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Abstract—To avoid data cache trashing between heap-
allocated data and other data areas, a distinct object cache
has been proposed for embedded real-time Java processors.
This object cache uses high associativity in order to statically
track different object pointers for worst-case execution-time
analysis. However, before implementing such an object cache,
an empirical analysis of different organization forms is needed.
We use a cross-profiling technique based on aspect-oriented
programming in order to evaluate different object cache orga-
nizations with standard Java benchmarks. From the evaluation
we conclude that field access exhibits some temporal locality,
but almost no spatial locality. Therefore, filling long cache lines
on a miss just introduces a high miss penalty without increasing
the hit rate enough to make up for the increased miss penalty.
For an object cache, it is more efficient to fill individual words
within the cache line on a miss.

Keywords-cache organizations; embedded Java processors;
cache architecture evaluation

I. INTRODUCTION

Real-time systems need to be time-predictable. The worst-
case execution time (WCET) needs to be known for the
schedulability analysis. As execution time measurement is
not a safe estimation of the WCET, program and execution
platform need to be analyzed statically [20].

Data cache hits and misses are hard to predict statically.
The caching of different data areas (e.g., constants, stack,
heap) in the same cache is the main obstacle to a tight
analysis. In [13] the authors suggest to split the cache for
different data areas. For caching of constants, static data, and
stack frames, a standard cache organization is analyzable.

However, the analysis of caches for heap-allocated objects
is challenging. The addresses of the objects, which is the
input for standard cache analysis, are only known at runtime.
As a solution to this issue, an object cache with high
associativity has been proposed [14]. The cache content is
tracked with symbolic addresses, employing a least-recently
used or first-in first-out replacement policy. Evaluating the
best tradeoff between hardware resources for the object
cache and low miss cycles per field access is the topic of
this paper. The cache organization is evaluated with standard
Java benchmarks and compared with a direct mapped cache.

We base our evaluation on the Java processor JOP [12]
and the chip-multiprocessor (CMP) version of it [10]. JOP
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is an implementation of the Java Virtual Machine (JVM)
in hardware. The JVM bytecodes represent the instruction
set of JOP. JOP has been designed to be time-predictable
to enable WCET analysis [16]. In the original design, only
instructions and stack data are cached. Heap-allocated data
is not cached at all. However, when building CMP systems,
the pressure on the memory bandwidth increases. To achieve
scalability of embedded CMP systems, caching of constants,
static data, and heap allocated data has been added to JOP.

The evaluation of cache organizations presented in this
paper is based on a new cross-profiling technique using
aspect-oriented programming (AOP) [8]. Thanks to cross-
profiling [1], it is possible to rapidly evaluate architectural
changes with large benchmark suites.

In [6] we have evaluated different organizations of the
object cache with a WCET analysis approach. As only quite
simple programs are WCET analyzable, we could not verify
how the object cache scales for larger workloads. With cross-
profiling, as presented in this paper, we are able to evaluate
the object cache with large Java benchmarks.

In this paper we evaluate cache solutions for heap al-
located objects to enable independent WCET analysis of
data caches. The evaluation shows that access to object
fields exhibit some temporal locality, but almost no spatial
locality. Therefore, only small object caches are needed to
enable the analyzable split cache design. The proposed fully
associative object cache, which enables WCET analysis of
access to heap allocated objects, performs just slightly worse
than a direct mapped cache for objects, which is practically
not analyzable for heap allocated objects. We show that
time-predictable computer architecture can provide signif-
icant performance improvement without defeating WCET
analysis.

This paper is structured as follows. In Section II we
discuss related work and Section III describes the object
cache organization. AOP-based cross-profiling for the object
cache is described in Section IV. The methodology to
retrieve hit rates and miss penalties is given in Section V.
Results for a direct mapped and a fully associative object
cache are presented in Section VI. The paper is concluded
in Section VII.



II. RELATED WORK

In this section, we discuss related work in the area
of object caches, cache optimization, cross-profiling, and
aspect-oriented programming.

