
A Document centric Framework for Building Distributed Smart Object Systems

Fahim Kawsar and Tatsuo Nakajima
Department of Computer Science

Waseda University, Japan
{fahim,tatsuo}@dcl.info.waseda.ac.jp

Abstract

We present an architectural framework that provides the
foundation for building smart object systems and uses a
document centric approach utilizing a profile based arte-
fact framework and a task based application framework.
Our artefact framework represents an instrumented physical
smart objects as a collection of service profiles and expresses
these services in generic documents. Applications for smart
objects are expressed as a collection of functional tasks
(independent of the implementation) in a corresponding
document. A runtime component provides the foundation for
mapping these tasks to the corresponding service provider
smart objects. There are three primary advantages of our
approach- firstly, it allows developers to write applications
in a generic way without prior knowledge of the smart
objects that could be used by the applications. Secondly,
smart object management (locating/accessing/etc.) issues
are completely handled by the infrastructure thus applica-
tion development becomes rapid and simple. Finally, the
programming abstraction used in the framework allows
extension of functionalities of smart objects and applications
very easily. We describe an implemented prototype of our
framework and show examples of its use in a real life
scenario to illustrate its feasibility.

1. Introduction

One of the consequences of pervasive technologies (e.g.,
miniaturization of the computer technologies and prolifer-
ation of wireless internet, short-range radio connectivity,
etc.) is the integration of processors and tiny sensors into
everyday objects. This revolutionized our perception of
computing. We are in an era, where we communicate directly
with our belongings, e.g., watches, umbrella, clothes, furni-
ture or shoes and they can also intercommunicate. These
everyday objects are designed to provide supplementary
services beyond the primary purpose, an initiative that has
been denoted as Smart Object 1 computing. It has drawn
significant attention from the research community, primarily
because of its promising potential in various industries e.g.,

1. In this paper, smart objects and augmented artefacts carry similar
meaning and will be used interchangeably.

supply chain management, medicine, environment monitor-
ing, entertainment, smart spaces, etc.

In this paper, we look at the system issues for building
a framework for smart objects. In particular we discuss
how can we build pervasive applications and smart objects
with suitable infrastructure that can create a spontaneous
federation to meet the dynamic and fluid nature of pervasive
environment. Specifically, we focus on two issues 1) a
suitable artefact framework for representing smart objects
and a pervasive application model to leverage the services
of smart objects dynamically and 2) an infrastructure that
supports such interaction while taking care of component
(smart objects in this case) management issues away from
the applications. The basic idea of our framework is to use
documents to externalize an application’s requirements in a
generic way without considering smart object management
issues. Similarly, smart objects’ services are externalized by
structured documents. The runtime infrastructure provides
a semantic association between the applications and smart
objects using structural type matching of these documents.
Because of such loose coupling, applications and smart
objects can be built and extended orthogonally.

In the sections that follow we present the motivation
and design issues of our framework. After that we discuss
the proposed framework in detail. Then we present an
application scenario to illustrate how the proposed frame-
work is used. Then we discuss some generic issues before
concluding the paper.

2. Motivation and Design Issues

Typically in a smart object system, context-aware per-
vasive applications run atop distributed smart objects em-
bedded with awareness technologies (sensors, actuators and
perception algorithms) where applications uses these objects
to collect context information or to perform some services
that cause changes in the real world (e.g., adjusting the
air-conditioner based on sensed temperature). Considering
smart everyday objects are distributed in a physical space,
the characteristics and utilization pattern of a smart object
system is similar to the philosophies of encapsulation and
reuse behind component based frameworks, e.g., Component
Object Model (COM) [7], Java Beans [5] as well as more
network friendly descendants like DCOM [10], Jini/EJB



[17], [12], OMG’s CORBA [6]. Thus many architectural
issues related to distributed components systems are applica-
ble to smart object systems. In addition the highly dynamic
and fluid nature of smart environments puts significant
challenges for designing such framework.

