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Abstract—The safety-critical Java (SCJ) specification provides
a restricted set of the Java language intended for applications
that require certification. In order to test the specification,
implementations are emerging and the need to evaluate those
implementations in a systematic way is becoming important.

In this paper we evaluate our SCJ implementation which is
based on the Java Optimized Processor JOP and we measure
different performance and timeliness criteria relevant to hard
real-time systems. Our implementation targets Level 0 and Level
1 of the specification and to test it we use a series of micro
benchmarks, an application-based benchmark, and a reduced
set of a SCJ technology compatibility kit. We evaluate the
accuracy of periods, linear-time memory allocation, aperiodic
event handling, dispatch latency for interrupts, context switch
preemption latency, and synchronization.

Index Terms—Real-time systems, Embedded systems, Java,
Safety-critical systems, Safety-critical Java, Java processor

I. INTRODUCTION

The safety-critical Java (SCJ) profile is being developed
under the Java specification request 302 (JSR-302). It provides
a smaller, tightly defined subset of the Java programming
language intended for applications that need to be certified.
SCJ uses a programming model that limits how a developer
can structure an application. SCJ’s programming model is
more restricted in terms of concurrency, memory, synchro-
nization, input and output, clocks and timers, and exception
processing [10]. Three levels of compliance with different
degrees of complexity are defined, namely Level 0 (L0), Level
1 (L1), and Level 2 (L2), L2 being the most complex.

To the best of our knowledge, currently there are only
three implementations of SCJ that target embedded systems:
(1) the oSCJ [12] implementation running on the Open Vir-
tual Machine [2], (2) the Hardware-near Virtual Machine
(HVM) [19] implementation, and (3) the Java Optimized
Processor (JOP) [18] implementation. In addition, many use
cases have been developed in order to either test an imple-
mentation [21] or to evaluate analysis tools [1]. It is therefore
becoming important to evaluate SCJ implementations in a
systematic way in order to measure different performance and
timeliness criteria relevant to hard real-time systems.

In this paper we present an evaluation of our SCJ’s imple-
mentation [18] running on top of the Java optimized processor
(JOP) [15]. We evaluate two main categories: (1) performance

and timeliness and (2) compliance to the SCJ specification. For
the performance and timeliness category we used the miniCDj
benchmark, an application-based benchmark, and we devel-
oped specific benchmarking methodologies were we evaluate
(1) the accuracy of periods (i.e. release jitter), (2) linear-time
memory allocation, (3) aperiodic event handling, (4) dispatch
latency for interrupts, (4) context switch preemption latency,
and (5) synchronization. In the compliance category we test
how good our implementation adheres to the SCJ profile by
using an early work on a technology compatibility kit (TCK)
for SCJ developed at Purdue University. As our test platform
we use an instance of JOP running in a Cyclone II FPGA at
60 MHz.

The remainder of this paper is organized as follows: Sec-
tion II provides background on safety-critical Java. Section III
presents work related to test and evaluation of embedded real-
time and safety-critical Java implementations. Section IV pro-
vides a summary of our SCJ implementation [18]. Sections V
and VI present the details and results of our evaluation. We
conclude in Section VII.

II. SAFETY-CRITICAL JAVA

SCJ’s programming model is based on the execution of mis-
sions. Missions encapsulate modes of operation and separate
the execution of time-critical from non time-critical operations.
They consist of a bounded set of registered managed schedu-
lable objects (MSO) executed either as a cyclic executive (L0)
or under the control of a fixed-priority preemptive scheduler
(L1, L2). MSOs are created with parameters that cannot
be changed at run-time. Such parameters define a real-time
priority, specify the nature of the MSO’s execution (periodic
or aperiodic), and binds the MSO to a memory area.

Depending on the required type of real-time activity, a MSO
can be a periodic event handler (PEH) or an aperiodic event
handler (AEH). The use of event handlers is preferred to
the use of threads because all the activities for an individual
release are encapsulated in a single method [23], namely the
handler’s handleAsyncEvent() method. Threads are only
available at L2 in the form of managed threads that are a re-
stricted version of RTSJ’s NoHeapRealTimeThread. Managed
threads are useful to implement activities with an execution



pattern different from that of an aperiodic or periodic task,
e.g. background activities that run at all times.

