N

N
N

HAL

open science

From Requirements to Code Revisited
Tewfik Ziadi, Xavier Blanc, Amine Raji

» To cite this version:

Tewfik Ziadi, Xavier Blanc, Amine Raji. From Requirements to Code Revisited.
ternational Symposium on Object-oriented Real-time distributed Computing (ISORC’09), Mar 2009,

Tokyo, Japan. pp.228 - 235, 10.1109/ISORC.2009.29 . hal-00470512

HAL Id: hal-00470512
https://hal.science/hal-00470512
Submitted on 6 Apr 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

12th IEEE In-

https://hal.science/hal-00470512
https://hal.archives-ouvertes.fr

From Requirements to Code Revisited

Tewfik ZIADI, Xavier BLANC
LIP6-University of Paris 6
104, avenue du Président Kennedey
Paris, France
{tewfik.ziadi, xavier.blanc}@lip6.fr

Abstract

In his article entitled "From Play-In Scenarios to Code:
An Achievable Dream'", David Harel presented a develop-
ment schema that makes it possible to go from high-level
user-friendly requirements to a full system model, and from
there to the final implementation.Even if Harel’s schema
represents a real contribution to filing the gap between user
requirements and final implementations, there is few work on
its feasibility and none within UML2. This paper addresses
this lack. First we use UML2 sequence diagrams as a for-
malism for requirement specification. Then an approach that
synthesizes state machines from UML?2 sequence diagrams is
presented. From the obtained state machines, we implement
a transformation to code. The AIBO platform (one of several
types of robotic pets designed and manufactured by Sony)
is used as a case study to illustrate our implementation.

1. Introduction

In his article entitled "From Play-In Scenarios to Code: An
Achievable Dream" [6], David Harel presents a development
schema, illustrated in Figure 1, that makes it possible to go
from the high-level user-friendly requirements to a whole
model of the system, and then to build the final implemen-
tation. The schema distinguishes three levels: Requirements,
System model and Code. Requirements are specified as a
set of scenarios while the system model is modeled by two
views: Structure (like UML class diagrams) and Behavior
(like UML state machines). This schema represents a real
contribution to bridging the gap between user requirements
and code.Harel [6] puts special emphasis on the formalisms
and methodologies needed to achieve this schema. In such
a context, he argues that the following three issues should
be addressed:

e A formalism to specify requirements. Requirements
specify what the user expects from the system. To be
useful in the schema activities, requirements should
be specified using rigorous formalisms. Scenario-based
formalisms (such as UML sequence diagrams) are
the most popular way to specify requirements. They

Amine RAJI
ENSIETA
Brest, France
amine.Raji@ensieta.fr

take their benefits from their nature that makes them
intuitive to the users.

o A methodology for system model synthesis. From the
user requirements, developers need a methodology to
synthesize in a rigorous way the system model. This
synthesis allows to keep traceability between require-
ments and the system model. Harel [6] argues that the
main difficulty concerns the synthesis of the behavioral
aspect of the system model (he assumed that the
structure has been already determined).

o A methodology for code generation. Once the model
system has been synthesized, the last point towards the
final implementation concerns the code generation from
the system model.

Even if this schema represents a real contribution to bridge
gap between user requirements and the final implemen-
tation, there are only two approaches that investigate its
feasibility in the context of UMLI1.x [14], [4]. However to
our knowledge, there is any study regarding UML2. UML2
improves over early versions in many aspects [5]. In par-
ticulary, sequence diagrams have been significantly changed
in UML2. We now have a richer scenario-based formalism
including new concepts, such as interaction operators that
allow composing sequence diagrams to specify complex
requirements. Therefore, we believe that the Harel’s schema
should be revisited within UML2.