2.1. Design Challenges

The characteristics of smart object systems raise a number
of important architectural questions - how will we build
pervasive applications to manipulate smart objects with no
prior knowledge? how will we manage those unknown smart
objects? how will we build application and smart objects for
such dynamic environment? In the following we summarize
these design challenges.

1) Heterogeneity and Application Development: Each
of the smart objects might have different interfaces
and might implement different protocols, even seman-
tically same sm-art objects (e.g. two smart chairs from
two different manufacturers) might be heterogenous
from implementation point of view. It is obvious that
to proliferate pervasive applications, application has to
be written independently without considering which
smart object from which manufacturer will be used
in the application. We can not expect application to
be written with prior knowledge of all of the myriad
sort of smart objects of different types that it may
encounter. The range of possibilities is simply too
large and it is impossible to consider all smart objects
during the development period.

2) Augmentation Variation of Smart Objects: it is
hard to confine a single augmentation for a physical
object. A single everyday object can provide multiple
services and multiple smart objects can provide iden-
tical services with different granularities. Thus it is
not possible to classify smart objects by object type.
This is particularly important as this emphasizes that
defining standard interfaces for smart object is not a
feasible solution.

3) Management of Smart Object: In a conventional
component framework applications are responsible for
managing (locating/spawnning/etc.) the components
locally, i.e., applications needs to know the access and
configuration semantics. Keeping such functionalities
at the level of application complicates the development
process. Furthermore, for a dynamic environment like
where a typical smart object system runs, it makes very
difficult for application to adapt to the smart objects
that change for mobility purpose or fail.

4) Evolution of Smart Object System: Unlike the
conventional distributed component systems where ap-
plications typically resides in the digital world, smart
object systems are deployed in the real world, i.e.,
our living spaces. An essential property of our living

space is its evolutionary nature and receptibility to
continual change. We incrementally organize living
spaces with furniture and appliances according to our
preferences and styles. Previous studies have shown
how end users continuously reconfigure their homes
and technologies within it to meet their demands
[14]. To support the evolutionary nature of the real
world it is essential that smart object systems support
incremental evolution. It is necessary to have suitable
programming abstraction that will allow developers
to extend smart object systems’ functionalities in an
incremental fashion, ideally involving end users.

2.2. A Document Based Solution Framework

This paper proposes that we can address these chal-
lenges if both the smart object services and application
requirements can be externalized and letting a secondary
infrastructure to act as a mediator to create a spontaneous
federation among them.

The challenge of heterogeneity is typically handled by
existing frameworks using interface standardization [10], [6].
A programmer writes a small software to interact with a
specific component / device, e.g., a networked printer. Any
application can use the printer using this small software,
as long as both the components (printer component, and
application) agree beforehand on exactly how components
will communicate with each other and the application man-
ages this interaction locally. If the application functionlity
is extended to use another device, or the same device is
replaced by a new one then the application must be rewritten
to interact with the new device component. Some researcher
have used mobile code approach, to dynamically download
the heterogenous component interfaces at application ends
[17], [4]. However such approaches are impractical consider-
ing, for every new smart object an application encounters, it
would need to download new codes, event for components
that are semantically same. On a more lower granularity
level, UPnP2 defines a standard set of protocols for specific
device types (e.g., audio/vedio devices) for interoperability.
However, application that leverages these devices’ services
still needs to know the interfaces, and any change at the
device end causes the application to fail. This is further
complicated considering the nature of smart objects as
mentioned in the second challenge above. It is very difficult
to standardize the protocols for smart objects considering
their diversity.

One way to address these issues is if we look at the
functional aspects at the application end only and leave
the protocol heterogeneity issues at the infrastructure end.
Accordingly, we have taken a data-centric approach to
handle this situation. Our framework forces an application

2. Universal Plug and Play - http://www.upnp.org



to expose its functional tasks that need the service of a
smart object (i.e., a component) in a document without
addressing how to access that smart object service. Similarly,
a smart object is forced to expose its service features via
documents. A secondary infrastructure then connects the
application to the smart objects by matching the documents.
However, applications and smart objects are not directly
connected. Instead they communicate to the intermediary
infrastructure to delegate their service requests and service
responses respectively. This underlying infrastructure can
provide the technical building blocks to allow applications to
use arbitrary no of of smart objects as long as they provide
the functionalities that are expected by the application. The
infrastructure takes care of the management of smart objects
away from the applications, so applications do not need
to care for access, configuration or management issues.
To facilitate, this communication both the application and
smart objects are forced to implement a standard RESTful
(HTTP/XML) communication protocol.

