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Abstract—An increasing number of real-time systems are precisely knowna priori. Feedback-based utilization control
embedded in mission critical systems such as target tracking [3], [4] has been studied to avoid overloads by supporting
systems, in which workloads may dynamically vary, for example, the desired utilization set-point such as 90%, while avajdi

depending on the number of targets in the area of interest. Feed- derutilizati H t f
back control has been applied to support real-time performance severe unaerutilization. However, we are not aware or any

in dynamic environments, producing promising initial results. Prior work that applies adaptive fuzzy control to allevigte
However, mathematical system modeling necessary for feedbackdifficulty of modeling the real-time system controlled by a
control is challenging. To reduce the difficulty of system modeling, feedback controller.

we apply fuzzy control for direct nonlinear mappings between the Fuzzy control is essentially a direct nonlinear mapping

utilization error (= target utilization — current utilization) and bet its | ¢ the utilizati — utilizatiset
the workload adjustment required to achieve the target utilization etween Its nput, €.g., the utiization error = utiizatiset-

via IF-THEN rules. Moreover, via online adaptation, our fuzzy ~Point — current utilization, and output, e.g., the required

controller can amplify or dampen its own fuzzy control signal, if workload adjustment to achieve the utilization set-paintjke

necessary, to expedite the convergence to the desired utilization gther controllers such as linear time invariant contrslléead

In our simulation study, our approach quickly converges t0 |54 controllers, or state feedback controllers [7]. Fuzagtool

the target utilization when the workload significantly changes. . ; . .

In contrast, the tested baselines oscillate between overload andprOVIdes formal techniques “? r?presem' manipulate, m?d '

underutilization. plement human experts’ heuristic knowledge for contrglian
plant, e.g., a real-time system, via IF-THEN rules rathanth

. INTRODUCTION relying on mathematical modeling of the plant.

A rapidly growing number of real-time systems, e.g., traf- Notably, our fuzzy control system can automatically adapt
fic control, target tracking, agile manufacturing, or SCADAts own control actions considering the current system beha
(supervisory control and data acquisition) systems, run ior. This sharply contrasts to linear time invariant coliéns
unpredictable environments where workloads are unknownsach as [3], [4], which use fixed control gains regardless of
advance and may significantly vary at run-time. For examplie current system status. By applying adaptive fuzzy obntr
workloads may vary depending on the volume of the traffiwe aim to support the utilization set-point even under large
or the number of targets in the area of interest [1]. Duringorkload variations, i.e., disturbances. In addition te thle-

a cascading power failure, SCADA systems managing &mase computing the fuzzy utilization control signal, weiges
electric grid may suffer a significant (up to an order ofnother rule-base to either amplify or dampen the fuzzyrobnt
magnitude) load increase [2]. signal, if necessary, to expedite the convergence to the set

Feedback control has recently been applied to support rgadbint, while avoiding oscillations.
time performance in the presence of unpredictable worldoad We compare the performance of our adaptive fuzzy control
[3], [4]. However, feedback control of real-time perforncaris  system, via an extensive simulation study, to several lresel
not free of a drawback. Generally, real-time system behmavi@pproaches including a linear PI controller for utilizaticon-
in dynamic environments are complex and nonlinear. Ftol [3] and a non-adaptive fuzzy controller, which is sianito
example, many industrial processes are nonlinear [S]heurt [8]. Overall, the adaptive fuzzy controller considerablyjer-
computational system dynamics are often stochastic. Thimyms the baselines for workloads involving large distundes
mathematical modeling of such systems required for feddbday consistently supporting the utilization set-point. tmtrast,
control is challenging. An easier-to-use yet effectiverapph the baselines show large utilization fluctuations when tael |
is required for real-time performance management in dynanvaries.
environments. The rest of the paper is organized as follows. Section Il

In this paper, we apphadaptive fuzzy contralechnology describes the overall structure of our adaptive fuzzy abntr
to directly control nonlinear system behaviors to achidwe tsystem and gives backgrounds in fuzzy control. Section Il
desired utilization set-point in soft real-time systemdepe describes the design of our adaptive fuzzy controller and
tially having dynamic workloads. It is critical for a real-rule-bases. Performance evaluation results are desciibed
time system to avoid overloads; however, traditional teak Section IV. Related work is discussed in Section V. Finally,
scheduling [6] is not directly applicable if the workloadnist Section VI concludes the paper and discusses future work.



