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Abstract—Middleware designed for use in Distributed Real-
Time and Embedded (DRE) systems enable cost and devel-
opment time reductions by providing simple communications
abstractions and hiding operating system-level networking API
details from developers. While current middleware technologies
can hide many low-level details, designers must provide a static
configuration for the system’s underlying network in order to
achieve required performance characteristics. This has not been a
problem for many types of DRE systems where the configuration
of the system is relatively fixed from the factory (e.g., aircraft
or naval vessels). However for truly open systems (i.e., systems
where end users can add or substract components at runtime)
the standard static network configuration approach cannot guar-
antee that required performance will be met because network
resource demands are not fully known a priori. Open systems
with stringent performance requirements need middleware that
can dynamically manage the underlying network configuration
automatically in response to changing demands. Fortunately,
recent trends in networking have resulted in a wide variety
of networking equipment that expose a standardized low-level
interface to their configuration via the OpenFlow protocol. In
this paper we discuss how OpenFlow can be leveraged by DRE
middleware to automatically provide performance guarantees.
In order to make the discussion concrete, we describe the
architecture of our prototype middleware MIDAS as well as the
details of one example network resource management strategy.
We demonstrate the feasibility of our approach via performance
assesment of a simple DRE application using our MIDAS and
commerically available OpenFlow hardware.

I. INTRODUCTION

Various middleware technologies conforming to standards
such as Real-Time CORBA [15] and the Data Distribution
Service (DDS) [12] have enabled cost and development time
reductions for Distributed Real-Time and Embedded (DRE)
Systems. These cost and development time reductions are
achieved because the middleware provides a simple, high-
level abstraction that the developers of individual components
can program to in order to interact with other components in
the system. Additionally, the prime contractor can mandate
a specific data-models and component interfaces realized via
specific middleware to ensure that problems are less likely to
occur during system integration.
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While middleware for DRE systems are engineered with
features that enable deterministic behavior, the use of a DRE
middleware itself is not enough to achieve end-to-end timing
guarantees. Systems designers must not only tweak the config-
uration of the middleware software, but they also must config-
ure the network to ensure that resources will always be appro-
priatly allocated and that faults (i.e., nodes trying to saturate the
network known as “babbling idiots”) are properly contained.
Traditionally, these configurations have been static meaning
they are not changed once the system is fully assembled. Thus
middleware for DRE has not traditionally exerted control of the
network itself. This separation of concerns has been reasonable
for two reasons. First, most safety-critical DRE are delivered to
the customer fully integrated and assemebled. This means that
the prime-contractor has a priori knowledege to configure the
network appropriately. Second, most networking technologies
used in safety-critical DRE such as TTA or TT-Ethernet only
support static configurations and must be configured offline.

Recent trends in Cyber-Physical Systems are revealing a
new class of DRE. In this new class of DRE, the system
is dynamic: Users can add or subtract system components
based on current needs or even significantly alter the network
topology. A pedagogical example of this new type of DRE are
plug and play medical systems. In a plug and play medical
system a caregiver working in an ICU may couple physiolog-
ical sensors, actuators (e.g., an infusion pump) and control
algorithms running on a server over the hospital network
to provide a specific type of therapy. In some sense this
DRE is instantiated ‘on-demand’ over a shared resource (the
network). In this context the traditional separation between
middleware and network configuration will not work; It would
be burdonsome for hospital IT staff to reconfigure the network
and middleware each time the patient or therapy changes.

Fortunately, the recent trend towards Software Defined Net-
working (i.e., OpenFlow [11]) in the COTS networking space
has made a middleware that automatically provides end-to-end
timing guarantees in a dynamic environment a real possibility.
In this paper we describe the MIDdleware Assurance Substrate
(MIDAS), a publish-subscribe middleware that controls the
low level switching configuration of the network via the
OpenFlow protocol. We say that MIDAS provides strong real-
time guarantees because the required QoS of any admitted
subscriber is guaranteed for the duration of the admission
assuming there is no failure of the underlying hardware. The



purpose of this paper is not to provide a definitive solution in
this space, but instead to show one way such a middleware
should be designed and to get preliminary results on the ef-
fectiveness of using OpenFlow-enabled networking equipment
in a real-time environment.