A. Object Cache

One of the first proposals of an object cache [21] appeared
within the Mushroom project [22]. The Mushroom project
investigated hardware support for Smalltalk-like object ori-
ented systems. The cache is indexed by a combination of the
object identifier and the field offset. Different combinations,
including xoring of the two fields, are explored to optimize
the hit rate. Considering only the hit rate caches with a block
size of 32 and 64 bytes perform best. However, under the
assumption of realistic miss penalties caches with 16 and
32 bytes lines size result in lower average access times per
field access. This result is a strong argument against just
comparing hit rates.

A dedicated cache for heap allocated data is proposed
in [17]. Similar to our proposed object cache, the object
layout is handle based. The object reference with the field
index is used to address the cache. Cache configurations
are evaluated with a simulation in a Java interpreter. For
different cache configurations (up to 32 KB) average case
field access times between 1.5 and 5 cycles are reported.
For most benchmarks the optimal block size was found
to be 64 bytes. The proposed object cache is also used
to cache arrays, whereas our object cache is intended for
normal objects only. Therefore, the array accesses favor
a larger block size to benefit from spatial locality. Object
access and array access are quite different from the WCET
analysis point of view. The field index for an object access
is statically known, whereas the array index usually depends
on a loop iteration.

Wright et al. propose a cache that can be used as object
cache and as conventional data cache [23]. To support the
object cache mode the instruction set is extended with a few
object oriented instructions such as load and store of object
fields. The object layout is handle based and the cache line is
addressed with a combination of the object reference (called
object id) and part of the offset within the object. The main
motivation of the object cache mode is in-cache garbage
collection of the youngest generation.

All proposed object caches are optimized for average case
performance. It is common to use a hash function by xoring
part of the object identifier with the field offset in order to
equally distribute object within the cache. However, this hash
function defeats WCET analysis of the cache content. In
contrast, our proposed object cache is designed to maximize
the ability to track the cache state in the WCET analysis [6].

B. Cache Evaluation

In [19] compile-time analysis is used to reduce the sim-
ulation time of an instruction cache. The cache simulation

is linked into the benchmark executable to avoid generating
long traces. Knowledge of basic blocks is used to reduce the
number of invocations of the cache simulator.

Kroupis and Soudris present a instruction cache estimation
based on program analysis [9]. Their assumption is that the
program structure is the same at the high-level (C) and low-
level (assembler). Similar to WCET analysis they build a
control flow graph and analyze loops for the cache access
pattern.

Janapsatya et. al argue that for embedded systems that
are designed to run a single application the cache shall
be optimized, with respect for energy consumption, for
this application [7]. In their cache simulation tool they
simultaneous evaluate different cache configurations.

Ghosh and Givargis present an analytical approach to
cache optimization for embedded systems [4]. The presented
algorithm takes a trace and the desired cache misses as input
and outputs cache configurations that meet the constraints.

C. Cross-Profiling and Aspect-Oriented Programming

Most related work on cross-profiling aims at estimating
the execution time of a program on a given target, while
executing that program on a host. For example, cross-
profiling techniques have been used to simulate parallel
computers [2]. As the host processor may have a different
instruction set than the target processor, cross-profiling tries
to match up the basic blocks on the host and on the target
machines, changing the estimates on the host to reflect the
simulated target.

Many researchers have identified cross-cutting concerns
in hardware design that can be modularized with aspects.
Kiczales’ original paper on AOP [8] discusses aspect-
oriented approaches in hardware design. The Ptolemy
project [3] studies modeling, simulation, and design of
concurrent, real-time, embedded systems, focusing on the
assembly of concurrent components. Interactions between
heterogeneous components in Ptolemy are handled with
concepts that are similar to aspects.

III. THE OBJECT CACHE

In a modern object-oriented language, data is usually
allocated on the heap. The addresses for the objects are
only known at runtime. It is possible to analyze local cache
effects with unknown addresses for a set-associative cache.
For an n-way set associative cache the history for n different
addresses can be tracked symbolically [13]. As the concrete
addresses are unknown, a single access influences all sets in
the cache. The analysis reduces the effective cache size to a
single set.

We propose to implement the cache architecture exactly
as it results from this analysis — a small, fully associative
cache. The emphasis of the object cache is on associativity
instead of capacity.