[I. OVERALL STRUCTURE AND BACKGROUNDS asU, > (k). Under severe overload/; > 6(k) even after

In this section, the overall structure of our adaptive fuzZjedrading every task in the system. In this case, incomsigsta
control system, fuzzy control terminology, and basic fuzz§'® rejected. By adapting the QoS before applying admission

control mechanisms are discussed. Control, we can accept more tasks. .
The admission controller (AC) in Figure 1 admits tasks
A. Overall Structure based on the estimated utilization. To supp@gt it accepts

a taskT; arriving in the (k + 1) sampling period only if
U; + U, < 0(k). In an open-loop approach without feedback
‘ o control, 8(k) = U, for arbitrary k. As a result, the system
ac | Admission Contrl could be overloaded (or underutilized), if the actual exiecu
time is longer (or shorter) than the estimated executior.tim
oad In contrast, our approach adapts the acceptable load tidesh

threshold to supportU; for dynamic workloads.
0
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Fig. 1. Closed-Loop Real-Time System u® |(5)~{kaert T UtiIIIer z =
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The high level structure of our closed-loop real-time syste Scaling Factor Controller ]ﬂ o(K)
is shown in Figure 1. Real-time tasks are scheduled in an EDF
(earliest deadline first) [9] manner. To achieve the utilaa Fig. 2. Adaptive Fuzzy PI Controller

set-pointUs, our AFPIC (Adaptive Fuzzy Proportional and

Integral Controller) in Figure 1 computes the acceptable Figure 2 shows the structure of the AFPIC considered
workload threshold)(k) based on the erraf(k) and change in this paper. Our AFPIC consists of a fuzzy utilization
of the errorAe(k) for the utilizationu(k) measured in the controller and a scaling factor controller for utilizatioontrol

k' sampling period where: and adaptation, respectively. Although a fuzzy P! corgroll
e(k) = U, — u(k) 1) works well for linear _and first order systems, |F shows poor
performance for nonlinear systems [5]. For this reason, we
and have a scaling factor controller that continuously adapés t
Ae(k) =e(k) —e(k—1). (2) scaling factora(k), if necessary, to meet the set-point in the

presence of dynamic workloads. Based ) and Ae(k)
(Eq 1 and Eq 2), the fuzzy utilization controller in Figure 2
computes the required threshold adjustm&#tk) for the next

Ae(k). The feedback control signal(k) will be used to : : : o
. - . X sampling periodAf(k) is multiplied by a(k) Ka; where the
supportUs in the (k + 1) sampling period. This feedbaCkscaIing factor contr(oll)er computes(k) at( tr)me ktth sampling

gaggg:tgrocedure is repeated at every sampling mSIanceil%gtance for adaptation. In contrast,., Ka., and K, are
o

fixed.
In this paper, we consider a periodic task model. A task . . -
s dened by . 1. D) .0, whereC s heesmatea U751 00 Sontolers (1G9 e ueed vy iy 1
execution timeP; is the task periodD; is the deadline, an@); y. ESP Y prop ' gral, !

is the task QoS (quality of service) level. The actual exeout Pl, a.nd PD type FLCs are most common. In this paper, we
. . X ; consider a fuzzy PI controller, as PD FLCs are only suitate f
time of T; is not precisely known in advance. Thus, only the

estimated utilizatiorl/; — C; /P, is known. FurtherD; — P. a limited class of systems [11]. Moreover, rule-base deaigh