This paper contributes to this. Firstly, we use UML2
sequence diagrams (SDs) and their new concepts as a for-
malism for requirement specification. For the second issue,
this paper significantly extends the method from [15] to au-
tomatically synthesize state machines from UML?2 sequence
diagrams. The extensions concern the parallel composition
of behaviors which is not supported in the original method.
The last contribution concerns the code generation from
UML state machines. We propose a generation approach,
based on a well defined semantics that allows the execution
of the state machine. The ideas in the paper have been
implemented in a tool, PLiBS-NG, which is implemented
as a plug-in to the IBM RSA (Rational Software Architect).
The AIBO platform is used throughout the paper as a case
study to illustrate our approach.

The rest of the paper is organized as follows: Section 2
presents the case study and the specification of requirements
using UML interaction. Section 3 illustrates our two stages
towards code generation. Section 4 discuses implementation
and the validation issues. Section 5 presents related work
and Section 6 concludes the paper.

System Model

Figure 1. From Scenarios to Code

Synthesis

Code generation

Requirements
(scenarios)

2. Requirement specification
2.1. Aibo: the Case Study

Throughout this paper we will use the AIBO platform
of Sony ! as a concrete reactive system to illustrate our
approach. AIBO is one of several types of robotic pets
designed and manufactured by Sony. AIBO is a reactive
system that can move, see, hear and speak.

Using specific programming languages, AIBO software
can be developed in order to make AIBO react (move
and speak) when it receives events (hear and see). Many
languages have been recently proposed to develop AIBO
Software. In this paper we consider URBI (Universal Real-
time Behavior Interface) [1] that consists of a scripting
language and an interpreter. The interpreter runs on the robot
and interprets the script transmitted by the programmer.

URBI provides a set of primitives to ask AIBO to perform
basic actions (sit down, stand up, lie down, go forward, turn
left). For example, the URBI robot .stand () primitive
asks AIBO to stand. URBI also provides a set of primitives
to access the AIBO sensors. For example, it is possible to
recover the image observed by AIBO.

2.2. Requirements as UML2 Sequence Diagrams

Following Harel’s schema (cf. Figure 1), requirements are
initially specified to reflect what users expect from the sys-
tem. Then synthesis and code generation activities are used
to obtain an implementation that fulfils user requirements. In
this paper we specify requirements using UML2 sequence
diagrams. Sequence Diagrams (SD) have been significantly
changed in UML2. Notable improvements include the ability
to define what is called combined SD. A Combined SD is a

1. http://support.sony-europe.com/aibo/

sequence diagram that refers to a set of SD and composes
them using a set of interaction operator. The main operators
are: seq, alt, loop, and par. The seq operator specifies
a weak sequence between the behaviors of two SD. The
alt operator defines a choice between a set of SD. The
loop operator specifies an iteration of a SD while the par
operator allows specifying concurrency between SD.

To illustrate our requirement specification, let us consider
an example of a behavior that the user expects from the
AIBO platform. We first describe this behavior in English:

"..Before all, the user asks to initialize the robot. Then
he (or she) sends sitting and standing requests (in this
order). Once the robot is standing, the user will ask AIBO
to walk, to search and track the ball. Walking and searching
are concurrent behaviors. This behavior will be repeated
infinitely.."

This requirement can be specified using UML se-
quence diagrams as illustrated in Figures 2.2 and 2.2.
Figure 2.2 shows three basic Sequence Diagrams (SD) 2:
Initialization, Walking and SearchBall. The
basic SD Initialization describes the interactions
between two instances User (an actor) and anAIBO (in-
stance of the AIBO class). The vertical lines represent
life-lines for the given instances. Interactions between in-
stances are shown as horizontal arrows called messages (like
robot.initial). Each message is defined by two events:
message emission and message reception, which induces an
ordering between emission and reception. Events situated on
the same lifeline are ordered from top to down.

Figure 2.2 shows a combined SD that refers to three basic
SD and composes them using interaction operators. The
combined SD illustrates the use of three operators: seq (to
specify the sequence between Initialization and the
rest), par (to specify that Walking and SearchBall
are concurrent,i.e., they can be executed in any order), and
loop (to specify the iteration of the AIBO behavior). The
behavior specified in the combined SD is equivalent to the
expression Ecgp defined as:

Ecsp = Initialization seq (loop((Walking
par SearchBall))).