The object cache is organized to cache a whole object per
cache line. Each cache line can only contain a single object.
Objects cannot cross cache lines. If the object is larger than
the cache line, the fields at higher indexes are not cached.
While this might sound like a drastic restriction, it is the
only way to keep the cache contents WCET analyzable for
data with statically unknown addresses. In the evaluation
section, we will show that this design is still efficient.

On standard caches, on a miss a full cache line is filled.
However, with the proposed caching of a complete object
in a line, the line size might become longer than typical.
Therefore, it is also an option to fill only part of the line
(e.g., single fields) on a miss. In the evaluation section we
compare both configurations. For the fill of individual fields
one valid bit per field, instead one per cache line, is needed.
This extension increases the hardware for the tag memory
as the valid bit is included in the tag memory. For single
cycle hit detection, the tag memory and the valid bits need
to be implemented in dedicated registers. The data memory
itself can use on-chip memory as one cycle read latency can
be tolerated on the cache data itself.

Furthermore, the cache organization is optimized for the
object layout of JOP. The objects are accessed via an indirec-
tion called the handle. This indirection simplifies compaction
during garbage collection. The tag memory contains the
pointer to the handle (the Java reference) instead of the
effective address of the object in the memory. If the access is
a hit, additional to the field access the cost for the indirection
is zero — the address translation has already been performed.
The effective address of an object can only be changed by
the garbage collection. For a coherent view of the object
graph between the mutator and the garbage collector, the
handle cache needs to be updated or invalidated after the
move. The object fields can stay in the cache.

To enable static WCET analysis the cache is organized
as write-through cache. A write-back organization leads to
conservative WCET estimates as on each possible read miss
another write back needs to be accounted for in the analysis.

On CMPs shared data need to be hold coherent and
consistent between the core local caches and main memory.
Standard cache coherence and consistence protocols are
expensive to implement and limit the number of cores in a
multiprocessor system. The Java Memory Model (JMM) [5]
allows for a simple form of cache coherence protocol [11].
With a write-through cache, the cache can be held consistent,
according to the rules of the JMM, by invalidating the cache
on the start of a synchronized block (bytecode monitorenter),
when invoking a synchronized method, and when reading
from a volatile variable.

In the evaluation we assume that the cache line is not
allocated on a write. The object cache is only used for
objects and not for arrays. The access behavior for array
data is quite different as it explores spatial locality instead
of temporal locality. Therefore, a cache organized as two

prefetch buffers is more adequate for array data. The details
of a time-predictable cache organization for array data is not
considered in this paper.

More details of a concrete implementation of the object
cache can be found in a complementary paper [14].

IV. AOP-BASED CROSS-PROFILING

Cross-profiling is a form of dynamic program analysis,
where a program is executed in a host environment in order
to gather dynamic metrics for a target environment [1]. That
is, cross-profiling simulates relevant activities of an embed-
ded target while executing programs on a host. In our case,
the host is any state-of-the-art JVM running on a standard
machine for software development, whereas the target is an
embedded Java processor, such as JOP. With cross-profiling,
programs are instrumented in order to compute dynamic
metrics that represent an execution of the program (with the
same input data) on the target. In our case, the host and the
target have the same instruction set (i.e., JVM bytecodes).

One benefit of cross-profiling is the ability to execute
large workloads on the host, which could not execute on the
embedded target because of resource constraints. In the case
of Java, there is a large variety of standard benchmark suites,
such as DaCapo.! On an embedded Java processor, such as
JOP, none of these benchmarks could be executed, since
these benchmarks have considerable memory footprints. In
addition, they all require a file system, which is often not
available in embedded systems. Furthermore, cross-profiling
allows to investigate many different cache configurations
with moderate effort. With cross-profiling, we can leverage
all available Java benchmarks in order to gather more data
than would be possible on the embedded target processor.

Although the large benchmarks cannot be executed on
current embedded systems, we are confident that they repre-
sent typical object oriented workloads that are representative
for object oriented applications on future embedded systems.
As there is currently a lack of (good) standard benchmarks
tailored for embedded Java systems, the ability to use
standard Java benchmark suites is an important advantage.
Furthermore, in previous work we confirmed high accuracy
of our cross-profiling technique with workloads that could
be executed on the embedded target [1].