Memory management is based on memory areas free of
garbage collector interactions. Depending on the intended life
of the objects allocated in a memory area, there can be
immortal, mission, or private memories. Immortal memory is
used to store objects that will live for the whole execution
of the application, mission memory holds objects that belong
to a specific mission and private memory holds objects used
only by a single MSO. From the point of view of a MSO,
the different memory areas are logically organized as a linear
stack where memory areas holding longer-lived objects are
nested at deeper levels. Due to the nesting hierarchy and the
different life times, objects cannot refer to each other in an
unrestricted manner, as it is the case in standard Java. Objects
allocated in a memory area can only store references to objects
allocated either in the same or in an outer nested memory area.
Objects allocated in immortal memory can be accessed by any
MSO and objects in mission memory are accessible only to
the MSOs belonging to the mission.

III. RELATED WORK

Corsaro and Schmidt provide in [4] an evaluation of two
real-time Java implementations. They compare the Timesys
RTSJ reference implementation [22] with their own RTSJ im-
plementation, namely jRate. In that work, Corsaro and Schmidt
developed RTJPerf, a synthetic, workload-based benchmark to
test time efficiency in an RTSJ compliant (for v1.0.1 of RTSJ
at that time) JVM. They provide tests to measure linear time
memory allocations, the delay to service asynchronous events,
overhead on thread switching and preemption, and the accu-
racy of timers. A very similar study done by McEnery et al.
in [11], provides an empirical evaluation of two main-stream,
commercial implementations of RTSJ. They compare Sun’s
(now part of Oracle Inc.) Java RTS and Aicas’ JamaicaVM.
McEnery et al. assess the efficiency and predictability of
the two commercial implementations by providing tests for
memory allocation, thread management, synchronization, and
asynchronous event handling.

From these two works we found that some tests, e.g. the
linear-time memory tests, are relevant in the context of SCJ
and can be adapted to our current evaluation. However, there
are other tests that (1) are not applicable to SCJ e.g. the latency
to dispatch unbounded asynchronous event handlers from the
firing of an event, and (2) use features not allowed in SCJ e.g.
RTSJ’s RealtimeThread and self-suspending methods.

In [5], Doherty provides a benchmark to test RTSJ-
based real-time Java implementations. His benchmark,
SPECjbb2005rt, based on the SPECjbb2005 benchmark [20],
is enhanced to provide throughput and response time metrics.
However, SPECjbb2005rt focuses on soft real-time applica-
tions and does not make use of RTSJ’s features intended for
hard real-time systems such as NoHeapRealtimeThreads and
does not implement tests that use immortal or scoped memory,
which are integral parts of SCJ. Moreover, SPECjbb2005rt has
not been made publicly available nor has it been adopted by

the SPEC corporation. Nonetheless, Doherty’s work empha-
sizes the need for standardized benchmarks that can be used to
compare different implementations of (hard) real-time JVMs.

Instead of providing a collection of tests that independently
evaluate embedded real-time Java features, in [6], Kalibera et
al. present the CDx benchmark, an open source, application-
based benchmark that can be adapted to run both on standard
and RTSJ compliant VMs. CDx can be used for soft and hard
real-time systems as it uses RTSJ’s hard real-time features.
CDx has one periodic thread used to detect potential aircraft
collisions, based on simulated radar frames. The metrics that
CDx provides are response time, computation time, and jitter
for the collision detector periodic thread. A refactored version
of CDx, miniCDj, that uses the SCJ API was developed and
used in [12] to test Purdue’s L0 SCJ implementation. The
miniCDj benchmark was developed for v 0.76 of JSR-302
and the current version of JSR-302 is 0.94. Therefore, some
modifications were necessary to run it in our implementation.