Next sections will show how URBI code can be generated
from these requirement specifications.

3. System Model Synthesis

As illustrated in Figure 1, the first activity towards
code generation is to synthesize the system model from
requirements. While requirements specify what users expect
from the system, the model represents the design of the
future system that fulfils theses requirements. In Harel’s

2. A basic SD is a SD without interaction operators. It only shows simple
interactions between instances.

EInitialization

% user:user Q anAIBO:AIBO

1: robot.initial

2: robot,initial

3: robot.site
4: robot site

5: robot stand
6: robot stand

E/|SearchBall

% user:user Q anAIBO:AIBO

1: robot searchBall

2: robot searchBall

3: robot.trackBall

4: robot.trackBal

E Iwalking

% user:user
1: robot walk

2: robot walk

3: robot.stopWalk
4: robot.stopWalk

E anaBO:...

Figure 2. Basic Sequence Diagrams

ElaBomMove

;% useruser Q anAIBD: AIED

Initialization

Walking

SearchBall

Figure 3. A Combined Sequence Diagram

schema, the system model is specified in what is called
XUML [6]. This includes a UML class diagram that specifies
the structure and a set of UML state machines that specify
the behavioral aspect. Each class is associated with a state
machine which describes its full behavior. In this paper, we
use this framework and we also follow Harel’s assumptions
to consider that the structural aspect of the system model is
provided by developers.

Model System Synthesis activity is reduced to state ma-
chine synthesis from requirements. Knowing that require-
ments are specified as UML sequence diagrams(cf. section
2), the first activity towards code generation is, thus, defined
as state machine synthesis from sequence diagrams.

One of the authors of this paper proposed a two-step

synthesis method which is presented in [15]. The inputs of
this method are a set of basic sequence diagrams (BSD) and
one combined sequence diagram (CSD). From these inputs a
state machine for each instance that participates in the CSD
is synthesized.

The original method only supports three UML?2 interac-
tion operators: seq, alt, and loop. Limiting the frame-
work to only these three operators without considering
the parallel composition weakens the method for reactive
systems (such as AIBO) for which the parallel execution
of behaviors is a primary characteristic. The combined
SD of Figure 2.2, illustrates this need; we used the par
interaction operator to specify that the walking and searching
are concurrent.

In this section we propose to extend the original frame-
work to support the par interaction operator. First, we ex-
tend the definition of a state machine in [15] by introducing
the notion of regions and orthogonal composite states that
are necessary to formalize the parallel composition. Fig-
ure 3.1 shows an example of UML state machine that we will
consider in our work. The Example State Machine of
Figure 3.1 is defined with five simple states (S1, S2, S3, S4
and S5). It also defined with one orthogonal state called CS
with two regions separated with a dashed line. As defined
in the UML standard, the behaviors specified in regions
within an orthogonal state are concurrent. A transition in
a state machine is labeled with e/a. The e part designates
the event that triggers the transition where the a part is
the action that represents an effect of the transition. The
states with the «junctionState» stereotype represent
junction states.i.e. states that are close to the usual notion of
final states in classical automatas and they are introduced to
formalize state machine composition [15].

Formally a UML state machine is defined as follows:
Definition 1: A state machine is a tuple
(SS,CO0S8, sp, E, A, J,0,R, ¢, subregions,w) where:

o S5 is the set of simple states,

e COS is a set of composite orthogonal states,

e Sg: a set of initial states 3,

o ¥} :a set of regions,

o FE: a set of events,

e A: a set of actions,

o J: a set of junction states,

e 0 CSS x FE x Ax SS: a transition relation

e ¢» C SSUGS — R: arelation that links each element to
its container

o subregions C COS x R: a relation that links each
orthogonal state to the contained regions,

e wC SSUCOS USJ — R: a relation that links each
element to its container.