In our task model, a task; consists of a mandatory part anﬁnmg for PID FLCs are complicated due to many parameters

an optional part, following the imprecise computation nod 5] Our controller shown in Figure 2 has two inputs, i.e.,
P part, g P P e utilization error and derivative of the error. It alscshan

[10]. Under overload, only the mandatory part5f can be .integrator at its output. Without an integrator, the colhro
executed to reduce the workload, for example, by producn\}\% ) :

o ' . uld be a PD type FLC. One may think that, since our
a low quality image for traffic control or target tracking. As controller containg(k) and Ae(k) as input and an integrator
result,C;, U;, and@; are reduced. Specifically, the real-time © P 9

) - N at the output, it is a PID controller. In fact, however, it i®h
system computes the total estimated utilizatign=>".", U;
. =1 controller. A standard PID controller computes an exemplar
for all the tasks currently in the system at th& sampling

) h o )
instance. I/, > 6(k), the QoS manager in Figure 1 degrade%oerI signalc(k) at thek! sampling instance as follows:

the QoS off; in the system and decreadégsby C; ,/P; where
Ci.o(< C;) is the estimated execution time @f’s optional c(k) = Kye(k) + Kize(j) + KyAe(k)
part. It repeats this step for the other tasks in the systdongs i=o

Specifically, (k) is computed at thé!* sampling instance,
i.e., the end of thek*" sampling period, based ar(k) and

E



and its iterative form, which is more efficient, is obtained b
taking the derivative of the both sides of the equation:

Ac(k) = K,Ae(k) + Kie(k) + KqA%e(k).

Since Ac(k) = ¢(k) — ¢(k — 1), the above equation can be
rewritten as:

c(k) = c(k — 1) + K,Ae(k) + K;e(k) + KqAZ%e(k).

Compared to this equation, one can observe that our caattroll
in Figure 2 has(k) and Ae(k) terms, but it has na\2e(k)
term. Thus, it is a Pl controller. A description of fuzzy cait
terminology and basic fuzzy control mechanisms shown in
Figure 2 follows.

B.

Fuzzy Control Terminology and Mechanisms

-1.0

0.0
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NL: Negative Large
NM: Negative Medium
NS: Negative Small
ZE: Zero

PL: Positive Large
PM: Positive Medium
PS: Positive Small

Fig. 3. Input and Output Membership Functions for the Uttiima Controller

« Universe of Discourse:The universe of discourse is the
domain of the inputs to a fuzzy controller. As shown in
Figure 3, the universe of discourse for utilization errors
is [-1, 1], sincee(k) = —1 if the set-pointU; = 0 and
current utilizationu(k) = 1 in Eq. 1! On the other hand,
e(k) = 1if Us = 1 andu(k) = 0. In this paper, the
universe of discourse fale(k) is [-1, 1] too.

Linguistic Variables: Linguistic variables describe the
inputs and output(s) of a fuzzy controller. For instance,
two inputs to the fuzzy controller at tHeé" sampling in-
stance are described asor (fuzzified e(k)) andchange

in error (fuzzified Ae(k)), while the output from the
fuzzy system iscontrol signal i.e., the load threshold
adjustment required to achieve the set-pdintexpressed
linguistically. The fuzzification interface in Figure 2
convertse(k) and Ae(k) to the corresponding linguistic
values defined next. (A description of the fuzzification
process is discussed in Section lll.)

Linguistic Values: Linguistic variables are associated
with linguistic values to describe characteristics of the
variables. A linguistic variablerror, for example, could
be associated with linguistic values Large, Small, or Zero
at a sampling instance. Figure 3 shows linguistic values

1Although settingUs to 0 is impractical in reality, we intend to consider

the full range of possible error values for fuzzy control asammended by

5].

for the linguistic variableserror, change in error and
thresholdcontrol signalused in this paper.