The last challenge mentioned above essentially asks for a
decoupling among the features of both the applications and
smart objects. We have addressed this challenge by following
a core-cloud development model for smart objects. The core
of a smart object is a generic runtime that can hosts any
number of smart features as plug-in. Each smart feature is
called a profile in our framework. This design allows us to
decouple the smart features of a smart objects and applying
same features in multiple smart objects and incrementally
adding features to smart objects. Simultaneously, applica-
tions functionality can also be extended by introducing new
smart objects allowing some of the application tasks to
leverage their features.

Our design has been influenced by two successful ap-
proaches existing currently. First one is the internet which
is an excellent example of document based system. The
internet is a collection of millions of anonymously au-
thored digital documents that are encoded in a pre defined
semantics that enable heterogenous platforms to exchange
these documents. The fundamental issue here is the pre
negotiation of the semantics. The most widely used protocol
for internet, i.e., HTTP is basically acts as the envelope
for this documents and provides the negotiation semantics
to both the sender and recipient (i.e., servers and client
browsers and vice versa) through it headers for a flawless
communication. Henceforth, structured document is the pri-
mary resource and HTTP (headers) acts as the connecting
glue in the internet infrastructure. In our approach, we
consider applications are the consumers and smart objects
are the resources. Thus if both are expressed and amended
with pre negotiated semantics using documents like HTTP
headers, we can easily provide a runtime association. The
second influencing approach is the commonly used shell
scripting to connect arbitrary programs using the UNIX
pipe facility where file handles (i.e., stdin, stdout, stderr)

Figure 1. Basic workflow of our approach

are used to differentiate and route data. From an abstract
view point we can observe that this capability of semantic
mapping by pipe facility is basically the negotiation of
input/output structure. Thus, a structured document with pre
negotiated semantics can perform the similar piping between
application and smart objects. Henceforth, documents can
glue an application with smart objects given the fact that they
have pre negotiation through some abstract notions. Thus our
primary challenge in document based approach is to provide
appropriate abstraction underneath the documents that can be
utilized to build smart object systems. With these viewpoints
we have designed our framework adopting following design
guidelines:

1) Providing appropriate wrapper framework and abstrac-
tion with structured documents to build smart objects
without concerning the target application requirement.

2) Providing appropriate abstraction with structured doc-
uments for application developers using which they
can externalize application’s requirements and utilize
smart objects without concerning interfaces and the
management of smart objects.

3) Utilizing a runtime intermediator that handles smart
object management (Bootstrapping, Discovery, Uti-
lization) and provides mapping between application
and smart object services based on structural type
matching thus separating the concerns of the appli-
cation and the middleware.

4) Providing service extension support for both the appli-
cation and the smart object using primary abstractions.

These design principles enable developers to write ap-
plications and to build smart objects in a generic way
regardless of the constraints of the target environment. The
basic workflow of our framework is shown in Figure 1.
Our framework consists of an Artefacrt Framework, an
Application Development Model and a Runtime Intermediary
Infrastructure called FedNet. Artefact framework represents
a smart object by encapsulating its augmented functionalities
(e.g., proactivity of the table lamp) in one or multiple service
profiles atop a runtime and allows additions of profiles



incrementally. Applications in our approach are represented
as a collection of implementation independent functional
tasks. These tasks are atomic actions that represent the smart
objects’ services. An infrastructure component FedNet, man-
ages these applications and artefacts and maps the task
specifications of the applications to the underlying artefacts’
services by matching respective documents (that express the
applications and the artefacts) thus externalizing smart ob-
ject management and addressing heterogeneity issues away
from the applications allowing developers to focus on the
application functionalities only. This results in simple and
rapid development of smart object systems. Primarily these
two abstractions Profile and Task are used in our system
and realized by corresponding documents. Additionally end
user tool can be built atop our middleware independently
to deploy, configure and manage the applications and the
artefacts.