(*Example State Machine

@51 w Bcs

BaL| qunctionstate»

&5z
@s3 |
B
@54 C | «junctionState»
&55
Pl

>

Figure 4. Example of UML state machines

Based on this definition, the next subsections present the
two steps of our synthesis method. The first one generates
state machines from basic SD while the second composes
them with regard to the combined SD.

3.1. Step 1: From basic SD to State machines

The first step is based on an algorithm generating a state
machine depicting the behavior of each object in each basic
SD. We do not detail here the algorithm, which can be found
in [15]. To summarize, it uses projections of basic SD on in-
stance lifelines to generate the state machine. Receptions of
messages in the basic SD become events in the state machine
and emissions become actions. For a transition associated
with a reception of message, the action part will be void,
and for transitions associated with a reception, the event part
will be empty. The generated state machine contains a single
junction state which corresponds to the state reached when
all events located on an instance lifeline have been executed.
Figure 3.1 illustrates the state machines associated with the

3. Initial states represent the states that are initially activated where the
state machine is executed.

anAIBO instance which is synthesized from the three basic
SD of Figure 2.2. anIBO_Initialization for example
is the state machine obtained from the Initialization
basic SD.

(Z* Example State Machine

(ST @ €s
@52 | B3| gunctionstater
Ea53
]
@54 € | wjunctionStates
&5

3 v
3

Figure 5. Example of UML state machines

* anAIBO_Walking * anAIBO_Initialization (= anAIBO_SearchBall

«junctionState»
GIE_20

«junctionStater

«junctionState» e

@E 12

g robot. stopwalk: % robot. trackBall

‘& robot.stand

GEE 19 GE 11 GIE 27

| robot.trackBal
a@ robot. trackBall

robot.stopwall:

| robot.stand
@ robot stopwalk:

@@ robot)stand

GIE 18 GIE_10 @E_26
g robot.wall: Y& robat.sit Y robot. searchBal
= I‘E_l? QE Q9 &E 25
robot. wall: robotsit robot.searchBall
ag robot, wall: a@ robot.sit a@robot searchBal
=] I.E_16 &E B E 74

Y robot.initial

robot.initial
@ robot.initial

Figure 6. State machines for the AIBO object

3.2. Step 2: State machine composition

The second step consists in composing the state machines
generated in the first step to obtain a complete state machine
that corresponds to the combined SD. For this, the original
method [15], proposes an algebraic framework for state
machines. This framework formalizes three state machine
operators: seqs, alts and loops respectively for the
sequencing, alternation, and the iteration of state machine.
Then the method uses a correspondence between these
operators and interaction operators to obtain the complete
state machine. Extending the method to support the
par interaction operator in combined SD, means a need
to formalize a new state machine operator (noted parg
hereafter) allowing a parallel composition of state machines.
In what follows, we formalize this new operator using the
notion of composite orthogonal states (cf. definition 1).

Parallel composition (par;). The parallel composition
of two state machines SM1 and SM2 produces a new state
machine with a new composite orthogonal state with two
regions. We put in each region all the elements (states and
transitions) associated with each state machine operand.

Let SM1 = <SSl7 COSy, S(IJ, FEq, Al, Ji, o1, R, o1,
subregionsy, w1) and SM?2 =
<SSQ, COSQ, S(QJ, EQ, AQ, JQ, (52, %2, ¢2, subregiomsz, w2>
be two state machines. The par, is defined as follows:

Definition 2: The resulting state machine
of a parallel composition of SM1 and
SM2 is a state machine SM1 par;SM2 =

(SS,C0S8, s, E, A, J,0,R, ¢, subregions,w),

e S0 = sy Us3: the initial state of SM1 parsSM?2 is the
union of those in the two operands.

e SS=55U8855A=A1UAy; E = E1UFs : simple
states, actions and events are the union of those in the
two operands.

e 0 C SxExAxS 61 U do : transitions of
SM1 pars;SM?2 is the union of those of the two
operands.

e J =JyUJs : junction states of SM1 par;SM?2 is the
union of those in the two operands.

o The result state machine contains a new composite
orthogonal state os with two regions 71 and 2. COS =
COS; U COS; U {osh; R = R U Ry U {rl,r2}
and subregions = subregions; U subregionss U
{(0s,r1), (0s,72)}.