Linguistic Rules: A set of IF premiseTHEN consequent
rules are used to map the inputs to output(s) of a fuzzy
controller. For example, iérror = N L (negative large)
andchange in error= N L at thek!” sampling instance,
then the system is overloaded, i.€}, < u(k), and the
degree of overload is increasing significantly. Thus, the
corresponding rule generatesva. signal to significantly
reduce the workload by largely decreasing the acceptable
load threshold)(k). In fact,error andchange in errorcan
only be N L for a low U, such as 0.3. For a higti; such

as 0.9,V S (negative small) already indicates overload. To
avoid potential performance oscillations under overload,
for a high Uy, our controller generates a relatively small
control signal rather than generating aggressive control
signals. Thus, our controller can be used for a broad
range of set-points. This flexibility is another virtue of
fuzzy control. Although we have verified that AFPIC can
support various set-points, in Section IV, we only present
the performance evaluation results for a relatively high
U, = 0.9, which is hard to support without saturating the
CPU.

Rule-Base: The rule-basein Figure 2 has a set of IF-
THEN rules dictating how to achiev®; according to
the fuzzified linguistic values oé(k) and Ae(k), i.e.,
error and change in error The inference mechanisnim
Figure 2 evaluates which control rules are relevant at the
current time. It also decides what the fuzzy control signal
should be by looking up the rule-base table based on
the fuzzifiede(k) and Ae(k) values. Thedefuzzification
interface in Figure 2 converts the fuzzgontrol signal
reached by the inference mechanism into the control
signalAfd(k) expressed as a real numbik) in Figure 2

is the control input to the real-time system that adjusts
the workload according té(k) by QoS adaptation and
admission control. Our linguistic rules, inference, and
defuzzification are described in Section IIl.

Membership Functions: The horizontal axis of Figure 3
represents(k), Ae(k), or Af(k) and the vertical axis
indicates the membership value. A membership function
(MF) quantifies thecertainty an e(k), Ae(k), or Af(k)
value to be associated with a certain linguistic value. For
MFs, we use symmetric triangles of an equal base and
50% overlap with adjacent MFs, similar to [5], [7]. In
Figure 3, for example, ik(k) = 0.25, the membership
function for PS (Positive Small)ps(0.25) = 1 and it

is 0 for the other linguistic values. lAe(k) = 0.0625,
1122(0.0625) = 0.75, ups(0.0625) = 0.25, and it is 0

for the other linguistic values.

1. ADAPTIVE Fuzzy UTILIZATION CONTROL

In this section, the design of our adaptive fuzzy control

system is discussed.
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0.25)/(0.75 + 0.25) = 0.3125. The scaling factor controller
computes the scaling factor in a similar way usiag),
Ae(k), and the rule-base for scaling factor control shown in
Table II. A detailed discussion of the rule-bases for udiiian
and scaling factor control follows.

B. Fuzzy Rules

For utilization control, we define fuzzy control rules using
linguistic variables associated with linguistic values,NNM,
NS, ZE, PS, PM, and PL as shown in Figure 3 where each
value has a different sign and/or size from the others. Aa/sho
in Figure 6, there are five zones that characterize the atiitin
controller’s action, from which we derive theile-base for
fuzzy utilization control described in Table | as follows.

Fig. 4. Input MFs for the Scaling Factor Controller
1 ZE SM MD LG VL
0.0 1.0 2.0
ZE: Zero LG: Large
SM: Small VL: Very Large
MD: Medium

Fig. 5. Output MFs for the Scaling Factor Controller

A. Fuzzification, Inference, and Defuzzification

All MFs for the utilization controller’s inputs and outpus a
well as the scaling factor controller’s inputs, i.e(k), Ae(k),
and Ad(k) at the k*" sampling instance, are defined in the 1)
common normalized domain [-1, 1] as shown in Figures 3
and 4. In contrast, as shown in Figure 5, the MFs for the
scaling factor controller’s output are defined in the noipeal
domain [0, 2], because the scaling factor either amplifies or
shrinks the fuzzy control signahd(k) in Figure 2 without
changing the sign.