3. System Architecture

In this section, we present the artefact framework followed
by the task centric application framework. Then, we show
how FedNet utilizes these frameworks to create a sponta-
neous association between the artefacts and the applications.
The frameworks and FedNet are implemented in Java.

3.1. Artefact Framework

Artefact framework encapsulates a smart objects so that
it can be connected and used by other smart objects and
applications. It provides a layered architecture where basic
smart object functionalities are combined in a generic core
component that act as the runtime. Additional augmented
features can be added as plug-ins into the core. Each
augmented feature is called a Profile in our approach. These
profiles are artefact independent and represent a generic ser-
vice implementing service specific protocols., For example:
sensing room temperature could be one profile, and multiple
artefacts (e.g., a window, an air-conditioner, etc.) can be
augmented with a thermometer for supporting this profile.
A smart object and its service profiles are externalized using
structured documents expressed in XML. This document
specifies the profile detail, i.e., input/output data type, meth-
ods, parameters, etc that allows data exchange, discovery,
and application interaction.

3.1.1. Internal Architecture of Artefact Framework. The
internal architecture of the artefact framework is shown in
Figure 2 and consists of the following:

1) Core Component: Typically instrumented artefacts
have some common characteristics e.g., capable of
communication [2], [16], provides perceptual feed-
back, possesses memory etc. The core component of

Figure 2. Architecture of Artefact Framework

Figure 3. Artefact Description File for a Mirror with
Proximity Profile

the artefact framework encapsulates all these function-
alities. The communication module facilitates commu-
nication support and encapsulates the transport layer
where as the discovery module allows service adver-
tisement. The notification module enables the rest of
the modules to indicate their status. The artefact mem-
ory contains property data, profile descriptions, and
other temporal data. The client handler is the request
broker for services and delegates the external requests
to specific profiles. Finally, the profile repository hosts
the array of profiles. The profile repository has dy-
namic class loaders to load the profiles dynamically
when requested. The entire core is packaged in an
executable binary and runs independently.

2) Profile: Each profile represents a specific functionality
and implements the underlying logic of the functions,
e.g., providing context by analyzing the attached sen-
sors’ data (e.g., room temperature) or actuating an
action by changing the artefacts’ state (e.g., increasing
the lamp brightness etc.). Each profile is of type sensor
or actuator and has a profile handler, a template to
plug-in device code and context calculation or service
actuation logic. The profile handler has an abstraction
layer that hides the heterogeneity of the underlying
devices.

3.1.2. Documents to represent Artefacts. The artefact
framework’s core is packaged as a ready-to-run binary with a
description document called Artefact Description File (ADF)
as shown in Figure 3 for a mirror artefact with a Proximity



Profile3. Profiles are packaged as plug-ins with a Profile
Description File (PDF) (Figure 6) that run atop the core.
The PDF specifies the data semantics of the corresponding
profile and contains a detector or an actuator node based on
the profile type. The sensor profile’s description follows the
specification of the Sensor Modeling Language (SensorML)
[13] (Figure 4(a)). The primary strengths of SensorML are
its soft typed attribute, reference frame and parameters,
with which the semantics of different sensor data platforms
can easily be understood and interchanged. For an actuator
profile4, our custom designed XML based Artefact Control
Language (ACL) is used (Figure 4(b)) where the state
attribute is used to abstract the operational states of the
artefacts. It contains the input parameters to change the
states along with their data type. PDF also contains a qual-
ity of service(QoS) block which specifies profile’s quality.
Furthermore, these files contain an installation-instruction
block that provides hardware installation guidelines.

3.2. Task Centric Application Model

An application is expressed as a collection of functional
tasks independent of the implementation. This specification
allows FedNet to map these tasks to respective service
provider artefacts. An application developer can follow any
library and implementation language to code the execution
logic. The two things necessary to work in a FedNet envi-
ronment are the task specification, and the generic access
mechanism.