In prior work [1], we promoted cross-profiling as an
effective method for evaluating the impact of processor
design alternatives on performance, focusing on embedded
Java processors and on optimizations of the instruction
pipeline and of instruction caches. In contrast to our prior
work, which was based on low-level code instrumentation
techniques, the results presented in this paper were obtained
with aspect-oriented programing (AOP) [8]. An aspect for
cross-profiling is easier to define, tune, and extend, com-
pared with a functionally equivalent implementation using
low-level code instrumentation tools.

Uhttp://dacapobench.org/



The advantage of using AOP for dynamic program anal-
ysis stems from the convenient high-level programming
model offered by join points (representing specific points
in the execution of a program), pointcuts (denoting a set
of join points of interest), and advices (the analysis code
to be executed when the control flow in the base program
reaches a join point of interest). Our cross-profiling aspect
has pointcuts to intercept object allocation, field access
(read from and write to instance fields and static fields),
and lock acquisition respectively lock release. The concrete
implementation of our AOP-based cross-profiler is presented
in an accompanying technical report [15].

For cache simulation, the object addresses, the object size,
and the offsets for the individual fields within the object
need to be known. Our cross-profiling aspect calculates
the object address and size at object creation and uses
reflection to extract the field offset. As the use of reflection
to explore the fields of a type (include the supertypes’ fields)
is computationally expensive, it is done only once for each
type, and the information regarding position and size are
kept in a hash table. All data structures used by our object
cache simulators are thread-safe, since we are analyzing also
multi-threaded workloads.

The results presented in this paper were obtained with
MAJOR [18], a Java-based AOP framework that guarantees
that all bytecodes executed in the base program (including
bytecodes in the Java class library) can be analyzed by the
cross-profiling aspect at runtime.

V. EVALUATION METHODOLOGY

For the evaluation of the object cache we consider sev-
eral different system configurations. The main memory is
varied between a fast SRAM memory and a higher latency
SDRAM. We consider single-core and CMP systems. The
difference between a full cache coherence protocol and the
simplified version with a cache flush are compared. Finally,
we explore the difference between single word and full cache
line loads on a cache miss.

A. Benchmark Complexity

For the evaluation of different object cache organizations
we use the DaCapo benchmark suite. To keep the execution
time of the benchmarks with the cache simulation reason-
able, we execute DaCapo with the small workload. As we are
not benchmarking the JVM or a garbage collection imple-
mentation, this workload is large enough for our purpose.
Table I shows some runtime statistics of the benchmarks
with the small workload: the number of different object types
encountered, number of allocated objects (bytecode new),
allocated memory (not including arrays), and the number of
object field reads (bytecode getfield).

Several hundred different object types, 90 thousand to 2
million allocated objects, and 3 to 180 million field reads

Table I
OBJECT ORIENTED RUNTIME BEHAVIOR OF THE DACAPO BENCHMARKS

Benchmark  Types Objects Memory Field read
antlr 226 89655 3217 KB 10384746
bloat 393 2000113 50820 KB 34478024
chart 645 2003916 57070 KB 71280095
fop 756 153463 5066 KB 2970474
hsqldb 251 246416 7268 KB 5826300
jython 688 1907084 48243 KB 180312830
luindex 230 236261 7493 KB 19665635
lusearch 234 1002858 33233 KB 49167802
xalan 440 838577 36016 KB 91516743
Table 1I

ACCESS TIMES FOR A MEMORY READ OPERATIONS IN CLOCK CYCLES

8 core CMP

burst 1CPU min. avg. max.
SRAM 1 word 2 2 9.5 17
SRAM 2 words 4 4 195 35
SRAM 4 words 8 8 395 71
SDRAM 1 word 12 12 595 107
SDRAM 2 words 14 14 69.5 125
SDRAM 4 words 18 18  89.5 162

represent a workload complex enough for the evaluation of
the object cache.