Any JSR requires a technology compatibility kit (TCK)
and in [24], Zhao et al. describe their initial work towards
developing a TCK for SCJ where focus was on functional
and behavioral tests. The test cases were derived from SCJ’s
specification to evaluate features such as the mission life cycle,
concurrency and scheduling, memory, clocks and timers, and
exceptions. We will use a subset of the tests described in their
work, as not all of them can be applied to our implementation
e.g. tests that evaluate L2 features.

IV. SAFETY-CRITICAL JAVA ON JOP

For the evaluation we use the SCJ implementation [18] on
top of the Java processor JOP [15]. We reuse the already avail-
able infrastructure for thread scheduling to implement the SCJ
handlers. The original version of JOP uses a garbage-collected
heap but for the SCJ implementation the garbage collector is
substituted by an implementation of scoped memories. Our
test platform is the Altera DE-2 70 evaluation board with a
Cyclone II FPGA running at 60 MHz, external SRAM access
latency of 3 cycles, and 4 kB method cache with 32 blocks.

A. Scope Memories

To allow a fragmentation free implementation of scoped
memories, an SCJ application has to specify the sizes of
immortal memory, mission memory, and all private memories
per handler. Furthermore, the memory areas have a unique
nesting relation. Mission memory is an inner memory of
immortal, and private memories are inner memories of mission
memory. According to the RTSJ notion of scoped memories,
the object that represents the memory area is allocated in the
outer memory. However, the size, given in the constructor of a
scoped memory does not include the memory requirements of
the nested scopes. Therefore, the actual memory, the backing
store, is not nested in RTSJ style scopes.

However, with the information of the maximum sizes of
nested scopes an implementation of the memory area can
actually use real nesting of the backing store. We use this
property in a single class that can be used to represent all



three different SCJ memory types: immortal, mission, and
private [16].

The class Memory is a system class and is used to implement
ImmortalMemory, MissionMemory, and PrivateMemory.
The SCJ memory classes still extend the RTSJ memory
classes, but the actual implementation of the functionality is
delegated to the Memory class. The user visible API of SCJ is
unchanged.

The memory areas form a strict hierarchy with respect to
lifetime, which can also be represented as nesting levels. These
nesting levels are static. One can assign level 0 for immortal
memory, level 1 for the initial mission memory, level 2 for
the initial private memory, and so on. These levels, statically
assigned to each memory area, can be used to simplify the
reference assignment checks [13]. A reference field of an
object at level n may only point to an object allocated at level
m ≤ n. Static fields are allocated in immortal memory and
therefore, their level is 0.

B. Thread Scheduling

SCJ has the notion of handlers that are released either peri-
odically or on an event. JOP’s runtime infrastructure supports
a simple form of real-time threads and event handlers. This
infrastructure is reused to implement the SCJ handlers.

The thread scheduler in the JVM of JOP is invoked (1) on
a timer interrupt, (2) when a thread finishes it’s release (with
the invocation of waitForNextPeriod()), and (3) when an
event handler is fired. The scheduler performs three functions:
(1) find the next thread to dispatch, (2) reprogram the timer
interrupt, and (3) dispatch the thread. The thread with the
highest priority, which is ready (it’s release time is now or
already passed), is selected for dispatch.

To find the time for the next timer interrupt, the priority
ordered list of threads is searched. A thread shall only interrupt
the currently dispatched thread, when its priority is higher than
the dispatched thread. Therefore, only higher priority threads
are searched. Within this set of threads, the thread with the
nearest release time determines the next timer interrupt. That
release time is used for the next scheduling interrupt.

The threads are collected in a priority ordered array. There
is no explicit run queue or other queues. However, the run
queue is implicit: each thread that has a release time now
or in the past is in the run queue. The first thread found
in the priority ordered array is dispatched. This gives short
dispatch time for high priority threads and longer for lower
priority threads, which is acceptable as high priority threads
have shorter deadlines when priorities are assigned deadline
monotonic. Threads check their deadlines and update their
release time on a call to the waitForNextPeriod() method.
The implementation of the SCJ handlers uses the original real-
time threads from JOP (RtThread) [14].