Based on the fuzzifiece(k) and Ae(k), the inference
mechanism in Figure 2 determines which rules to apply
at the k' sampling instance. For example, suppasé)
= 0.25 andAe(k) = 0.0625. According to Figure 3, the 3)
certainty 1ps(0.25) = 1 for e(k) and puzg(0.0625) = 0.75
and ppgs(0.0625) = 0.25 for Ae(k) as discussed in Sec-
tion II-B. To compute the certainty value of the premise in
the corresponding IfpremiseTHEN consequentule(s), we
take the minimum between the certainty valuese(¥) and
Ae(k), following one of the most common approaches [7], 4)
[5], [12]. Thus, u(PS,ZE) = min{1,0.75} = 0.75 and
w(PS, PS) =min{1,0.25} = 0.25.

The inference engine looks Table | up to find that
rule(PS,ZE) = PS andrule(PS,PS) = PM. Let u(i, )
denote the membership function and, j) denote the center
of the MF of the consequent of theule(i, j). For triangle
MFs, the center is the value on the x axis at the middle of the
triangle and the fuzzy utilization control output is [7]:

> eling) - (i, 5)
Zw‘ (i, 5)
For example, in Figure 3, the center BfS and PM is 0.25
and 0.5, respectively. Thus)\d(k) (0.25-0.75 + 0.5 -

2)

5)

Ab(k) = ®)

_-Overshoot
c ,
'g [y
E 2/ 3 5
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>
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Fig. 6. Fuzzy Utilization Control Characteristics

e(k) > 0 and Ae(k) < 0 at thek!" sampling instance:
In this zone, the actual utilization is smaller than the
target utilization, but it comes closer to the set-point
according to Eg. 1 and Eq. 2. The utilization controller
should apply a small positivAd(k) to avoid a potential
overshoot, i.e., overload, while increasing the utiliaati
e(k) < 0 and Ae(k) < 0: In this zone, the actual
utilization is larger than the set-point and it is further in
creasing. Hence, the controller should applg(k) < 0

to reverse the current trend.

e(k) < 0 and Ae(k) > 0: In this zone, the actual
utilization is higher than the target utilization, but it
comes closer to the set-point. Since the actual utilization
is converging to the target, the controller should apply
a small negative\d (k) to avoid a potential undershoot,
i.e., underutilization, while reducing the utilization.

e(k) > 0 and Ae(k) > 0: In this zone, the actual
utilization is lower than the set-point and it is further
decreasing. ThusAd(k) > 0 to reverse the current
trend.

le(k)] < € and |Ae(k)] < e wheree is a predefined
small positive real number: The utilization converges to
the set-point ande| and|Ae| are small. This means that
the real-time system is in the steady state. Therefore, the
controller applies a zero control signal.

Table Il shows theule-base for scaling factor control The
linguistic variables of scaling factor control assume lirsgic
values NL, NS, ZE, PS, PL for input and ZE, SM, MD, LG,
VL for output as shown in Figures 4 and 5. Note that the output
of the scaling factor controller does not have any negative



e/Ae [NL [NM [ NS [ZE [PS [PM ]| PL [ Notation [ Value ]

NL NL [ NL | NL [ NL | NM | NS | ZE EFET; uniform [5ms, 20ms]
NM NL NL NL NM | NS | ZE | PS slack uniform [10, 20]

NS NL NL NM | NS | ZE PS | PM Di(= PF;) slack - EET;

ZE NL NM | NS | ZE PS PM | PL QoS levels| low, high

PS NM | NS | ZE | PS | PM | PL | PL
PM NS | ZE | PS | PM | PL | PL | PL
PL ZE | PS |PM | PL | PL | PL | PL

TABLE |
UTILIZATION CONTROL RULES

TABLE Il
WORKLOAD SPECIFICATION

IV. PERFORMANCEEVALUATION

For performance evaluation, we have developed a simulator

’e\l/LAe ulb Eg \Z/E ECS; :\D/ILD tq model the soft real-time system architectun_e dppicted in
NS | SM | MD LG [ MD | SM Figure 1. For performance evaluation, the admission cbntro
ZE SM | SM | ZE | SM | SM and QoS adaptation components can be turned on or off.
PS SM | MD [ LG | MD | SM Also, the adaptive fuzzy controller can be replaced with
PL [MD | LG | VL [LG | MD different controllers. We measure the utilization, suscesio
TABLE I (i.e., the fraction of the submitted tasks finishing withireir
SCALING FACTOR CONTROL RULES deadlines), and QoS for our AFPIC and the tested baseline