B. System Configurations

The best cache configuration is dependent on the prop-
erties of the next level in the memory hierarchy. Longer
latencies favor longer cache lines. Therefore, we evaluate
two different memory configuration that are common in
embedded systems: static memory (SRAM) and synchronous
DRAM (SDRAM). For the SRAM configuration we assume
a latency of two cycles for a 32 bit word read access. As
an example of the SDRAM we select the 1S42S16160B, the
memory chip that is used on the Altera DE2-70 FPGA board.
The latency for a read, including the latency in the memory
controller, is assumed to be 10 cycles. The maximum burst
length is 8 locations (a 16 bit words). As the memory
interface is 16 bit, four 32 bit words can be read in 8 clock
cycles. The resulting miss penalty for a single word read
is 12 clock cycles, for a burst of 4 words 18 clock cycles.
For longer cache lines the SDRAM can be used in page
burst mode. With page burst mode, up to a whole page can
be transferred in one burst. For shorter bursts the transfer
has to be explicitly stopped by the memory controller. We
assume the same latency of 10 clock cycles in the page burst
mode.

Furthermore, a single processor configuration and a chip-
multiprocessor (CMP) configuration of 8 processor cores
are compared. The CMP configuration is according to an
implementation of a JOP CMP system on the Altera DE2-70
board. The memory access is arbitrated in TDMA mode with
a minimum slot length s to fulfill a read request according to



the cache line length. For n CPUs the TDMA round is n X s
cycles. The effective access time depends on the phasing
between the access request and the TDMA schedule. In the
best case, the access is requested at the begin of the slot
for the CPU and is ¢,,,;, = s cycles. In the worst case, the
request is issued just in the second cycle of the slot and the
CPU has to wait a full TDMA round till the start of the next
slot:
taz =N Xs—14+s=(n+1)xs—1
The average case access time is
;  tmaz Fltmin _ (RA+1)xs—1+45s
avg — 2 - 2
nm+2)xs—1
2

Table II shows the memory access times for the different
configurations and different burst lengths.

VI. OBJECT CACHE EVALUATION

Two organizations of the object cache, a direct mapped
standard cache and a fully associative object cache, are
evaluated with the DaCapo benchmarks. The direct mapped
cache configuration gives a baseline to which the proposed
object cache can be compared with. We show the hit rates for
all benchmarks and various cache configurations in tabular
form. Due to space limitation only some benchmark results
are shown in the following section. We picked the antlr
benchmark, as it is in the middle field on the hit rate, to
show detailed numbers on variations of the cache and line
sizes and the difference between field and cache line fill on
a miss in the object cache. The complete measurements are
available in an accompanying technical report [15].

A. The Baseline

Table III shows the hit rates of different sized direct
mapped caches for the DaCapo benchmarks. The hit rate is
the number of field accesses that can be served by the cache
divided by the number of accesses. An access that cannot
be served by the cache is called a miss or cache miss. On a
miss, data needs to be fetched from the main memory and
the resulting addition time is called miss penalty.

Even with a very small cache of just 32 bytes there is a
reasonable hit rate around 60%, except for the benchmarks
hsgldb and xalan. The hit rate increases to around 90% for a
cache size of 1/4 KB and for most benchmarks increasing the
cache size above 1 to 2 KB gives less than 1% improvement.
On the other end of the size spectrum, even with a cache of
128 KB, the hit rate does not approach 99%. We conclude
that there is high locality in the small, as the hit rate with
small caches is considerable. There are limits in locality
that render caches bigger than a few KB useless. The table
also shows different line sizes for some cache sizes. Longer
cache lines usually increase the hit rate, except for very small
caches.

Hit rate is only one property of a cache. The other
important property is the penalty that needs to be payed
on a cache miss. Longer cache lines usually result in a
better hit rate, but the time to fill the cache line, the miss
penalty, is higher. For memories with a high latency and
high bandwidth, spatial locality in the access pattern will
favor larger cache lines. If data nearby the actual address is
also fetched, future access to those data will be a hit. This
spatial locality works very well for an instruction cache and
sequential access to arrays. However, access to object fields
is less regular and the optimal line size of the cache will be
different.