C. Interrupts

SCJ (and the next version of RTSJ) has the notion of
first-level interrupt handlers. An interrupt handler has to
extend InterruptServiceRoutine and has to implement

the interrupt handling code in the handle() method. The
InterruptServiceRoutine object is used as lock to protect
data structures that are used to communicate between the
interrupt handler and the application threads or second level
handlers. Interrupt priorities are higher than thread priorities.
Executing a synchronized section with such an interrupt prior-
ity disables the scheduling interrupt and the interrupts at lower
priority.

The notion of the interrupt handler in SCJ and the mapping
of lock priorities to interrupt disabling are similar to the
proposal in [17]. In our current implementation the JVM
accepts a standard Runnable as an interrupt handler, which
is registered by a system class. Even the thread scheduler is
just a plain Runnable that is registered for the timer interrupt.
Therefore, the SCJ implementation of interrupt handlers can
keep the notion of the available Runnable and just invoke
the handle() method of the interrupt handler. The hardware
of JOP disables all interrupts, when an interrupt happens.
By keeping them disabled during the handle() method and
disabling them on all synchronized methods of the handler
class we have a less responsive system, but are on the safe
side for synchronization.

D. Code Size

The JOP build tool links only classes used by the application
into the final application. Furthermore, small versions of the
JDK (a CLDC 1.1 version and a subset of it) are available for
JOP. Therefore, the overhead of the JVM is relative small. An
SCJ Hello World example, all needed SCJ and JDK support
classes, and the JMV Java classes result in an application
binary of 102 KB.

V. MICROBENCHMARKS

In this section we present the micro benchmarks developed
to test our SCJ implementation. Each test is organized as an
independent mission, where we use the mission memory to
store test-specific configuration data.

A. Accuracy of Periods

The majority of the computational load in real-time systems
comes from periodic activities (e.g. sampling sensor data and
applying control laws) [3]. Support for periodic activities
is provided in SCJ via the PeriodicEventHandler class
where an application developer adds its own functionality by
overriding the handleAsyncEvent() method and provides a
start time and a period. The start value represents an offset
measured from the start of the mission until the first release
of the PEH (Φ in Figure 1).

Ideally, the j-th release of a PEH should happen at integer
multiples of the PEH’s period plus the initial offset, as shown
in Figure 1. In practice however, due to e.g. executing higher
priority threads at the release time of lower priority tasks, it
may not be possible to completely eliminate the release delay.
With a single task, one of the main contributions to the release
jitter comes from the scheduling overhead.
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Fig. 1. Precision of periods

TABLE I
MEASURED PEH START TIME DEVIATIONS

Min (us) Max (us) Avg (us) Stdev (us)

74 75 74.63 0.48

In this part of the evaluation we measured the accuracy
of successive periodic releases. Our test setup uses a single
PEH running at maximum priority, with a period T = 150
ms, and that is rescheduled by the SCJ framework to be
release at the next ideal release time (see Figure 1) by
calling waitForNextPeriod(). The measurement was done
as follows:

1) We first obtain the mission start time, t0
2) We get the actual release time of the j-th instance

of a PEH, tjr, equal to the time at which its
handleAsyncEvent() method is executed

3) We calculate the time interval between the actual j-th
PEH release time and the start of the mission, tjr − t0

4) We calculate the deviation of the start time for the j-th
PEH release, ∆j , as ∆j = (tjr − t0) − jT

Table I shows the values of ∆j for 1,000 releases of the
single PEH. The release jitter is thus equal to the maximum
deviation of the start time among all instances [3] and is equal
to 1 us. We can see that there is almost no variation in the
deviation of the start times, which is a desired characteristic
for time predictable systems.

In our implementation, the values in Table I represent the
interrupt dispatch latency plus one context switch delay. This
is indeed the case, as it will be shown latter in sections V-D
and V-E.