Any application is composed of several functional tasks,
i.e., atomic actions. In ubicomp applications, these atomic
actions may be: “turn the air-conditioner on”, “sense the
proximity of an object” etc. An application is expressed as
a collection of such functional tasks in a Task Description
File (TDF). Each task specifies the respective profiles it
needs to accomplish its goal. Figure 5 shows part of the
task description file for a smart display application explained
in section 4 . Each task contains Quality of Service (QoS)
requirements for the target profiles.

The second requirement for an application is to use
generic web protocols to access artefact services. We con-
sider defining strict interfaces for applications limits the
portability and adoption of applications. Since any appli-
cation only needs to manipulate data to interact with under-
lying smart objects, a compatible and consistent message is
enough to enable applications interaction with smart objects.
Consequently, we have addressed this concern by allowing
FedNet, the intermediary component of our middleware to
act as the gateway of smart objects services and accessing
those services from application in a RESTful manner using

3. Proximity Profile’s sole purpose is to recognize the presence of an
object in front of the artefact.

4. Please note that the protocol to handle the underlying device is
implemented in the profile implementation.

Figure 4. (a)Profile Description File for Proximity Profile,
SensorML is used in the detector node. (b) Artefact
Control Language is used for actuator profile

Figure 5. Task Description File (partly) for a smart
display application



Figure 6. Architecture of FedNet

simple HTTP get and post with XML messages. During
application installation in FedNet, an access point is assigned
to the application. An application needs to access this point
to send requests and receive responses from the underlying
artefacts. During the application’s instantiation time, the
required physical artefacts data semantics (detector and
actuator nodes of the Profile Description File) are send to the
application by FedNet, to let the application prepare for the
moveable data accordingly. Thus applications do not need
to adhere any middleware specific interfaces to interact with
the smart objects yet can leverage their services via FedNet.

3.3. FedNet Runtime Infrastructure

In our approach both the applications and artefacts are
infrastructure independent and expressed in high level de-
scriptive documents (i.e., task and profile specifications).
FedNet provides the runtime association among them by
utilizing only the documents of these applications and
artefacts. It can contact the the artefact core using the
semantics described in the artefact documents for mapping
application tasks, similarly application can contact FedNet
in a RESTful manner. FedNet itself is packaged in a generic
binary and composed of four components, Figure 6 shows
the interaction among four components.

1) Application Repository hosts all the applications that
run on FedNet. During an application’s deployment,
the binary executable and the Task Description File
(TDF) are submitted to this repository. FedNet Core

generates the an access point for the application and
updates the respective TDF by dynamically injecting
the identity of the corresponding access point as shown
in Figure 5.

2) Artefact Repository manages all the artefacts running
in FedNet environment. During artefacts’ deployment,
the executable binary implementing the artefact frame-
work and the Artefact Description File (ADF) are
submitted to this repository. When a profile is added
to an artefact, the profile information is dynamically
injected into ADF as shown in Figure 3 and the
respective profile is attached to the artefact.

3) FedNet Core provides the foundation for the runtime
federation. When an application is deployed the task
specification is extracted from the application reposi-
tory by the FedNet Core. It analyzes the task list by
querying the artefact repository and generates an ap-
propriate template of the federation and attaches it into
a generic access point component for that application.
When an application is launched, the access point is
instantiated and the respective template is filled by the
actual artefact available in the environment right at that
moment thus forming a spontaneous federation.

4) Access Point represents the physical environment
needed by an application. Since each application’s
artefact requirement is different and each application
might not be running all the time, FedNet assigns
a unique access point for each application; meaning
multiple federations of artefacts can co-exist in the



Figure 7. Location Modalities of Artefact Framework

environment. Simultaneously, each artefact can par-
ticipate in multiple federations. When an application
is launched, the access point sends the federated
artefacts data semantics, i.e., SensorML and ACL to
the application. This allows an application to know the
semantics of movable data in advance. From then on,
the application delegates all its requests to the access
point which in turn forwards them to the specific
artefact. The artefacts’ responses to these requests by
providing their profile outputs either by pushing the
environment state (actuation) or pulling the environ-
ment states (sensing) back to the access point that are
fed to the application.