approaches. For performance analysis, one simulationnis ru

for 20 minutes. Each performance data is the average of 10

simulation runs with different seed numbers. We have ddrive
linguistic value, because it either amplifies or shrinks th&% confidence intervals; however, we omit the confidence
control signalA§(k) without changing the sign to compensaténtervals as most of them are less than 3%. A discussion of
the limitations of the fuzzy utilization controller as folls.  the workloads, baselines, and performance results follows

1) |e(k)| is large and|Ae(k)| is large orle(k)| is small A Baselines
and |Ae(k)| is small: In these zones, the utilization
controller’s action is sufficient to correct the error. Thuﬁin
it must be left the same. We sefk) = 1 in this case.

2) |e(k)| is large and|Ae(k)| is small orle(k)| is small
andAe(k) = 0: In these zones, the utilization controlle
is correcting the error, but with an insufficient contro

For performance comparisons, we consider several base-
es: Open- Loop simply admits all incoming tasks and
provides the full QoS regardless of the current system statu
IAC applies admission control to incoming tasks based on their
stimated utilization values and fixed load threshile Us,.

signal. Thus, the control signald (k) must be amplified | employs the linear PI controller [3] to achieve the target

to make the correction faster. Specifically, we choos%t'“zat'on n real'-tlme'systems. We strictly f°”°VY .thesdgn
a(k) = 1.5 procedure described in [3]. To support the stability, weehav

3) |e(k)| is large andAe(k) = 0: In this zone,Ad(k) is tuned the controller via the Root Locus method [13] as done

so small that the controlled system does not respond'PoB]' Due to space limitations, we do not repeat their cointr

that signal. Therefore, it must be significantly amplifie odel. Interes_,ted readers are rgferred to [ C_employs
to get a response from the plant. Specifically, we s e non-adaptive fuzzy PI utilization controller using tlée-

_ ase shown in Table I. FPIC is analogous to [8], which
a(k) =2. i : .
applies non-adaptive fuzzy control to QoS management in

4) e(k) = 0 and |Ae(k)| is small ore(k) is small and ! .
|Ae(k)| is large: In these zones, the utilization is qucylsual tracking. For AFPIC, Pl, and FPIC, we use the 5s

tuating around the desired level, but cannot converge §8mpllng period for fair comparisons. Further, the same QoS

. adaptation and admission control methods are used under
the set-point. ThusA#(k) must be weakened to let the )
P S (k) oyerload. Hence, the only difference among AFPIC, PI, and

glggr;t:regcgh the desired set-point. To this end, we selt?__clglc is the way to compute the control signal,

5) e(k) = 0 andAe(k) = 0: In this zone, the utilization is B. Workloads

equal to the set-point. Henca(k) = 0. Our workload summarized in Table Il is similar to [3],

Overall, our adaptive fuzzy control only requires smalkerul [14]. The workload used in [3] is developed to evaluate
bases, efficient table look-ups, and control signal comjmuta the performance of their linear Pl controllers for utilipat
which all finish in constant time. Thus, it is computatiogall (and deadline miss ratio) management. Further, the watkloa
lightweight. Specifically, we choos& . = 1.0, Ka. = 0.5, used in [14] is originally derived from air traffic control.
and Ka; = 0.1, sincee(k) needs to be fully considered, whileFor taskT;, its estimated execution timEET; is uniformly
Ae(k) and Af(k) need to be damped to avoid oscillationsselected in a range [5ms, 20ms]. Its actual execution time
The stability of our fuzzy control system can be proved bMET; = etf - EET; where etf is the execution time
the Lyapunov method [7]. This is reserved for future work. factor [3]. If etf > 1, the system could admit too many