B. Linear-time Memory Allocation Time

SCJ requires that mission and private scoped memories be
linear-time memory areas, i.e., memory regions where the
allocation time is proportional to the size of the allocated data.
Immortal memory however is not required to be of linear-time
type [10]. If allocations in immortal memory are restricted
to the initialization phase then whether or not the immortal
memory is of linear-time type is not relevant. However, in
mission phase, allocating data in immortal memory can affect
the timeliness of the system as allocations may have variable
execution times. In our implementation, all the SCJ memory
areas are derived from a single system class, called Memory,
that provides linear-time allocations

To test the linearity in memory allocation times ideally
we would like to directly write a portion of the scoped
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TABLE II
MEASURED SCOPED MEMORY ALLOCATION TIMES

Size (Bytes) Min (us) Max (us) Average (us) Stdev (us)

8 0 1 0.933 0.250
16 1 2 1.626 0.484
32 3 3 3.0 0.000
64 6 6 6.0 0.000

128 11 12 11.871 0.335
256 23 24 23.602 0.489
512 47 48 47.104 0.305

1,024 94 95 94.142 0.349
2,048 188 189 188.2 0.400
4,096 376 377 376.601 0.489
8,192 752 754 753.067 0.398

16,384 1505 1507 1506.025 0.584
32,768 3012 3013 3012.267 0.443

memory we are interested in testing but in general there is
no way to do that in Java. Another option is to allocate
several objects for which we know their size, possibly obtained
with the SizeEstimator class. However, SizeEstimator
only provides a conservative estimate on the (implementation
dependent) size of an object and we will also need to include
the time to execute the object’s constructor. We use a more VM
independent approach which is to measure the time it takes to
allocate a variable number of bytes of an integer array.

The results of 1,000 allocations of up to 32 KB is shown in
Table II. Figure 2 shows a plot of the maximum allocation
times registered where it can be seen the linearity in the
allocation times. We also see in Table II that, even with a single
thread, we registered maximum and a minimum values. We
thought the variation was due to the idle tick of the scheduler
but running the test with interrupts globally disabled still
produces the variations. This issue remains to be investigated,
but most likely is because allocating one word of memory
takes less than 1 us, which is the accuracy of the timer used
to take the measurements (this will also explain the value of
zero in the first row of the table). Nonetheless, we see little
variation in the data, a desirable characteristic in real-time
systems where consistency is the main concern.

C. Aperiodic Event Handling

Real-time systems also need to respond to events (internal
or external) that occur at random points in time. Handling
this type of events has to be done as they occur, without dis-
turbing the system’s main application logic, which is usually



executed by periodic activities [23]. Unanticipated events can
be handled by aperiodic or sporadic tasks. An aperiodic task
has either soft or no deadlines while sporadic tasks have hard
deadlines and a minimum inter-arrival time [9].

SCJ does not provide support for sporadic tasks, as
there is no detection of minimum inter-arrival time
violations. Only aperiodic tasks can be implemented
through the AperiodicEventHandler (AEH) or
AperiodicLongEventHandler (ALEH) classes. Both
AEHs and ALEHs must have a priority and, in the absence
of shared resources, they will not interfere with the execution
of higher priority PEHs. However, PEHs with lower priorities
can miss their deadlines due to a higher priority AEH or
ALEH with a large execution time. As opposed to RTSJ,
where there is a configurable-size queue of events to service
bursts of events, in SCJ the queue is of fixed size and equals
to one with a queue overflow policy set to REPLACE, i.e. to
overwrite pending event releases.

For this part of the evaluation, we test that: (1) high priority
PEHs do not miss their deadlines, (2) the event queue size
is equal to one, and (3) the queue overflow policy is set to
replace. Our setup is as follows: we generate two task sets of
PEHs with a processor utilization of 69% and 88%. The 69%
is chosen as it is the theoretical utilization limit to guarantee
schedulability under rate monotonic [8] and the 88% value
represents the average case bound for rate monotonic [7]. We
then increase the total load of the system by generating a burst
of events that are to be served by a single ALEH. We use
ALEHs because we can piggy-back a payload of type long
to the servicing of an event request that is used to identify
which event is being serviced.

