compensate
the limitations of the fuzzy utilization controller as follows.

1) |e(k)| is large and|∆e(k)| is large or |e(k)| is small
and |∆e(k)| is small: In these zones, the utilization
controller’s action is sufficient to correct the error. Thus,
it must be left the same. We setα(k) = 1 in this case.

2) |e(k)| is large and|∆e(k)| is small or |e(k)| is small
and∆e(k) = 0: In these zones, the utilization controller
is correcting the error, but with an insufficient control
signal. Thus, the control signal∆θ(k) must be amplified
to make the correction faster. Specifically, we choose
α(k) = 1.5.

3) |e(k)| is large and∆e(k) = 0: In this zone,∆θ(k) is
so small that the controlled system does not respond to
that signal. Therefore, it must be significantly amplified
to get a response from the plant. Specifically, we set
α(k) = 2.

4) e(k) = 0 and |∆e(k)| is small or e(k) is small and
|∆e(k)| is large: In these zones, the utilization is fluc-
tuating around the desired level, but cannot converge to
the set-point. Thus,∆θ(k) must be weakened to let the
plant reach the desired set-point. To this end, we select
α(k) = 0.5.

5) e(k) = 0 and∆e(k) = 0: In this zone, the utilization is
equal to the set-point. Hence,α(k) = 0.

Overall, our adaptive fuzzy control only requires small rule-
bases, efficient table look-ups, and control signal computation,
which all finish in constant time. Thus, it is computationally
lightweight. Specifically, we chooseKe = 1.0, K∆e = 0.5,
andK∆t = 0.1, sincee(k) needs to be fully considered, while
∆e(k) and ∆θ(k) need to be damped to avoid oscillations.
The stability of our fuzzy control system can be proved by
the Lyapunov method [7]. This is reserved for future work.

Notation Value
EETi uniform [5ms, 20ms]
slack uniform [10, 20]
Di(= Pi) slack · EETi

QoS levels low, high

TABLE III
WORKLOAD SPECIFICATION

IV. PERFORMANCEEVALUATION

For performance evaluation, we have developed a simulator
to model the soft real-time system architecture depicted in
Figure 1. For performance evaluation, the admission control
and QoS adaptation components can be turned on or off.
Also, the adaptive fuzzy controller can be replaced with
different controllers. We measure the utilization, success ratio
(i.e., the fraction of the submitted tasks finishing within their
deadlines), and QoS for our AFPIC and the tested baseline
approaches. For performance analysis, one simulation is run
for 20 minutes. Each performance data is the average of 10
simulation runs with different seed numbers. We have derived
90% confidence intervals; however, we omit the confidence
intervals as most of them are less than 3%. A discussion of
the workloads, baselines, and performance results follows.

A. Baselines

For performance comparisons, we consider several base-
lines: Open-Loop simply admits all incoming tasks and
provides the full QoS regardless of the current system status.
AC applies admission control to incoming tasks based on their
estimated utilization values and fixed load thresholdθ = Us.
PI employs the linear PI controller [3] to achieve the target
utilization in real-time systems. We strictly follow the design
procedure described in [3]. To support the stability, we have
tuned the controller via the Root Locus method [13] as done
in [3]. Due to space limitations, we do not repeat their control
model. Interested readers are referred to [3].FPIC employs
the non-adaptive fuzzy PI utilization controller using therule-
base shown in Table I. FPIC is analogous to [8], which
applies non-adaptive fuzzy control to QoS management in
visual tracking. For AFPIC, PI, and FPIC, we use the 5s
sampling period for fair comparisons. Further, the same QoS
adaptation and admission control methods are used under
overload. Hence, the only difference among AFPIC, PI, and
FPIC is the way to compute the control signal.