tasks based on the estimated execution times shorter tkan th

actual execution times. Every task is periodic and tAsk g
deadline and period ared; = P, = slack - EET; where IS
slack = uniform|[10,20]. Also, we consider two QoS levels: &
low and high for executing only the mandatory part of a task % 50 | P| Controller —s—
and both the mandatory and optional parts, respectivelg. Th 40 ' ' ' ' '
QoS of a task is 1 if the both mandatory and optional parts 0 200 400 600 800 1000 1200
are executed. It is considered 0.5 if only the madatory sart i Time (sec.)
executed. Note that our approach is not limited to a specific _ T T T T T
number of QoS levels. We will consider more QoS levels in S 188 B
the future. S 80f

For performance evaluation, we model abrupt workload & gg
changes to stress the tested approaches. Initially, thkitoa % 50 FIPIC Cclmtrollef —&— .

100% andetf = 1 but etf is suddenly increased to 2, 6, 40
or 10 at 600s and maintained at the level until 1200s. As a
result, the load becomes twice, six times, or ten times the
system capacity at 600s. These situations may happen, for
example, when real-time tasks are required to process too
many traffic or surveillance images within the deadlines due
to traffic accidents or appearances of multiple targets & th
area of interest. We have also considered otigr values,
the performance results are consistent with the ones export 40
here. Note that the tested approaches including AFPIC are
unaware ofet f changes. As a result, they can be overloaded,
if they are not reactive enough. In the rest of the paper, we Fig. 7. Transient Utilization for 200% Disturbance
only show the performance of PI, FPIC, and AFPIC. OPEN-
LOOP shows poor performance, because it simply admits
all incoming tasks regardless of the current system behavifor several times. Further, it cannot converge to the target
Neither does it degrade QoS. AC admits too many tasks atilization for more than 400s after the disturbance at 600s
etf > 1 under disturbances. Thus, it becomes overloaddeigure 9, Pl cannot re-converge to the 90% set-point by the
showing poor performance. end of the simulation. Such large fluctuations and instgbili
are unacceptable in real-time systems.

In Figures 7, 8, and 9, FPIC shows the more stable uti-

We have observed that PI, FPIC, and AFPIC closely supptidation than Pl does. In Figure 7, its utilization is satech
Us in terms of the average. Due to space limitations, wenly briefly when the load is increased to 200% at 600s,
do not plot the average utilization, which has little meanineven though its settling timethe time taken to converge to
under abrupt workload changes. Figures 7, 8, and 9 shthe set-pointis approximately 400s. This is because FPIC is
the transient utilization for the 200%, 600%, and 1000%esigned by directly considering nonlinear system bemavio
disturbances. In these figures, at the beginning of the simmepresented by and Ae. In contrast, Pl has no mechanism
lation, Pl shows an overshoot and its settling time is abotd directly handle such conditions. As a result, Pl has the
100s. Both FPIC and AFPIC cause no overshoot at staidngest settling time after the disturbance at 600s, if #rev
up. Also, AFPIC’s rise timethe time taken to reach there-converges to the set-point, as shown in Figures 7, 8, and 9
set-point from the beginnings slightly shorter than FPIC’s. Although FPIC shows the better performance than Pl in the
Generally, a shorter rise time is better, if it does not cause figures, its utilization control performance is unsatisfag
overshoot [13]. Hence, AFPIC shows the best performance upder 600% and 1000% disturbances.
to approximately 100s, because it has no overshoot and th®©verall, AFPIC shows the best transient utilization in Fig-
shortest rise time. ures 7, 8, and 9. It quickly re-converges to the target atilon