This paper is organized as follows. In Section II we define
the timing parameters our middleware supports. Section III
contains a brief overview of OpenFlow and how it is leveraged
by MIDAS. Section IV gives the software architecture of
MIDAS and gives its major components. In Section V we
describe on of the strategies MIDAS can use to perform ad-
mission control and generate network configurations. Section
VI describes preliminary experiments using MIDAS with real
OpenFlow hardware and an application taken from the medical
domain. In Section VII we describe related work. Finally we
conclude in Section VIII

II. QUALITY OF SERVICE PARAMETERS

The MIDAS real-time message bus provides a publish-
subscribe abstraction for communication in DRE systems. We
focus on the publish-subcribe paradigm for two reasons. First,
publish-subscribe has proven popular for the development of
DRE systems because of the loose coupling it enables between
publishers (nodes that emit data e.g., sensors) and subscribers
(nodes that consume data e.g., actuators). Second, publish-
susbcribe performance mostly concerns the network. Any
effort to improve publish-subscribe middleware determinism
will be largely complementary to existing work on improving
other DRE middleware approaches which focus more on CPU
scheduling. While current publish-subscribe middleware for
DRE systems such as DDS expose quality of service settings
to developers the standard does not require any enforce-
ment mechanism. Any guarantee of timing behavior must
be achieved by statically configuring network hardware rate-
limiter mechanisms, tuning various middleware parameters and
assigning priorities to time critical messages. In this section we
will draw on classical real-time scheduling theory to devise a
simple set of three QoS parameters that would be appropriate
for a publish-subscribe middleware that is able to provide end-
to-end timing guarantees in the form of maximum end-to-end
latency. Before we describe these parameters we first define
latency:

Definition 1 (Network Latency). Let PT be a publisher
publishing to topic T and ST be a subscriber to T . Let
t1 be the moment PT starts transmitting message m on the
network and let t2 be the smallest time t after m has been
fully received by ST . The end-to-end network latency of m is
L (ST ,m) = t2 − t1.

Definition 2 (Guaranteed Maximum End-to-End Latency). Let
PT be a publisher publishing to topic T and ST be a sub-
scriber to T . If ST requests a guaranteed maximum latency,
denoted Lmax (ST ), then ∀mL (ST ,m) ≤ Lmax (ST ).

In MIDAS, developers can specify maximum end-to-end
latency (Definition 2) using the parameter maxLatency, mini-
mum (resp. maximum) separation between consecutive updates
as minSep (resp. maxSep). All three parameters are used at
runtime by the middleware to check if a subscriber should
receive data from a publisher. While maxSep and maxLatency
closely align in function with the DDS parameters DEADLINE

Topic Name: BoilerPressure
Data Type: int32

Publisher
minSep: 10 ms
maxSep: 15 ms

Subscriber A
maxSep: 20 ms
maxLatency: 5ms

Subscriber B
maxSep: 14 ms
maxLatency: 5ms

Subscriber C
maxSep: 15 ms
maxLatency: 1ms







Fig. 1: Real-Time Publisher and Subscribers with QoS.

and LATENCY BUDGET1 minSep has no DDS analog. The
primary function of minSep is to let the middleware know
how much load the publisher can induce on the system.
Figure 1 illustrates how MIDAS will match QoS between
publishers, subscribers, and the underlying system. Subscriber
A is admitted to the system because its required maxSep
(20ms) is greater than or equal to the publisher’s (15ms).
Additionally the middleware has determined it can guarantee
the requested maximum latency. Subscriber B is not admitted
because it requires a maxSep of 14ms which is smaller
than the publisher’s. Finally, Subscriber C is not admitted
to the system only because the underlying middleware has
determined that it cannot guarantee C’s requested maximum
end-to-end latency.