In Table IV the miss penalty per field read for different
cache organizations and main memories is shown for the
antlr benchmark. The top half of the table (CC) shows the
results for a cache with standard cache coherency protocol;
the bottom half of the table (Flush) shows the miss penalties
for caches with flush on monitorenter. The lowest miss
penalty is marked bold in the tables. The overall miss penalty
of an application is calculated by multiplying the number of
misses by the average cache load time as give in Table II.
The miss cycles per field read in Table IV is the overall miss
penalty divided by the number of field reads. The result is
the number of (additional) clock cycles per field read.

For a main memory with a low latency (SRAM) an
increase in the cache line length also increases the miss
penalty — there is no latency that can be amortized by
transferring data in burst mode to the cache line. However,
even with the SDRAM memory longer cache lines lead to
higher miss penalties on caches up to 1 KB. The relative
decrease in miss rate is not enough to compensate for the
increase in access time. And a cache line of 16 Bytes even
decreases the hit rate. For a cache of 2 KB the increase in
the line length slightly reduces the miss penalty.

The same trend for SRAM and SDRAM based main
memory is also reflected in the CMP configuration. The
main difference is that the miss penalty is about a factor of
5 higher for a 8 core CMP system than for a uniprocessor
system.

The cache coherence with cache flush on monitorenter
limits the maximum useful size of the cache. For the antlr
benchmark we see a clear limit of the cache size of 2 KB.

B. Variation of the Object Cache

Table V shows the hit rate of different object cache
configurations with the DaCapo benchmark. A full cache
coherence protocol is assumed. The hit rate is slightly less
than with a direct mapped cache.

More interesting is the actual miss penalty per field
access (bytecode getfield). Table VI shows those numbers
for the benchmark antlr. The upper part of the tables shows
the average miss penalty when the cache update is only
performed for single fields. The cache line tracks valid
entries with a valid flag for each word. The bottom half



Table III
DIRECT MAPPED CACHE HIT RATE

Cache Benchmark
Size Line antlr bloat chart fop hsqldb  jython luindex lusearch  xalan
32 B 4B 664% 629% 634% 635% 303% 572% T12% 656% 419 %
32 B 8B 655% 631% 626% 687 % 2713% 47.6% 795% 613% 391 %
32B 16B 679% 576% 631% 707% 2712% 451% 784 % 394 % 30.6 %
256 B 4B 926% T713% 829% 791 % 582% 957% 89.0% 895% 70.5 %
256 B 8B 933% 81.7% 834% 85.6% 548 % 941% 908% 90.0% 726 %
256 B 16 B 891 % 847 % 847% 8.0% 620% 932% 921 % 882% 723 %
1 KB 4B 934 % 825% 88.6% 81.6% T13% 976 % 925% 934 % 828 %
1 KB 8B 941 % 8.5% 83% 8.0% T1.8% 974% 942% 951 % 852 %
1KB 16B 90.1% 88% 903% 920% 77.8% 97.6% 957 % 959 % 86.1 %
2KB 16B 985% 91.7% 926% 926% 827% 983 % 967 % 97.1 % 90.1 %
4KB 16B 986% 93.1% 936% 93.0% 866% 987% 9712% 97.6% 929 %
8KB 16B 987 % 939% 942% 934% 89.6% 990% 97.5% 978 % 948 %
Table IV