B. Workloads

Our workload summarized in Table III is similar to [3],
[14]. The workload used in [3] is developed to evaluate
the performance of their linear PI controllers for utilization
(and deadline miss ratio) management. Further, the workload
used in [14] is originally derived from air traffic control.
For taskTi, its estimated execution timeEETi is uniformly
selected in a range [5ms, 20ms]. Its actual execution time
AETi = etf · EETi where etf is the execution time
factor [3]. If etf > 1, the system could admit too many



tasks based on the estimated execution times shorter than the
actual execution times. Every task is periodic and taskTi’s
deadline and period are:Di = Pi = slack · EETi where
slack = uniform[10, 20]. Also, we consider two QoS levels:
low and high for executing only the mandatory part of a task
and both the mandatory and optional parts, respectively. The
QoS of a task is 1 if the both mandatory and optional parts
are executed. It is considered 0.5 if only the madatory part is
executed. Note that our approach is not limited to a specific
number of QoS levels. We will consider more QoS levels in
the future.

For performance evaluation, we model abrupt workload
changes to stress the tested approaches. Initially, the load is
100% andetf = 1 but etf is suddenly increased to 2, 6,
or 10 at 600s and maintained at the level until 1200s. As a
result, the load becomes twice, six times, or ten times the
system capacity at 600s. These situations may happen, for
example, when real-time tasks are required to process too
many traffic or surveillance images within the deadlines due
to traffic accidents or appearances of multiple targets in the
area of interest. We have also considered otheretf values,
the performance results are consistent with the ones reported
here. Note that the tested approaches including AFPIC are
unaware ofetf changes. As a result, they can be overloaded,
if they are not reactive enough. In the rest of the paper, we
only show the performance of PI, FPIC, and AFPIC. OPEN-
LOOP shows poor performance, because it simply admits
all incoming tasks regardless of the current system behavior.
Neither does it degrade QoS. AC admits too many tasks as
etf > 1 under disturbances. Thus, it becomes overloaded,
showing poor performance.

C. Performance Results

We have observed that PI, FPIC, and AFPIC closely support
Us in terms of the average. Due to space limitations, we
do not plot the average utilization, which has little meaning
under abrupt workload changes. Figures 7, 8, and 9 show
the transient utilization for the 200%, 600%, and 1000%
disturbances. In these figures, at the beginning of the simu-
lation, PI shows an overshoot and its settling time is about
100s. Both FPIC and AFPIC cause no overshoot at start-
up. Also, AFPIC’s rise time−the time taken to reach the
set-point from the beginning−is slightly shorter than FPIC’s.
Generally, a shorter rise time is better, if it does not causean
overshoot [13]. Hence, AFPIC shows the best performance up
to approximately 100s, because it has no overshoot and the
shortest rise time.

After 100s, the three controllers, i.e., PI, FPIC, and AFPIC,
maintain the utilization near the set-point (90%) until the
disturbance point at 600s as shown in Figures 7, 8, and 9.
When the load suddenly increases at 600s, the utilization
saturates at 100%. The controllers are required to recover from
the saturation and re-converge to the set-point. As shown inthe
figures, PI suffers the largest utilization fluctuations, involving
overshoots and undershoots, among the tested approaches. The
magnitude of its utilization fluctuations is bigger than 30%
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Fig. 7. Transient Utilization for 200% Disturbance

for several times. Further, it cannot converge to the target
utilization for more than 400s after the disturbance at 600s. In
Figure 9, PI cannot re-converge to the 90% set-point by the
end of the simulation. Such large fluctuations and instability
are unacceptable in real-time systems.

In Figures 7, 8, and 9, FPIC shows the more stable uti-
lization than PI does. In Figure 7, its utilization is saturated
only briefly when the load is increased to 200% at 600s,
even though its settling time−the time taken to converge to
the set-point−is approximately 400s. This is because FPIC is
designed by directly considering nonlinear system behaviors
represented bye and ∆e. In contrast, PI has no mechanism
to directly handle such conditions. As a result, PI has the
longest settling time after the disturbance at 600s, if it ever
re-converges to the set-point, as shown in Figures 7, 8, and 9.
Although FPIC shows the better performance than PI in the
figures, its utilization control performance is unsatisfactory
under 600% and 1000% disturbances.