III. APPROACH OVERVIEW

We achieve real-time guarantees on open networks built
from COTS equipment by handing complete control over the
network to the middleware via OpenFlow. Tight integration
of the middleware with OpenFlow provides several benefits.
First, it gives the middleware complete control over how data
packets on the network are forwarded, prioritized, and rate-
limited. Second, many COTS switches can be made OpenFlow
capable with a firmware update. This means that existing
network deployments can be made OpenFlow capable. Third,
in many OpenFlow switches all OpenFlow rule processing
occurs at line rate. This means that the middleware can affect
configuration changes in the network without any appreciable
loss of network peformance.

We now describe the operation of an OpenFlow network.
An OpenFlow network consists of two types of entities:
OpenFlow switches and OpenFlow controllers. An OpenFlow
hardware switch is a Layer 2/3 Ethernet switch that maintains
a table of flow entries and actions.

The flow table associates each flow with an action set
which tells the switch how to handle a packet matching the
flow. Table I shows an example flow table. The table has two
flow entries which match against input port, Ethernet address,
IP address and UDP port number. There are two actions
associated with each flow. While the OpenFlow specification
describes a number of different actions our prototype utilizes
the enqueue and meter actions. The meter action requires the
switch to apply traffic policing to the flow. The enqueue action

1In DDS LATENCY BUDGET is only used as a hint for optimzation
purposes. It does not confer any notion of a guarantee.



Input Port Datalink IP UDP Action
VLAN ID Src Dst Type Src Dst Src Port Dst Port

3 0 89ab 89ac IP 192.168.1.1 192.168.1.2 100 101 meter=1,enqueue=4:7
4 0 89ac 89ab IP 192.168.1.2 192.168.1.1 101 100 meter=2,enqueue=3:2

TABLE I: Example OpenFlow flow table

Publisher API Subscriber 
API

Local Topic Manager Topic Queue

Serialization Deserialization

UDP / 
Multicast
Sender

TCP / Unicast 
Sender

TCP / Unicast 
Receiver

UDP / 
Multicast
Receiver

Client API Layer

Local Topic 
Management 

Layer

Data Coding Layer

Network 
Interfacing 

Layer

Fig. 2: Client Library

requires the switch to place the packet on an egress queue
associated with a specific port during forwarding.

When an OpenFlow switch receives a packet on one of
its interfaces, it compares that packet to its flow table. If the
packet matches a flow table entry, it applies the action set
associated with that flow entry. If the packet does not match
an existing entry the switch performs what the OpenFlow
protocol calls a packet-in. When the switch performs a packet-
in, it forwards the packet to the OpenFlow controller (a piece
software running on a server in the network). The controller
analyzes the packet and can execute any arbitrary algorithm
to generate a new flow rule. The controller can then update
the switch’s flow table with the new rule. Packet-in allows
the OpenFlow controller to learn the topology of the network
(i.e., learn what ports on what switches different hosts are
connected to) and then effect complex routing, forwarding and
QoS strategies with algorithms implemented in a normal high
level programming language like Java or C++.

We now provide an overview of how the RTMB provides
real-time guarantees on OpenFlow enabled COTS networks.
The RTMB implements a Global Resource Manager (GRM)
which contains a specialized OpenFlow controller. When a
publish-subscribe client comes online it first connects to the
GRM. This allows the GRM to learn where on the network
the client is located (i.e., the switch and port it is connected
to). Then, when a client requests a subscription with a spec-
ified QoS, the GRM will peform admission control. First,
the scheduling algorithm in the GRM will generate a new
network configuration based on the new QoS request. The
new configuration is then analyzed by a schedulability test
which determines if any QoS constraints could be violated with
that configuration (see Section V for an example scheduling
and schedulability algorithm). If a violation is possible, the
client is notified and their request is not granted. If QoS is
guaranteed in the new configuration, the GRM commits the
network configuration to the network using OpenFlow and then
admits the client. Note that this system architecture allows
us to handle non publish-subscribe best effort traffic (e.g.,
web-browsing) on the same network transparently; the GRM
will automatically map best effort traffic to the lowest priority
queues on each switch.