The events are generated using a PEH that fires the ALEH
at times that follow a Poisson distribution with a mean arrival
time of 200 ms (λ = 5). The service time for each event,
i.e. the execution time of the ALEH, varies from 15 ms to
200 ms in order to increase the aperiodic load of the system.
The aperiodic load is a function of the number of serviced
events, N , and the ALEH execution time, C, and is calculated
as NC/∆T , where ∆T is the total running time of the
experiment, in this case 50,000 ms. The priority of the ALEH
is chosen to be a value between the priorities of the PEHs.

Figures 3a and 3b show the results of our experiments. In
the left side of Figure 3a we see the increase in the total
aperiodic load and on the right side the total number of events
serviced during the execution of the test. The total number of
events released was of 247. Figure 3b shows the number of
deadlines missed per PEH where the high priority PEHs are
PEH0, PEH1, PEH2, and PEH3. We see that as the aperiodic
load increases, fewer events can be serviced and that deadlines
start to be missed as the aperiodic load reaches around 20%
and 10% for the 69% and 88% periodic loads respectively. We
also see that the high priority PEHs never miss a deadline and
that deadlines are first missed by the lowest priority PEH, i.e.
PEH9 in Figure 3b.

It might appear from Figure 3b that as the aperiodic load
increases, low priority PEHs will start to miss fewer deadlines.

This is however not the case and what really happens is that
low priority PEHs will have very long response times thus
completing fewer releases. This situation will continue up to
the point were not even a single release will be completed e.g.
see the bar located at 130 ms in Figure 3b. This is necessary to
handle the overload situation caused by the aperiodic handler.

We checked that events that arrive too close overwrite each
other and that only the last received event will be served.
This was checked by using the long parameter of the released
ALEH to identify which event is being serviced. In this way
we see that a REPLACE policy for the overflowing of an event
queue of size 1 is effectively implemented (in JOP this queue
is a one-element array).

We ran a similar experiment with several ALEHs running
at the lowest priority and the results showed that no PEH
missed its deadline. The total aperiodic load stays always
below 12% and 31%. In addition, as the number of available
low priority ALEHs increases, more events can be serviced,
giving an intuition on how to dimension the system in terms
of the number of aperiodic event handlers required to serve
aperiodic events with a known arrival pattern. Due to the space
restrictions of this paper, the results are not shown.

D. Dispatch Latency for Interrupts

SCJ supports the notion of first level interrupt handlers
in Java thorough the ManagedInterruptServiceRoutine
(MISR) class. Similar to other MSOs, MISR objects have to be
registered to a specific mission and the interrupt service rou-
tine (ISR) code is implemented by overriding the handle()
method of RTSJ’s InterruptServiceRoutine class, which
in SCJ is more restricted than its RTSJ counterpart. In general,
in Java an ISR can be implemented as a handler or as an
event [17]. The handler approach uses a method invoked
by the hardware while the event approach uses a form of
asynchronous event to fire an AEH or unblock a managed
thread. The advantages and disadvantages of both methods
are described in more detail in [17].

Interrupt handlers are executed at hardware priorities, i.e.,
priorities that are higher than those of ordinary schedulable
objects, and can delay the completion of schedulable objects.
It is therefore important that interrupts are dispatched as fast
as possible. An ISR can be preempted (or interrupted) only
by a higher priority interrupt, assuming that the ISR disables
only lower or equal priority interrupts. Nested interrupts can
make the system more responsive to external events but can
increase the blocking times due to interrupts. In this part of
our evaluation we test the interrupt dispatch latency.

To measure the interrupt dispatch latency we compute
the time between the generation of an interrupt and its
delivery.1 How interrupts are generated is implementation
dependent, making it difficult to measure the time of the
interrupt generation in an way that can be ported between
SCJ implementations. Measuring the time when the interrupt

1Generation is the hardware mechanism that makes the interrupt available
to the Java program while delivery is the action that invokes an ISR [10]
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Fig. 3. Total aperiodic load (top left), number of aperiodic events serviced (top right), and number of deadlines missed (bottom left and right) as a function
of the event handler execution time for periodic loads of 69% and 88%.

TABLE III
INTERRUPT DISPATCH LATENCY

Min (us) Max (us) Avg (us) Stdev (us)

SCJ 25 26 25.23 0.422
Non-SCJ 4 5 4.6 0.491

is delivered is however non-implementation dependent and
is equal to the time when the handle() method of the
InterruptServiceRoutine is executed.