« the new region 71 contains all elements of SM1, and 72
contains those of SM2. i.e. w = w! Uw? U {(el,71) €
SS1UCOS1 U x {7’1} U {(62, 7"2) € SS,uC0S,uU
(52 X {T‘Q},

Using state machines operators (seqs, altg, loops, and
paryg), state machine composition in this second step is

where:

based on a correspondence between interaction operators and
state machine operators. This composition is realized by the
construction of an expression for state machines from the
expression associated with the combined SD.

To illustrate this construction, let us consider the ex-
pression Ecgp (cf. section 2) associated with the CSD of
Figure 2.2. The expression for state machine is obtained by
replacing the Ecgp seq, alt, and par respectively by
state machine operators seqs, altg, and par,, and each
reference to a SD by the state machine obtained in the Step
1. The obtained expression for state machine is Eg,, defined
as follows:

Esy = anAIBO_Initialization seqs (loops
(anAIBO_Walking parg anAIBO_SearchBall)).

The application of operators: seqs, loops 4, and par,
allows obtaining a complete state machine that specifies the
full behavior of the instance throughout the combined SD.
The obtained one from the E_SM expression is illustrated
in the Figure 3.2. It shows the behavior of the anAIBO
instance throughout the different state machines of the Step
1. The behavior specified in this state machine between the
initial state and the E_11 state concerns the state machine
anAIBO_Initialization. The obtained state machine
also contains an orthogonal state called OS with two con-
current regions that corresponds to the parallel composition
of anATIBO_Walking and anAIBO_SearchBall.

4. Code Generation

In the previous section, we illustrated the translation
from scenarios to state machines. The last stage in Harel’s
schema is to generate executable code from the obtained
state machine. In our context, this generation would be
shown as a transformation from UML state machines to
URBI code. Defining this transformation means a need to
implement on URBI an appropriate semantics for UML state
machines, including mechanisms for event management and
concurrency processing. To avoid such need, we decided
to delegate the state machine semantic management to
an existing framework. Therefore our transformation can
be formalized as a mapping between our state machines
and the reused framework concepts. We have chosen the
PauWare [2] framework which is a Java API providing
means to define an UML2 state machine,.i.e, defining its
states (including composite orthogonal states), events, ac-
tions, and transitions. PauWare then implements run-to-
completion semantics as defined in [10] to execute UML2
state machines.

The principles of our approach for code generation is
illustrated in the Figure 8. First we generate the PauWare
code corresponding to the complete state machine obtained

4. The complete formalization of seqgs and Loops can be found in [15]

(* AIBO_State_Machine

WE6

wjunctionStates
Bos

G@RE_ 16

&E_19
T robot.stopwalk:
\U!th:\nit\a\ robot, wall: robot.stopwall:
@ robot.initial a@robot. walk: aw robot.stopWall
@E_7 Ygrobot.walk @E_18
@E_17
”
% robot initial
-
E 8
@E 11

- ! Ggyrobot stand SOE 24 7

robot.sit - rohot. t3c Bal
@ robot.sit @ robot.trackBall a3 robot, trackBal

robot.stand
robot.searchBall
SES ®fobot.stand 4@ robot.searchBall
. @E %6
%% robot.searchBall =
@E 10 &E 25
‘garobot. sit

Figure 7. The complete state machine for the AIBO object

in the previous section. This allows executing our state
machine following the PauWare semantics (cf. Part 1 in
the Figure 8). Then URBI primitives specified in the state
machines are sent to the robot to be executed (cf. Part 2 and
3 in the Figure 8). Finally the robot can send notification
about executed actions and environment events to continue
the execution of the PauWare state machine (cf. Part 4 in
the Figure 8).