IV. MIDDLEWARE DESIGN

Now we describe the various software components in the
RTMB. The RTMB adopts a brokerless architecture and the
functionality of middleware is separated into two software
stacks implemented in Java. The client library provides the
publish-subscribe abstraction to clients that wish to be pub-
lishers or subscribers. The Global Resource Manager (GRM)
runs on a server connected to the network and is responsible
for managing active topics, publishers, subscribers and the
underlying network configuration. Both the client library and
GRM have features specifically designed to enable automatic
QoS guarantees.

A. Client Library

The architecture of the client library is illustrated in Figure
2. If the application is a publisher, messages flow from the
application to a local topic queue by way of the local topic
manager. This allows the client library to perform a zero-copy
transfer of data between publishers and subscriber that are
running on the same host. Each local topic queue always has
a special subscriber: the data-coding layer. The data-coding is
responsible for serializing messages prior to transmission on
the network. After a message has been serialized, a sender
object transmits it onto the network. The type of sender
used depends on what transport protocol was negotiated with
the GRM. Symetrically, the receivers receive messages from
the network, pass those messages to the data coding layer
where they are deserialized and then placed on the appropriate
topic queue. Subscribers are invoked when the topic queue
associated with their topic becomes non-empty.

The Client Library has one important feature used to
support automatic QoS guarantees: it statically infers the
maximum serialized message sizes from message types. When
a publisher comes online it specifies the type of message it
will publish. The API passes this information to the topic
management layer, which in turn asks the data coding layer for
message size bounds on that type. In our prototype, the data
coding layer uses Java reflection to determine the structure
of the type and infer the maximum number of bytes used to
represent a message of that type on the network.2 Maximum
message size information is used by the GRM when it performs
the schedulability analysis of a network configuration.

B. Global Resource Manager

The GRM (Figure 3) is responsible for orchestrating all ac-
tivity on the network to ensure that data is correctly propagated
between publishers and subscibers. To accomplish this, the
GRM must maintain configuration information about the net-
work and implement the appropriate scheduling and network
reconfiguration algorithms. Because we are concerned with
providing guaranteed timing, the GRM must keep record of
how switches in the network are interconnected, where clients
are plugged into the network, the performance characteristics
of each switch, and which multicast addresses are associated
with what topics.

2Our prototype currently only supports non-inductive types (e.g., record
types) that can be easily analyzed for size-bounds.
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Fig. 3: Global Resource Manager Architecture

These various responsibilites are decomposed along mod-
ule boundaries. Several of these modules’ functions do not
need to be extensively elaborated: the client manager is a server
process that handles client’s requests (e.g., to start publishing
on a topic); and the topic manager maintains a record of active
topics and the network addresses associated with each topic,
the OpenFlow controller implements the OpenFlow protocol
and exposes a simple API to the flow scheduler to reconfigure
the network.

The flow scheduler implements the admission control,
scheduling and network reconfiguration algorithms used to
ensure QoS constraints are not violated (see Section V).

HP3500YL P3920

Client C

Client A Client B

Client D

Port 1 Port 1

Port 2

Port 3

Port 3

Port 4

Fig. 4: Example Network Graph

We now elaborate the network graph and the switch model
data in more detail. The switch model database is a repository
of performance and timing characteristics for different models
of OpenFlow switch. This information is vitally important to
the GRM; it needs to know how each switch in its network
behaves. The information in the switch model repository is
created before the middleware is deployed on a network. In
our protoype each switch model is represented by an XML file
that is read by the GRM when the GRM starts up. Each switch
model contains the model name of the switch, the number of
ports on the switch, the number of egress queues associated
with each port, the bandwidth capacity, and the number and
precision of the hardware rate-limiters.

The network graph maintains both static and dynamic
network configuration information. The static information is
specified at deployment time; it defines what switches are on
the network (the model, etc.) and how they interconnect. The
dynamic information is either learned via OpenFlow (e.g., what

ports on which switch are specific client connected) or set by
the flow scheduler.

Figure 4 illustrates a simple network graph. The network
consists of two switches. These switches are connected via an
uplink cable on each of their port 1. Each switch is connected
to two clients (denoted by dotted circles).