In our implementation we used JOP’s system device to
generate interrupts triggered by software using a PEH. The
PEH is randomly selected at mission initialization from a
group of PEHs with different priorities. The purpose is to
show that indeed interrupt priorities are higher than MSOs
priorities and that the dispatch latency is independent of the
PEH’s priority that generated the interrupt.

Table III compares the dispatch latencies for 1,000 interrupt
occurrences when using SCJ’s MISR and when using a plain
runnable invoked by the hardware as the ISR. The overhead
when using the SCJ implementation comes from invoking four
methods as opposed to only one for the non-SCJ version.
The additional methods are the enter() and its associ-
ated runnable’s run() methods required to execute in the
ISR’s private memory, and the InterruptServiceRoutine’s
handle() method.

TABLE IV
CONTEXT SWITCH LATENCY

Min (us) Max (us) Avg (us) Stdev (us)

62 72 69.644 1.4361

E. Context Switch Latency

Context switch latency is a source of overhead that can
affect the performance of the system. For this test, we create
two PEHs, one with high priority, PEHH , and the other
with a lower priority, PEHL. The start times of both PEHs
are selected so as to make PEHL to begin execution before
PEHH . PEHL has a long period and constantly updates a
variable with the current time, tL. PEHH has a shorter period
and reads the current time, tH , as the first statement of its
handleAsyncEvent() method. Because PEHH will always
preempt PEHL, the context switch latency will be equal to
the difference between tH and tL. The results of our mea-
surements, for 1,000 context switches, is shown in Table IV.

The minimum value is obtained when tL is updated just
before the context switch while the maximum value is obtained
when the context switch happens just before updating tL.

F. Synchronization

Contention for shared resources among managed schedula-
ble objects can result in priority inversions. To avoid priority



TABLE V
TASK SET FOR SYNCHRONIZATION TEST

Priority Offset (ms) Critical section (ms) WCET (ms)

HIGH 400 100 300
MEDIUM 300 0 400

LOW 0 500 600

Critical sectionH

L

M

100 500 1000 1500

Fig. 4. Execution pattern of the task set of Table V

inversions, SCJ requires the use of the priority ceiling emula-
tion (PCE) protocol to control access to shared resources.

To test a correct PCE implementation, we use the task set
of Table V with three PEHs with low, medium, and high
priorities. The offset column is the time of the PEH’s first
release, the critical section column is the time that the PEH
requires a shared resource, and the WCET column is the total
computation time. A shared object in mission memory is used
by the low and high priority PEHs and its lock is acquired
by the low priority PEH at time t = 0. At t = 400 the high
priority PEH will try to lock it. With those values, we will
force a potential priority inversion in the task set.

We expect that with a correct PCE implementation the
execution pattern to be as shown in Figure 4. Measured release
delay and response times for all PEHs is shown in TableVI.

JOP’s implementation of the PCE protocol is done by
globally disabling all interrupts within synchronized methods.
As the scheduler is a first level interrupt handler fired by the
programmable timer counter, with interrupts globally disabled
there will be no scheduling decisions, i.e., once a PEH has
acquired a lock it cannot be preempted or interrupted. The
object’s monitor ceiling is therefore effectively equal to the
maximum priority of all the possible managed schedulable
objects that could ever acquire the lock of the shared object.

G. Discussion

By organizing each micro benchmark as a single mission we
are also testing compliance to the mission-based programming
model of SCJ. We are implicitly testing the mission life
cycle by: (1) changing missions and executing them in a
predetermined sequence, (2) resizing the mission memory

TABLE VI
MEASURED TIMING VALUES OF SYNCHRONIZATION TASK SET

PEH Release delay (ms) Resp. Time (ms)

HIGH 501.840 403.565
MEDIUM 802.397 907.115

LOW 0 1308.939

before mission initialization, (3) providing mission termination
mechanisms, (4) using nested private memories at mission
cleanup, and (5) delaying the start of tasks with the start
parameter of the ReleaseParameters class.