After 100s, the three controllers, i.e., PI, FPIC, and AFPIGfter a disturbance as shown in the figures. It re-converges
maintain the utilization near the set-point (90%) until thén only about 50 seconds, i.e., 10 sampling periods, and the
disturbance point at 600s as shown in Figures 7, 8, and Wilization fluctuates by less than 1% for the 200% distudean
When the load suddenly increases at 600s, the utilizatiand 3% for the larger disturbances after it becomes stable,
saturates at 100%. The controllers are required to recower f considerably outperforming FPIC and PI.
the saturation and re-converge to the set-point. As showmein  We have evaluated the success ratio and QoS for all the
figures, Pl suffers the largest utilization fluctuationsoining tested approaches too. AFPIC achieved the highest success
overshoots and undershoots, among the tested approattees.ratio followed by FPIC and Pl in the sequence. When the
magnitude of its utilization fluctuations is bigger than 30%vorkload changes abruptly at 600s, via online adaptation,
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Fig. 8. Transient Utilization for 600% Disturbance Fig. 9. Transient Utilization for 1000% Disturbance

AFPIC adapts the QoS faster than FPIC and PI do. In this paper, we develop an adaptive fuzzy controller and
show its effectiveness for utilization control.

Adaptive control [16] is applied to differentiated web

Feedback control has recently been applied to real-tirgaching services [17]. Diao et al [18] apply non-adaptivazfu
performance management in dynamic environments. A numb@ntrol to maximize the profit in an email server. eQoS [12]
of existing approaches for feedback control of real-timéqre  supports, via adaptive fuzzy control, service differeigiain a
mance such as [3], [4] mathematically model real-time systeweb server. Different from them, our work focuses on support
behaviors via difference equations. To apply classicadin ing the desired utilization threshold to meet timing comistis
control theory, real-time system behaviors are approxémhatin real-time systems operating in dynamic environments.
in a piecewise linear manner. However, linear approxinmatio \ery little prior work has applied fuzzy control to real-tm
is not always applicable due to dynamic, potentially nagdin performance management. It is applied to visual trackifjg [8
behaviors of real-time systems interacting with physicali€ however, their work only applies non-adaptive fuzzy cohtro
ronments. As control gains are determined offline, the deseOur approach is complementary to the control theoretic work
loop systems of these approaches cannot adjust its owrotongliscussed in this section in that we support adaptive fuzzy
actions at run time considering the current status. control of utilization by directly considering dynamic, mo

Model predictive control techniques are applied to dynamiinear system behaviors, while reducing the complexity for
cally identify the relation between the real-time task ex@mn real-time system modeling. Thus, our work can be considered
rate and utilization over a prediction horizon, which csetsi a design alternative for real-time performance management
of a specified number of sampling periods, for utilizatiobased on control theory. To our knowledge, no previous work

control in a multiprocessor environment [15]. Specificalljhas applied adaptive fuzzy control to real-time perforneanc
least square equations are solved for online system identifianagement.

cation (SYSID) [13], [16] aiming to approximate the real-

time system behavior. Unfortunately, this procedure fmth VI. CONCLUSIONS

complicates the system modeling and controller tunings It i Feedback control has been applied to real-time performance
not trivial to determine the appropriate prediction windsize management in dynamic environments. In this paper, we aim
and system order [16], which can considerably affect contro alleviate the difficulty of mathematical modeling neceygs
performance. Fuzzy control theory [7] is originally deyedal for feedback control of real-time performance. We apply
to address these modeling and design difficulties by allgwimdaptive fuzzy control to support, via IF-THEN rules, direc
direct nonlinear mappings between system inputs and aitputonlinear mappings between the utilization error and vwoadl

V. RELATED WORK



adjustment required to achieve the target utilization.thr
our adaptive controller can adjust its own behavior by am-
plifying or weakening the utilization control signal contpd

by the fuzzy controller, if necessary, to shorten the seftli
time, while avoiding potential oscillations. In the perfaance
evaluation, our adaptive fuzzy controller considerablypet
forms the tested baselines. In the future, we will investiga
more effective approaches to adaptive fuzzy control of-real
time performance.
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