We implemented this generation as Model-to-text trans-
formation. This includes a transformation from UML state
machine to PauWare java code. Such code consists in
declaring states, events, actions and setting up transition of
the state machines according to the PauWare syntax.

Below a portion of the PauWare java code generated
from the state machine of the Figure 3.2 contains the
definition of all states in the state machine.

public class AIBO_State_Machine extends
Timer_monitor {
static public UClient c¢ = new UClient;
/+x UML states =*/

protected AbstractStatechart _E_6, _E_7,
E 8, _E_9;

protected AbstractStatechart _E_16, _E_17,
_E_18, _E_19;

protected AbstractStatechart
_E_26, _E_27;

_E_24, _E_25,

Following the PauWare syntax, the instantiation of states

and their mutual linking have to occur within a dedicated
method named init_behavior (see below). To link
states, the PauWare API proposes two principal methods:
xor (an exclusiveness relationship) and and (orthogonality
operator). The code below shows the a portion of the
init_ behavior method associated with the AIBO state
machine. The operator xor is used to link states within a
same region, while the and operator is used to instantiate
the OS orthogonal state.

/*+ INIT_BEHAVIOR methodx/
protected void init_behavior ()

throws Statechart_exception ({
// mutual linking through exclusiveness
Al = (_E_ l6.x0or(_E_17).x0or(_E_18).

xor (_E_19)) .name ("_A1");
A2 = (_E_24.xor (_E_25) .x0or(_E_26) .

xor (_E_27)) .name ("_A2");

//mutual linking through orthogonality
_0S = _Al.and(_A2) .name ("_OS");
}

Then for each entry action in the state machine, a
corresponding method is created in the PauWare java class.
The method robot_initial below concerns the action
robot.initial in the state machine. It contains URBI
primitives that will be sent to the robot using an existing
communication protocol called UrbiLib (cf. the UClient
class). In the same, communication between the robot and

the PauWare state machine is also performed using UrbiLib.

/*% UML actions =*/
public void robot_initial() {
c.send("robot_initial:robot.initial;");
c.setCallback (robot_initial,
"robot_initial");

1- Pauiare auto-
maton execution
2 = sending commands

using UrbiLib API
. 4
~Robot.Stand() 3- execution
] o
& . — - [—
/. atecharts N - ”

/"‘\‘_ Robot. Stand()

EidofStand()

(e |e

-’
YRk
\
4' recept robot o
notifications to fire e = L Y

transitions

Figure 8. Code generation principals

5. Discussion
5.1. Implementation

The complete chain for code generation, presented in
Section 3, and 4 has been implemented in a tool, PLiBS-NG,
which is implemented as a plug-in to the IBM RSA (Rational
Software Architect). More information about PLIBS-NG
can be found in °. Our implementation is materialized
by a succession of two main model transformations: State
machines synthesis from UML2 sequence diagrams (as a
Model-to-Model transformation) and a PauWare code gen-
eration from the obtained state machines (as a Model-to-Text
transformation) We used the PLIBS-NG on the requirement
presented in this paper and on ten others requirements.
The execution of the generated PauWare code allows the
execution of the synthesized state machine. Therefore the
URBI primitives are sent to the robot, thanks to UrbiLib
communication protocol, to be executed. In addition to
AIBO, we validated our approach on the well-known ATM
example. This includes eight sequence diagrams.

5.2. Discussion of the Approach

Limitations. The approach presented in this paper is
completely integrated with UML2. However it has some lim-
its concerning the used method for system model synthesis

5. http://pagesperso-systeme.lip6.fr/Tewfik.Ziadi/plibs/PLIBS.html

(cf. Section 3). The first one concerns values of parameters
in sequence diagrams. Thus, it is necessary in some cases to
specify the values of some parameters in messages within
a sequence diagrams. For example, the AIBO primitive
robot .walk allows specifying the distance as a parameter.
The used synthesis method does not support the use of pa-
rameters and by consequence our code generation approach.
The second limit concerns the use of guards associated with
messages which is not yet supported in our approach.