V. FLOW SCHEDULING

A valid flow scheduler must perform three tasks: First,
when a subscriber comes online and requests a subscription
to an existing topic the flow scheduler must generate a can-
didate network configuration using OpenFlow configuration
primitives. Second, the scheduler must analyze the new con-
figuration and determine if it guarantees the timing constraints
of all admitted flows plus the new one. Third, if the new
configuration is acceptable the scheduler must reconfigure
the network carefully so no constraints of existing flows are
violated during the reconfiguration. All three of these activities
are non-trivial: Distributed scheduling is known to be NP-
Hard if an optimal schedule is desired and there are no known
exact schedulability tests for the general network setting [6].
In light of these difficulties, we do not describe an optimal
approach. Instead, we focus on a strategy that is both fast
(i.e., polynomial-time in the size of the network), exploits the
types of configuration primitives by OpenFlow, and allows for
the safe transition from one valid configuration to another.
Analysis and improvement of the approach in terms of network
utilization and schedulability is left for future work. We start
be describing how the strategy would apply to a network
consisting of a single switch, then extend it to the multi-switch
case.

A. Single Switch Scheduling

The flow scheduler generates a candidate network config-
uration in several phases. First, for each publish-subscribe re-
lationship the flow scheduler queries the OpenFlow controller
to determine what switch port each publisher and is connected
to and the network address associated with a given topic.
Then, for each publisher P publishing to T , the flow scheduler
configures a rate-limiter. The rate-limiter is configured with a
maximum burst size B and and maximum rate R, and is set to
apply to all packets that enter the switch on the port connected
to P destined to the network address associated with T . If
a publisher P specifies a minimum separation between each
message of minSep, and maximum message size of M , then
the burst size and rate are set as follows:

B =M, R =
M

minSep

This allows P to burst its entire message onto the network
while ensuring that P cannot overload the network if P
becomes a babbling idiot.

Before we can describe how the flow scheduler prioritizes
flows we need to explain how to calculate upper bounds on the
worst case latency of message. Latency in a switched network
has a number of sources. The first is due to the bandwidth of
the network link. The second is due to the physical wire that
connects a network node to a switch: an electrical signal takes



time to propagate along a wire (in most networks the latency
effects of the wires are small because they are relatively short).
The third is the multiplexing latency of the switch. Switch
multiplexing latency is the time it takes a switch to move a
bit entering the switch on one port to the output queue of
another. On modern non-blocking switches this is usually on
the order of several microseconds. Finally, there is queuing
latency, which is the amount of time a message spends waiting
in an egress queue. In a modern switched Ethernet all these
latencies are fixed (i.e., do not change due to network load)
except for queuing latency. Messages placed from different
flows placed on queues associated with the same switch port
are in contention for shared “forwarding resources.” We now
formally define the fixed latency, queuing latency, and end-to-
end latency for a single switch.

Definition 3 (Wire Latency). The function w (N1, N2) denotes
the signal propagation latency between network stations N1

and N2. A network station can be either a switch, or a
publisher/subscriber.

Definition 4 (Fixed Latency). Let f = (PT ,ST ). Let the
maximum message size of a message publish to topic T be
M . Then the fixed portion of the end-to-end latency, denoted
LF (PT ,ST ), between PT and ST is:

LF (PT ,ST ) =
M

C
+ w (PT , s) + w (ST , s) + smux (1)

where C is the network bandwidth and smux is the multiplex-
ing latency of switch s

Definition 5 (Queing Latency). Let (PT ,ST ) be the flow
from PT to ST , and let s (i) be the ith port on switch s
which the flow is routed out of, then the queuing latency
of the flow (PT ,ST ) with priority p at switch/port s (i) is
Q (PT ,ST , s (i) , p).
Definition 6 (End-to-End Latency). The end-to-end latency is
the sum of the fixed and queuing latency:

Le2e (PT ,ST ) = LF (PT ,ST ) +Q (PT ,ST , s (i) , p) (2)