DIRECT MAPPED CACHE HIT RATE AND MISS PENALTY FOR THE ANTLR BENCHMARK

Miss cycles per field read

Cache Uniprocessor 8 core CMP
Type Size Line Hitrate SRAM SDRAM SRAM SDRAM
CcC 32B 4B 665 % 0.67 4.02 3.18 19.95
32 B 8B 656 % 1.38 4.82 6.72 23.93
32B 16 B 680 % 2.56 5.76 12.65 28.66
256 B 4B 926 % 0.15 0.88 0.70 4.38
256 B 8B 933 % 0.27 0.94 1.30 4.65
256 B 16 B 89.1 % 0.87 1.96 4.30 9.75
1 KB 4B 934 % 0.13 0.80 0.63 3.94
1 KB 8B 941 % 0.24 0.82 1.15 4.09
1KB 16B 90.1 % 0.80 1.79 3.93 8.90
2 KB 4B 963 % 0.07 0.44 0.35 2.18
2 KB 8B 977 % 0.09 0.32 0.44 1.58
2KB 16B 985 % 0.12 0.27 0.59 1.34
Flush 32 B 4B 636 % 0.73 4.37 3.46 21.67
32 B 8B 0641 % 1.44 5.03 7.01 24.98
32B 16B 663 % 2.70 6.07 13.32 30.17
256 B 4B 808 % 0.38 231 1.83 11.44
256 B 8B 842 % 0.63 222 3.09 11.00
256 B 16 B 825 % 1.40 3.14 6.90 15.63
1 KB 4B 809 % 0.38 2.29 1.81 11.35
1 KB 8B 844 % 0.63 2.19 3.05 10.88
1KB 16B 828 % 1.38 3.10 6.80 15.42
2 KB 4B 825% 0.35 2.10 1.66 10.42
2 KB 8B 86.6% 0.54 1.88 2.62 9.33
2KB 16B 90.1 % 0.79 1.79 3.92 8.88
4KB 16B 90.1 % 0.79 1.78 391 8.86




Table V
OBJECT CACHE HIT RATE

Cache Benchmark
Size Line Assoc. antlr bloat chart fop hsqldb  jython luindex lusearch xalan
64 B 64 B lway 414 % 31.0% 439% 482% 105% 287 % 669 % 220 % 7.1 %
128 B 128 B lway 414% 309% 439% 492% 107 % 289 % 669 % 219 % 5.7 %
256 B 256 B lway 414 % 309% 439% 505% 107 % 289 % 669 % 219 % 5.6 %
128 B 64 B 2way 552% 557 % 595% 637% 198% 453 % T71.8% 731 % 253 %
256 B 128 B 2way 552% 557% 594% 653% 200% 455% T1.6% 1739 % 228 %
512B 256 B 2way 552% 557 % 595% 687 % 200% 455% T7.6% 139 % 2277 %
256 B 64 B 4way 798% 646 % 67.6% 689 % 260% T760% 81.5% 847 % 483 %
512B 128 B 4way 798 % 64.6% 669 % T15% 263 % T62% 819% 85.6% 498 %
1 KB 256B 4way 798% 646 % 67.0% T52% 264 % T62% 81.9% 856% 49.8 %
512 B 64 B 8way 947 % 739% T762% T12% 394% 957 % 846% 888 % 60.2 %
1KB 128 B 8way 948 % T739% T765% T41% 399% 959% 851 % 898 % 63.6%
2KB 256B 8way 948 % 739% 766% 781 % 399% 959 % 851% 898 % 63.6%
4KB 256B 16way 957 % 773% 80.0% 798 % 444% 973% 884 % 923% 729 %
8KB 256B 32way 961% 797% 8710% 812% 491 % 978% 908 % 934% 79.6 %
Table VI
OBJECT CACHE HIT RATE AND MISS PENALTY FOR THE ANTLR BENCHMARK
Miss cycles per field read
Cache Uniprocessor 8 core CMP