Overall, AFPIC shows the best transient utilization in Fig-
ures 7, 8, and 9. It quickly re-converges to the target utilization
after a disturbance as shown in the figures. It re-converges
in only about 50 seconds, i.e., 10 sampling periods, and the
utilization fluctuates by less than 1% for the 200% disturbance
and 3% for the larger disturbances after it becomes stable,
considerably outperforming FPIC and PI.

We have evaluated the success ratio and QoS for all the
tested approaches too. AFPIC achieved the highest success
ratio followed by FPIC and PI in the sequence. When the
workload changes abruptly at 600s, via online adaptation,
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Fig. 8. Transient Utilization for 600% Disturbance

AFPIC adapts the QoS faster than FPIC and PI do.

V. RELATED WORK

Feedback control has recently been applied to real-time
performance management in dynamic environments. A number
of existing approaches for feedback control of real-time perfor-
mance such as [3], [4] mathematically model real-time system
behaviors via difference equations. To apply classical linear
control theory, real-time system behaviors are approximated
in a piecewise linear manner. However, linear approximation
is not always applicable due to dynamic, potentially nonlinear
behaviors of real-time systems interacting with physical envi-
ronments. As control gains are determined offline, the closed-
loop systems of these approaches cannot adjust its own control
actions at run time considering the current status.

Model predictive control techniques are applied to dynami-
cally identify the relation between the real-time task execution
rate and utilization over a prediction horizon, which consists
of a specified number of sampling periods, for utilization
control in a multiprocessor environment [15]. Specifically,
least square equations are solved for online system identifi-
cation (SYSID) [13], [16] aiming to approximate the real-
time system behavior. Unfortunately, this procedure further
complicates the system modeling and controller tuning. It is
not trivial to determine the appropriate prediction windowsize
and system order [16], which can considerably affect control
performance. Fuzzy control theory [7] is originally developed
to address these modeling and design difficulties by allowing
direct nonlinear mappings between system inputs and outputs.
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Fig. 9. Transient Utilization for 1000% Disturbance

In this paper, we develop an adaptive fuzzy controller and
show its effectiveness for utilization control.

Adaptive control [16] is applied to differentiated web
caching services [17]. Diao et al [18] apply non-adaptive fuzzy
control to maximize the profit in an email server. eQoS [12]
supports, via adaptive fuzzy control, service differentiation in a
web server. Different from them, our work focuses on support-
ing the desired utilization threshold to meet timing constraints
in real-time systems operating in dynamic environments.

Very little prior work has applied fuzzy control to real-time
performance management. It is applied to visual tracking [8];
however, their work only applies non-adaptive fuzzy control.
Our approach is complementary to the control theoretic work
discussed in this section in that we support adaptive fuzzy
control of utilization by directly considering dynamic, non-
linear system behaviors, while reducing the complexity for
real-time system modeling. Thus, our work can be considered
a design alternative for real-time performance management
based on control theory. To our knowledge, no previous work
has applied adaptive fuzzy control to real-time performance
management.

VI. CONCLUSIONS

Feedback control has been applied to real-time performance
management in dynamic environments. In this paper, we aim
to alleviate the difficulty of mathematical modeling necessary
for feedback control of real-time performance. We apply
adaptive fuzzy control to support, via IF-THEN rules, direct
nonlinear mappings between the utilization error and workload



adjustment required to achieve the target utilization. Further,
our adaptive controller can adjust its own behavior by am-
plifying or weakening the utilization control signal computed
by the fuzzy controller, if necessary, to shorten the settling
time, while avoiding potential oscillations. In the performance
evaluation, our adaptive fuzzy controller considerably outper-
forms the tested baselines. In the future, we will investigate
more effective approaches to adaptive fuzzy control of real-
time performance.
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