As presented in the section 4, our code generation is based
on the state machine semantics of PauWare. This semantics
is close to the semantics proposed in UML2 [10]. However it
does not supports the semantic variation points defined in the
standard. Our next investigation will concern this aspect by
integrating existing framework on state machine semantics,
such as [3].

The dream: is it achieved? . Within UML2 and
applied on the AIBO platform, the dream is achieved. We
started from requirements specified as sequence diagrams
and we generated a code which execution on AIBO fulfils
requirements. Thus, the robot executes exactly behaviors
specified in the sequence diagrams. However, we believe
that this generation is achieved because AIBO is a reactive
system. Indeed AIBO, or URBI precisely, provides a set of
primitives (e.g.; robot . stand) that allows controlling the
robot. Therefore, the generated code is only a control code
which relates the AIBO actions to the events received from
its environment.

How this development schema can be used?. As
mentioned by Harel [6], we always need to develop system
incrementally (with various cycles). Thus, the proposed
development schema can be used for rapid prototyping and
not for a direct bridge between requirements and code. De-
velopers generate a first implementation from requirements
which can be continually refined and extended after. In this
paper, we only focused a subpart of the whole development
cycle, that is code generation. We do not investigate issues
concerning the code to requirement relationship and the
verification between code and requirements after several
iterations [6].

6. Related work

Even if the Harel’s schema(cf. Figure 1) represents a
real effort to bridge the gap between user requirements and
final implementation, to our knowledge, there is no study
on its feasibility within UML2. There are only few work
regarding UML1.x. Within NASA Ames,Whittle et al. [14]
applied the synthesis method defined in [12] to generate
state machines from UMLI1.x sequence diagrams. Then,
the authors used Rational Software RealTime to generate a
C++ code from the obtained state machines. The conclusion
of authors showed that the results are very interesting in
the context of the Air Traffic Control case study. This

approach was proposed before the standardization of the
UML2. Therefore, it does not supports interaction operators
and it only concerns basic sequence diagrams. Note that
the Whittle’s state machine synthesis has been extended to
UML2 in a recent paper [13]. However to our knowledge,
there is no validation of the new synthesis method from the
perspective of code generation.

ElKoutbi et al. [4] presents a similar approach for proto-
typing User Interface. This approach is based on a method
which synthesizes stat machines from UMLI.x collaboration
diagrams. Then the approach generates user interfaces from
the obtained state machines. As Whittle et al. ’s, this
approach does not supports UML?2 interaction operators. Two
existing works [8], [11] deal with code generation from
scenarios but without using state machines. Code is directly
generated from scenarios by means of a set of transfor-
mation rules. We believe that code generation throughout
state machine synthesis is more useful because it gives to
developers a system model which can be refined and studied
and used for other activities such as verification or testing.
In this paper we chose the PauWare framework to execute
our state machines. However there are other works on code
generation from state machines that can used. The last one
is the Chauval et al’s work [3] which presents a complete
approach with variation point management. Another aspect
related to this paper is the "state machine synthesis from
scenarios" domain. This domain have received a lot attention
in recent years. Liang et al. [9] presents a nice comparative
survey on all existing works. Finally, note that the Harel et
al. [7] proposed in last years the Play-In/Play-out approach
as an extension of the development schema studied in this
paper. In this new new approach, Harel et al. uses LSC
(Live Sequence Charts) as a formalism for requirement
specification. Also, Harel et al. tended to focus less on
synthesizing state machines and more on executing the
scenarios directly . As Harel et al. mentioned [7] (pages.
24), the Play-In/Play-out can be used conjointly with the
schema considered in this paper.