Type Size Line Assoc. Hitrate SRAM SDRAM SRAM SDRAM

CC Single 64 B 64 B 1way 414 % 1.17 7.03 5.57 34.86

128 B 128 B 1way 414 % 1.17 7.03 5.57 34.86

256 B 256 B 1way 414 % 1.17 7.03 5.57 34.86

128 B 64 B 2way 552 % 0.90 5.37 4.25 26.63

256 B 128 B 2way 552 % 0.90 5.37 4.25 26.64

512B 256 B 2way 552 % 0.90 5.37 4.25 26.64

256 B 64 B 4 way 798 % 0.40 2.43 1.92 12.03

512B 128 B 4 way 79.8 % 0.40 243 1.92 12.03

1 KB 256B 4 way 798 % 0.40 2.43 1.92 12.03

2KB 256B 8 way 94.8 % 0.11 0.63 0.50 3.13

4KB 256B 16way 957 % 0.09 0.52 0.41 2.56

8KB 256B 32way 96.1 % 0.08 0.47 0.37 2.33

CC Line 64 B 64 B 1 way 68.1 % 10.20 22.96 50.89 66.85

128 B 128 B 1 way 68.1% 20.42 4595 101.96 117.91

256 B 256 B 1 way 68.1 % 40.85 91.91 204.07 220.03

128 B 64 B 2way 83.5% 5.26 11.86 26.29 34.54

256 B 128 B 2way 835% 10.56 23.75 52.70 60.95

512B 256 B 2way 835% 21.11 47.50 10548 113.73

256 B 64 B 4 way 937 % 2.01 4.54 10.09 13.25

512B 128 B 4 way 937 % 4.04 9.08 20.16 23.32

1 KB 256B 4 way 937 % 8.07 18.17 40.34 43.50

2KB 256B 8 way 98.5 % 1.97 443 9.83 10.60

4KB 256B 16 way 98.8 % 1.47 3.31 7.36 7.94

8KB 256B 32way 99.0% 1.29 2.90 6.43 6.93
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Figure 1. Miss penalty in clock cycles for different cache configurations

shows the miss penalty when the whole cache line is filled
on a miss. The hit rate slightly increases due to some spatial
locality. However, the cost for the cache line fill is way to
high, even for the SDRAM configuration. The miss penalty
renders the cache configuration with a complete line fill on
a miss useless.

From the benchmarks results we conclude that with a
single cache set and an associativity between 8 and 16 gives
a reasonable hit rate. To compensate for the few cache lines,
the individual cache lines (which can hold a single object)
are considerable larger than in standard caches. With this
long cache lines a fill of the complete line is impractical.
The miss penalty is simply too high. The low spatial locality
of object accesses even renders line fill with a high latency
memory (SDRAM) on medium sized cache lines useless.
Therefore, the suggested solution is to load individual words
on a cache miss. Additional to the tag memory a valid bit
for each cache word is needed for this configuration.

We have implemented exactly this object cache for the
Java processor JOP [14]. The profiling results guided the
concrete implementation. The number of cache lines and the
number of fields is configurable in the hardware. Individual
words are loaded on a miss.

C. Comparison

Figure 1 shows the miss penalty for all benchmarks for
a few cache configurations and the SRAM based main
memory. The bars labeled DM represent the direct mapped
cache and O$ stands for object cache. As we have seen
that the hit rate does not improve much above 1 and 2 KB
for caching of objects, we have selected 1 and 2 KB
configurations for the overview. The best configuration for

the direct mapped cache and the object cache have been
selected. The direct mapped cache line is 4 bytes (one word).
The object cache is configured with single field update on a
miss, as the former table showed that a full cache line fill is
not beneficial. Both object cache sizes use an associativity
of 8 and the resulting line sizes are 128 and 256 bytes.

The direct mapped cache performs slightly or considerable
better than the object cache. However, the variation between
the different benchmarks is way higher than the difference
between the direct mapped cache and the object cache. The
two sizes of the object cache perform in almost all cases
similar. That means that the bottleneck for the object cache
is on the number of cache lines (the associativity) and not
on the cache size.

Furthermore, it has to be stressed that the direct mapped
caching of objects is not WCET analyzable, but the object
cache is. Therefore, we accept a reduction in the average
case performance to gain on time predictability. The opti-
mization for the worst case is different from the optimization
for the average case.

VII. CONCLUSION

In this paper we have explored different organizations of
an object cache for an embedded Java processor and for
chip-multiprocessor versions of the Java processor. Aspect-
oriented cross-profiling allows collecting cache hit/miss data
for large workloads that are too big to be executed on an
embedded system.

Based on a detailed quantitative evaluation of object cache
organizations, we conclude that access to heap allocated
objects exhibits only minor spatial locality. The major con-
tribution to cache hits comes from temporal locality. Due to



the low spatial locality, it is more beneficial to update single
words in a cache line instead of filling the whole line on a
miss. For the fully associative cache organization, this also
holds for a main memory based on SDRAM devices with
longer latency, but high burst bandwidth.

The proposed fully associative object cache performs
almost as well as a standard cache organization, but is
WCET analyzable. Furthermore, the dedicated cache for
heap allocated objects enables tighter WCET analysis of the
data cache for other data where the addresses are known
statically. The object cache is an example that shows that
time-predictable computer architecture can provide signif-
icant performance improvement without defeating WCET
analysis.
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