How can we calculate Q (PT ,ST , s (i) , p)? We adapt an
approximate technique for calculating the response time of
a task under fixed priority scheduling on a uniprocessor.
In [5], Bini et al. provide a linear equation for calculating
an upperbound worst case response time of a task. Assuming
Pi is the minimum separation between consecutive arrivals of
task Ti, Ei is the worst case execution time and hp (i) is the
set of tasks assigned priority higher than Ti, then the response
time Ri is bounded from above by:

Rubi =

Ei +
∑

j∈hp(i)

Ej

(
1− Ej

Pj

)
1−

∑
j∈hp(i)

Ej

Pj

(3)

This equation is useful in our application because the per-
task workload approximations Bini et al. used to derive the
response time bound also approximate the traffic pattern of a

flow conforming to a rate-limiter. We then transform Equation
4 into a worst-case bound on latency due to queuing by substi-
tuting message sizes divided by bandwidth for execution cost,
minSep for the periods, and subtracting the overall message
transmission cost for our flow3 Additionally, let hp (p, s (i))
be the set of flows with priority higher than p at port i on
switch s:

Q (PT ,ST , s (i) , p)ub =

MT
C

+
∑

j∈hp(p,s(i))

Mj

C

(
1−

Bj
C

minSepj

)

1−
∑

j∈hp(p,s(i))

Bj
C

minSepj

−
MT
C

(4)

We can now use the upper-bound on worst-case switch
latency to determine how to prioritize each flow. Common
techniques for priority assignment in real-time systems include
the Rate Monotonic (RM) and Deadline Monotonic orderings
(DM) [3]. Unfortunately, both RM and DM theory require that
each flow is assigned a unique priority. This is not possible on
real networking hardware: most Ethernet switches only provide
8 priority queues per port for egress traffic. To overcome
this limitation, we use Audsley’s Optimal Priority Assignment
(OPA) algorithm [2]. OPA has two desireable properties: It is
optimal locally (if a flow set will meet its latency requirement
at a single switch under any fixed-priority configuration it will
also under OPA) and it minimizes the number or priority levels
required to schedule the flow set. Because each port of the
switch is independent in terms of its egress queueing, we only
need to differentiate the priorities of flows exiting the switch
on the same port.

We now describe a version of Audsley’s OPA adapted to
assign priorities to flows in an OpenFlow switch. Our modified
OPA takes as input a set of flows (denoted F) forwarded
out of the same port. OPA starts by attempting to assign
flows to the lowest priority level. If a flow f can exceeed
its latency bounds at a given priority level, OPA moves on
and will attempt to assign that flow a higher priority later.
Conservatively, a flow (PT ,ST ) can miss its latency bounds if
Q (PT ,ST , s (i) , p)ub + LF (PT ,ST ) > Lmax (ST ). If OPA
exits before assigning a priority to every flow, then the flow
set is not schedulable with any fixed priority assignment. If
the number of priority levels required to schedule F is greater
than the number of priorities provided by the switch, then the
flow scheduler deems the flow set unschedulable.

Before admitting a new subscriber the flow scheduler must
reconfigure the network to accomodate the new flow without
causing existing flows to violate their latency requirements.
Existing flows must be migrated to their new priorities in a spe-
cific order to avoid priority inversions. To safely accomplish
the reconfiguration the flow scheduler maps existing priorities
according to their priority assignment in the new configuration:
flows with lower priority are reprioritized first.

B. Extension to Multi-switch

The prototype flow scheduler supports real-time guarantees
on networks consisting of multiple switches by tranforming the

3This is because the response time for a task also takes into account the
execution time for that task. We only want a upper bound on the interference.



distributed scheduling problem into a sequence of local (i.e.,
single switch) scheduling problems. Before we proceed we
modify Equations 5 and 2 to describe the sources of latency
for a flow that is forwarded through a sequence of switches. As
in the single switch case there are fixed and queuing sources
of latency:

Definition 7 (Multiswitch Fixed Latency). Let ρ be a path
of length m through the network from PT to ST . Let Nk be
the kth network node (switch or publisher/subscriber) on ρ.Let
the maximum message size of a message publish to topic T be
M . Then the fixed portion of the end-to-end latency, denoted
LρF (PT ,ST ), between PT and ST is:

LρF (PT ,ST ) =
M

C
+

∑
1<k≤m

w (Nk−1, Nk) +
∑

1<k<m

smuxk

(5)

Definition 8 (Multiswitch Queuing Latency Latency). Let ρ
be a path through the network with length m from PT to ST .
Then the queuing latency due to all the switches on ρ is the
sum of all the queuing latencies of the switches along the path:

Qρ (PT ,ST ) =
∑

1<k<m

Q (PT ,ST , sk (i) , pk) (6)

Definition 9 (Total Multiswitch End-to-End Latency). Let ρ
be a path through the network crossing m switches. Then the
total end-to-end latency due to both fixed and queuing delays
along ρ is:

Lρe2e (PT ,ST ) = Qρ (PT ,ST ) + L
ρ
F (PT ,ST ) (7)

Given these equations for end-to-end latency for flows
crossing multiple switches we describe how MIDAS generates
and applies network configurations for multi-switch networks.
As mentioned earlier in this section distributed scheduling
is in general quite difficult. Further complicating matters
is that MIDAS must be able to reconfigure the the entire
network without causing any QoS constraint violations for
existing flows. This is challenging because the reconfiguration
of an upstream switch will impact the worst case load on
downstream switches. Imagine for example a simple network
consisting of two switches s1 and s2. Now imagine some
flow f forwarded along the path s1, s2. Say that the minimum
separation between bursts of f at s1 is 20ms and the worst case
queuing latency at s1 is 3ms. This means that the minimum
separtion that could be observed by s2 is 17ms (the case where
the first burst of f is delayed the maximum amount and then
the second burst is not delayed at all). Now assume a new flow
f ′ is admitted to the network and it is prioritized higher than f
on s1. This will increase the worst-case queuing latency of f
(e.g., to 10ms) at s1 and further contract the worst-case burst
separation observed by s2 (down to 10ms).

We avoid having to calculate network-wide side effects
each time a new subscriber is admitted by transforming the dis-
tributed scheduling problem into a sequence of local schedul-
ing problems: When a subscriber ST requests a subscription
to T with a latency constraint Lmax (ST ) we first calculate

the shortest unweighted path ρ between PT and ST . Next, we
uniformly allot a portion Lmax (ST ) to each switch: for each
switch sk in ρ we calculate Lmax (ST )sk where:

Lmax (ST )sk =
Lmax (ST )− LρF (PT ,ST )

|ρ|

That is, we split the allowed queuing latency up evenly
between all the switches along ρ. We now recursively calculate
the worst case minimum separation observed at each switch on
the path. Let minSepk be the minimum worst case separation
of bursts at switch sk then:

minSepk+1 = minSepk − Lmax (ST )sk

Finally, we apply the single switch schedulability, prior-
ity assignment and network reconfiguration algorithms using
each Lmax (ST )sk and minSepk for the appropriate switch.
Because we fixed the allotted switch queuing latency when the
flow as admitted, the minSepk values will never change.

VI. EXPERIMENTAL EVALUATION
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Fig. 5: Network Layout

We evalauted two aspects of MIDAS. First we wanted to
see if the network scheduling used in the MIDAS improved
the timing performance relative to that of a standard switch.
Second, we wanted to see how robust the MIDAS timing
guarantees are. In order to evaluate these two aspects we
deployed the MIDAS on our OpenFlow test bench (Figure 5).