3.4. Distributed Management

In the earlier part of this section we have provided the
explanation of the functional roles of the primary compo-
nents of our infrastructure. From physical implementation
point of view all these components could be distributed, i.e.,
instrumented artefacts can run in their own nodes, applica-
tions can run on the artefact nodes, or in a separate node
integrating multiple artefact nodes, and FedNet can run in its
own node to manage all other nodes.The artefact framework
essentially is the digital identity of an artefact. So an obvious
issue is the location of this digital part. We have two
choices as shown in Figure 7: a) At-the-Edge (On-Board)
b) At-the-Infrastructure (Off-Board). At-the-Edge means the
artefact itself has a processing unit that hosts its digital
representation where as the At-the-Infrastructure means a
proxy, running in a separate location represents the artefacts
and communicates with the artefact to retrieve sensor data
or to actuate artefact’s function using some communication
protocol, e.g., Bluetooth, IEEE 802.11x, etc. Both choices
have pros and cons. While at-the-edge approach provides
pre-configurable and self sustainable artefacts, it is prone
to limited capability. On the other hand, although at-the-
infrastructure approach requires manual configuration and
maintenance, the primary advantage is the rapid prototyping
support. In our current implementation we have adopted At-
the-Infrastructure approach and each artefacts digital repre-
sentation, i.e., artefact framework’s binary core and profile
plug-ins are deployed in a node that communicates with the

physical artefact thr-ough some communication channel to
retrieve the actual profile service via the hardware attached
into the artefact. The same is true for the applications, i.e.,
the applications running on a single artefact can reside in
the same node that represents the artefact and the application
that integrates multiple artefact can reside on the any of those
artefacts node. It is the FedNet components that organize
these nodes in a distributed manner and manages the sponta-
neous federation. The FedNet components (i.e., Application
Repository, Artefact Repository and FedNet Core) can reside
in one or multiple nodes and manage the underlying artefacts
and applications.

4. An Application Scenario

We have built several smart object systems using our
middleware. In this section we are presenting one of those
systems.

We constructed a smart mirror by augmenting a regular
laptop with acrylic magic mirror (Figure 8(a)). Initially this
mirror has a display profile. We wrote an application for
this mirror where the application can show some person-
alized information (e.g. weather, stock quote, movie listing
etc.) into the mirror display. However, this application can
proactively show information only when someone is in-fornt
of the mirror. But for such proactivity it requires a proximity
profile. To enable this application feature, later we have
added a proximity profile to this mirror by attaching an
Infra-red sensor. This improved the applications interactivity.
Afterwards we built a completely separate application for
the mirror where user’s dental hygiene is reported in a
persuasive way utilizing the metaphor of a clean and dirty
aquarium. We replaced the previous application running
on the mirror with the new one. This new application
requires a smart toothbrush that can detect its state-of-
use (Figure 8(b)). We constructed the smart toothbrush by
attaching a wireless accelerometer sensor and deployed it
in our environment with corresponding profile. Thus the
mirror shows an aquarium reflecting users brushing practice
whenever the user brushed his teeth in front of the mirror.
All the smart objects and applications were deployed and
configured using our end user deployment tool running atop
FedNet. We have also performed an informal user study for
evaluating the usability of our approach form end users point
of view that we have reported at other forum [9].

Both the applications were built independently and de-
ployed with corresponding documents expressing the tasks,
similarly the two smart objects e.g., the toothbrush and
the mirror were built independently and deployed with
corresponding documents. FedNet provided the runtime as-
sociation among them thus freeing application from smart
object management. Furthermore, this scenario highlighted
the service extension feature of our middleware. We have
added new profiles to an existing smart mirror allowing an



Figure 8. Applications’ Components and End Users’
Interaction

existing application to leverage new functionalities. Impor-
tantly, the application did not have to take into account
the heterogeneity issues introduced by the addition of an
Infra-red sensor as it was handled by the proximity profile
implementation.