7. Conclusion

The paper studied the feasibility to go from high-level
user-friendly requirements to final implementation in the
context of UML2. We used UML2 sequence diagrams to
specify requirements. Then a previous work on state machine
synthesis have bee extended and integrated. Finally a code
generation approach is proposed to complete the chain.
The application of this work on the AIBO platform given
interesting results and concludes that the Harel’s dream can
be achieved using UML2. Thanks to the richer scenario
language (UML2 Sequence Diagrams) including in UML2.
However, we believe that the code generation is achieved
because AIBO is a reactive system . Also, we believe that
the generated code is only a control code which relates the

AIBO actions to the events received from its environment.
The ideas in the paper have been implemented in a tool,
PLiBS-NG, which is implemented as a plug-in to the IBM
RSA (Rational Software Architect).

Future work will investigate the validation of the approach
on other case studies, such as [14].We also plan to consider
other advanced concepts in UML2 SDs, such as values of
parameters in messages.

References

[1] Jean-Christophe Baillie. Universal programming interfaces
for robotic devices. In sOc-EUSAI ’05, pages 75-80, New
York, NY, USA, 2005. ACM.

[2] Franck Barbier. Pauware users’guide. Technical Report ver.
1.1, PuaWare Research Group, UPPP, Pau, 04 2008.

[3] Franck Chauvel and Jean-Marc Jézéquel. Code generation
from UML models with semantic variation points. In Proc.
of MODELS/UML’2005, volume 3713 of LNCS, pages —,
Montego Bay, Jamaica, October 2005. Springer.

[4] M. Elkoutbi, I. Khriss, and R.K. Keller. Automated prototyp-
ing of user interfaces based on UML scenarios. Automated
Software Engineering, 13(1):5-40, January 2006.

[5] Robert B. France, Sudipto Ghosh, Trung Dinh-Trong, and
Arnor Solberg. Model-driven development using uml 2.0:
Promises and pitfalls. Computer, 39(2):59-66, 2006.

[6] D. Harel. From play-in scenarios to code: An achievable
dream. IEEE Computer, 34(1):53-60, January 2001.

[7] D. Harel and R. Marelly. Come, Let’s Play. Springer, 2003.

[8] Sang-Uk Jeon, Jang-Eui Hong, and Doo-Hwan Bae.
Interaction-based behavior modeling of embedded software
using uml 2.0. In Proc. IEEE ISORC’06. IEEE Computer
Society, 2006.

[9] Hongzhi Liang, Juergen Dingel, and Zinovy Diskin. A
comgarative survey of scenario-based to state-based model
nthesis a[}groaehes. In Proc. of SCESM 06, pages 5-12,

ew York, NY, USA, 2006. ACM Press.

[10] Object Manaﬁgement Group OMG. Unified Modeling Lan-
ﬁuage Sfpeci cation version 2.1: Superstructure. Technical
eport formal/2007-02-03, OMG, February 2007.

[11] Mathlf{payas Thongmak and Pornsiri Muenchaisri. Design of
rules for transforming uml sequence diagrams into java code.
In Proc. IEEE ASPEC’02, page 485, Los Alamitos, CA, USA,
2002. IEEE Computer Society.

[12] J. Whittle and J. Schumann. Generating statechart designs
from scenarios. In Proc. of ICSE 00, pages 314-323, New
York, NY, USA, 2000. ACM Press.

[13] Jon Whittle and Praveen K. Jayaraman. Generating hierarchi-
cal state machines from use case charts. In (RE’06), pages
19-28. IEEE CS, 2006.

[14] Jon Whittle and Richard Kwan nd Jyoti Saboo. From
scenarios to code: An air traffic control case study. Software
and Systems Modeling, 4(1):73-93, Fev 2005.

[15] T. Ziadi, L. Hélouét, and J-M. Jézéquel. Revisiting statechart
synthesis with an algebraic approach. In Proc. of ICSE
'04, pages 242-251, Washington, DC, USA, 2004. IEEE
Computer Society.