In order to make our micro benchmarks portable across
SCJ implementations we developed them using the available
public SCJ API features. However, when we used SCJ’s
clock API for timing measurements an overhead is introduced
due to additional method calls and normalization operations.
Moreover, saving such measurements in clock objects allocated
in shared memory areas increases the complexity. The use
of the clock API is kept for portability but to increase the
accuracy of our measurements we used JOP’s microsecond
counter. In this way our benchmarks are not inherently related
to our particular SCJ implementation.

VI. SCJ’S TCK AND MINICDJ

As SCJ is still in an early draft phase, currently there
is no official TCK available that can be used to check our
implementation against the specification. There is however a
reduced SCJ TCK done at Purdue University that we can use
to check the portions of the SCJ that the TCK exercises. As
the TCK is organized as a collection of applications running
on top of an SCJ implementation, it is not possible to exercise
all the requirements of the specification. For example, to
test that private scoped memories are not accessed by more
than one thread, the TCK explicitly creates such memories
from user space and enters them with the enter() method.
Explicit creation of private scopes is not allowed in SCJ and
enforced with a private constructor in the PrivateMemory
class. Restricting the use of the enter() method is more
difficult, as an implementation may be based on the RTSJ
where such method is declared as public.

As a result, there are some tests that we cannot directly ap-
ply to our implementation. Moreover, as we are only targeting
a L1 implementation, we skipped the L2 tests of the TCK.
The tests that are exercised in our implementation by running
Purdue’s TCK are summarized in Table VII. The reader is
referred [24] for the details of the tests.

To test our implementation with a complete application, we
have used the miniCDj benchmark. We used six planes, 1,000
frames, and the period of the detector was set to 1,000 ms.
No frame overruns were detected and values for the detector’s
execution time are shown in Table VIII.

The variation in the computation time is because collision
detection depends on both, the current and the previous
frames, thus generating a variable size space to search for
potential collisions. The measured release delay is less than 3
microseconds thus it is not shown in Table VIII.

To see if parts of our SCJ implementation may affect the
execution times, we also run this test with scope checks
enabled and disabled, and using both, JOP’s microsecond
counter and the SCJ clock API to drive the cyclic schedule.
None of these showed to add considerable overhead. The main
source of execution time comes from the large number of
floating point operations that in JOP are done in software.



TABLE VII
TCK TESTS USED IN OUR IMPLEMENTATION

1 Each application uses a global mission scope to hold global
objects used during a mission

2 During the initialization, all objects are allocated in mission
memory by default

3 Object creation in mission memory or immortal memory during
the mission phase is allowed

4 Each schedulable object has its private scoped memory
5 PrivateMemory is based on LTMemory
6 MissionMemory is ScopedMemory
7 Nested private memory is supported
8 Mission memory is resizable
9 PriorityScheduler.instance().getMaxPriority() is the

default ceiling for locks
10 Nested calls from one synchronized method to another are allowed
11 The only scheduler is the default RTSJ preemptive priority-based

scheduler with at least 28 priorities. There is no support for
changing base priorities

12 Priority Ceiling Emulation is supported
13 Full preemptively scheduling shall be supported at Level 1
14 A preempted schedulable object must be placed at the front of the

run queue for its active priority level

TABLE VIII
MINICDJ BENCHMARK EXECUTION TIME MEASUREMENTS

Min (ms) Max (ms) Avg (ms) Stdev (ms)

422.94 744.05 568.03 75.72

VII. CONCLUSION

In this work we have presented an evaluation of a SCJ
implementation on a Java processor. We have developed a
series of micro benchmarks organized as independent missions
in order to test timeliness and performance of the system. We
have tested the accuracy of periods, linear-time memory al-
locations, aperiodic event handling, interrupt dispatch latency,
context switch latency, and synchronization. In addition, we
have used an application-oriented benchmark, the miniCDj
benchmark, to test in a non-isolated way our implementation.
We have also used a reduced version of Purdue’s SCJ tech-
nology compatibility kit to show how well our implementation
adheres to the SCJ specification.
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