5. Discussion

There are primarily two abstractions underneath the doc-
uments that we have utilized in our framework. From
the smart objects’ perspective it is the notion of profile
that handles the service implementation detail and protocol
issues. Since profiles are independently built following a
plugin architecture, a smart object service can be extended
anytime by adding new sensors or actuators and attaching
corresponding profile into the smart objects core. Also, if a
specific service needs to be updated only the corresponding
profile need to be replaced, not the entire smart object
or the applications utilizing them. Furthermore, a profile
may provide services in various granularities thus supporting
multiple applications requiring services at different scale
(i.e., some applications may ignore some service features).
The profile notion has the potentially serious implication
that standard common vocabularies or ontologies will be
needed to support general interoperability of profiles and
applications. However, by profile abstraction, we are not
trying to define the ontology for profiles. Instead we are
providing a structure that designers can use to disseminate
their implemented ontology and glue it with rest of the
infrastructure.

The second abstraction is from applications’ perspective,
i.e., tasks that simply externalize an applications require-

ments, so any application can be expressed with this ab-
straction. Not necessarily all tasks of an application can be
supported by an existing environments, however with the
incremental addition of new smart objects in the environment
or porting application to another environment with richer
smart objects might enable the full functional features of
an application. In addition an applications functionalities
can be updated independently (application binary and the
document) without concerning the impact of such update
in the middleware or smart objects. In our approach, such
flexibilities are provided elegantly by only expressing appli-
cations’ task specifications in documents and ignoring smart
object management issues at the application level. FedNet
provides the appropriate mapping of these documents with
smart objects documents expressing their services.

This disassociation of applications from the smart objects
they reference is identical to the Model-View-Controller
(MVC) architecture from Smalltalk. In the MVC architec-
ture, data (the model) is separated from the presentation of
the data (the view) and events that manipulate the data (the
controller). Similarly, documents in our middleware act as
the glue that associates smart objects services to applications
that manipulate the services. Such separation of concern (i.e.,
both the applications are artefacts are independent of FedNet
and come as ready-to-run binary), and data centric approach
also enable us to provide additional services orthogonally
in our system. For example, we have implemented several
end user tools atop FedNet that enable end users to deploy,
configure and manage the applications and smart objects
running in the FedNet environment.

6. Related Work

To date several methods have been proposed to address
system support for ubicomp applications. One approach
is interface and protocol standardization as attempted by
Jini5 and UPnP6 respectively. Jini describes devices using
interface description and language APIs allowing applica-
tions to utilize those interfaces where as UPnP attempts to
standardize protocols to allow devices to intercommunicate
seamlessly. These infrastructures provides well defined inter-
faces for application developers, however it is hard to build
application integrating appliances that do not follows their
specific protocols. Furthermore, these systems provide little
support for extending applications or appliance services. For
example, it is hard to add features in an existing artefact
and using that feature immediately in the application with
these infrastructures. Patch Panel [1] is a programming tool
that provides a generic set of mechanisms for translat-
ing incoming events to outgoing events using EventHeap
[8] communication platform. It allows new applications to

5. Jini - http://www.sun.com/software/jini
6. Universal Plug and Play - http://www.upnp.org



leverage the services of existing components. Our overall
approach is close to Patch Panel as we seek to support
incremental integration. However, we exploit a distributed
state model with an artefact framework that enable incre-
mental addition of features to both artefacts and applications.
In SpeakEasy [4] mobile codes (typed data streams and
services) are exchanged among heterogeneous devices to
create an interoperable environment. SpeakEasy does not
consider the incremental extension of artefact services or
end user deployment as its primary focus is on service
composition. InterPlay [11] is a home A/V device composi-
tion middleware and uses pseudo sentences to capture user
intent, which is converted into a higher level description of
user tasks. These tasks are mapped to underlying devices
that are expressed using device description. Although our
approach is very close to InterPlay as we employ similar
mapping of tasks to device services, our challenge is to
provide generic abstractions and to support incremental
extension and deployment of both artefacts and applications.
Our artefact framework is a major leap from InterPlay
which signifies our contribution. A range of middlewares
for pervasive systems [15], [3] specify their application
development processes strictly. These middlewares usually
provide end-to-end support for the application developer,
i.e., instrumented artefacts are encapsulated into wrappers
and an array of APIs is provided to the applications to
manipulate them. The problem of this approach is that the
applications and the instrumented artefacts become virtually
incompatible in other environments. We have adopted a
document centric approach allowing development of in-
frastructure independent applications and artefacts and the
runtime association between them is provided by FedNet.

7. Conclusion

In this paper we have presented a document based ap-
proach to build smart object systems. Applications’ require-
ments and smart objects’ services are externalized using
structured documents utilizing Task and Profile abstrac-
tions respectively. A runtime framework FedNet provides
the dynamic association by structural type matching. The
contributions of our approach are two-fold: firstly, it allows
developers to write applications in a generic way regardless
of the constraints of the target environment utilizing the
abstractions that are realized through documents Secondly,
it allows extension of functionalities of smart objects and
applications very easily. We have described an implemented
prototype of our approach with an application scenario that
highlight the power and flexibility of our framework. We
consider our approach is very useful for the ubiquitous
computing domain, particularly one that involves smart
objects.

References

[1] R. Ballagas, A. Szybalski, and A. Fox. Patch panel: Enabling
control-flow interoperability in ubicomp environments. In
PerCom 2004, 2004.

[2] M. Beigl, H. W. Gellersen, and A. Schmidt. Media cups:
Experience with design and use of computer augmented
everyday objects. Computer Networks, special Issue on
Pervasive Computing, 35-4:401–409, 2001.

[3] A. K. Dey, G. Abowd, and D. Salber. A conceptual framework
and a toolkit for supporting the rapid prototyping of context-
aware applications. Human-Computer Interaction, 16(2-
4):97–166, 2001.

[4] W. K. Edwards, M. Newman, J. Sedivy, T. Smith, and S. Izadi.
Challenge: recombinant computing and the speakeasy ap-
proach. In th ACM MobiCom, 2002.

[5] R. Englander. Developing Java Beans. O’Reilly and Asso-
ciates, 1997.

[6] O. M. Group. Common object request broker architecture.

[7] D. Iseminger. Com+ Developer’s Reference. Microsoft Press,
2000.

[8] B. Johanson, A. Fox, and T. Winograd. The interactive
workspaces project: experiences with ubiquitous computing
rooms. IEEE Pervasive Computing, 1-2, 2002.

[9] F. Kawsar, K. Fujinami, and T. Nakajima. Deploy sponta-
neously: Supporting end-users in building and enhancing a
smart home. In The Tenth International Conference on Ubiq-
uitous Computing (Ubicomp 2008), pages 282–292, 2008.

[10] D. Krieger and R. Adler. The emergence of distributed
component platforms. IEEE Computer Magazine, pages 43–
53, March, 1998.

[11] A. Messer, A. Kunjithapatham, M. Sheshagiri, H. Song,
P. Kumar, P. Nguyen, and K. H. Yi. Interplay: A middleware
for seamless device integration and task orchestration in a
networked home. In IEEE PerCom 2006.

[12] S. Microsystems. Enterprise java beans.

[13] O. G. C. Inc. Sensor Model Language (SensorML) imple-
mentation specification.

[14] T. Rodden and S. Benford. The evolution of buildings and
implications for the design of ubiquitous domestic environ-
ments. In ACM CHI 2003, 2003.

[15] M. Roman, C. K. Hess, R. Cerqueira, A. Ranganathan, R. H.
Campbell, and K. Nahrstedt. Gaia: A middleware infras-
tructure to enable active spaces. IEEE Pervasive Computing,
pages 74–83, 2002.

[16] M. Strohbach, H. W. Gellersen, G. Kortuem, and C. Kray.
Cooperative artefacts: Assessing real world situations with
embedded technology. In Sixth International Conference
on Ubiquitous Computing (Ubicomp 2004), pages 250–267,
2004.

[17] J. Waldo. The jini architecture for network-centric computing.
Communication of the ACM, pages 76–82, July, 1999.