Our OpenFlow test-bench consists of 4 computers and an
OpenFlow capable switch, a Pica8 P3290 [1]. Each of the 4
computers were plugged into the switches’ data-plane ports
(i.e., OpenFlow managed ports). The GRM was also plugged
into the control-plane port which carries OpenFlow manage-
ment traffic. Measuring end-to-end timing in a distributed
network accurately is challenging due to clock synchronization
issues. We avoid these synchronization issues by exploiting
OpenFlow to let us run publisher’s and subscribers on the
same hosts: we add an OpenFlow rule that causes the switch
to intercept packets from certain flows, rewrite the packet
headers, and then retransmit the packet back out the port it
arrived on. This allows us to ‘fool’ the client; it can publish
to Tx and subscribe to Ty but in reality it the messages being
published to Tx are being sent back modified so they look as if
they are from Ty . This allows us to compare the timestamps of
messages using the same system clock while still subjecting the



Topic minSep Max. Latency Message Size (Bytes) Bandwidth
T1 3ms 2ms 192192 512.512mbit/s
T2 3ms 3ms 96000 256.000mbit/s
T3 11ms 8ms 64000 46.545mbit/s

TOTAL: 815.057mbit/s

TABLE II: Experimental Publish-Subcribe Set

message to the same queuing, multiplexing and wire latencies
it would experience if it was being sent to another host.

All timing measurements we done on Host A. Host A
was running real-time Linux with IBM’s RTSJ-compliant
Real-Time JVM. The RTMB client library on Host A was
scheduled with the highest system priority using RTSJ Java’s
NoHeapRealtimeThreads to ensure that they would not
be interfered with by the Java garbage collector or other
processes on the system. All timing measurements were made
by calling Java’s System.currentTimeMillis(). Prior
to running our experimental scenarios we lower-bounded the
amount of latency added by the Linux TCP/IP stack and
the JVM by sending a message to the loopback interface.
This latency was consistently 1ms, which means that observed
latencies as recorded by the software are usually 1ms more
than the actual network latency.

For each experiment we used the same 3 publishers each
publishing to a different topic (T1, T2, and T3) with a single
host subscribing to each topic. Table II lists each topic,
relevent QoS (minSep of the publisher and max latency from
the subscriber), and the bandwidth required by each. The
publish-subscribe set is designed to be representative of a
demanding plug and play medical system: T1 represents a
high framerate/resolution video stream, T2 & T3 represent high
resolution data coming from ECG and EEG machines. For
each experiment we captured all messages received within a 10
second window and recorded their latencies. During following
discussion, we use Sx to denote the subscriber to topic x and
Px as the publisher to x.

A. Scenario 1: Comparison to Best-Effort

Here we compare the performance of the middleware in
two network settings. In the first setting, we configure the Pica8
to behave like a normal L2/L3 switch (it uses a fair-queueing
strategy to forward ethernet frames in this mode). We call this
the ‘best-effort’ setting. In the second setting we place the
network under control of the MIDAS using the strategy of
Section V. We ran three experiments where we observed the
end-to-end latencies of messages published to each topic. In
the best-effort setting ST3 still met its latency constraints. The
same was not true for ST2 or ST1 . Due to space, we report the
data concerning ST2 :

Figure 6 shows the latency of each message over the
observation window for ST2 . Figure 7 shows the same for the
MIDAS managed setting. Each point on each graph represents
the end-to-end latency of a single message sent to T2 and
received by the subscriber. The x-axis is the moment (in
milliseconds) that the message was transmitted. The y-axis
is the latency of that message. Even accounting for jitters in
the operating system and JVM the end-to-end deadline of ST2
is repeatedly violated on the best-effort system (observe the
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Fig. 7: MIDAS

number of samples in the 5ms row of Figure 6). Additionally,
ST2 never received 48% of the messages that were sent. This
is because the messages are quite large and the egress queues
can be overrun in the best effort setting. Any loss of a single
ethernet frame will result in the loss of the whole message.
All messages arrived in the MIDAS-managed setting. While it
would be possible to reduce the message drop rate in the best
effort setting by causing the senders to retransmit on failure,
doing so would increase the effective latency of the message.
Taking into account the 1 ms latency added by the JVM and
TCP/IP stack, no messages violated the latency requirement
when the MIDAS was managing the network configuration
(All samples in Figure 7 are 4ms or less).

B. Scenario 2: Fault Containment

In this scenario we modify the publishers to T1 and T2
so they simulate babbling idiots (i.e., set their minSep to 0)
and we record the latencies of messages flowing to T3. In this
experiment the publishers were able to saturate a 1 gigabit
per second Ethernet link each. We modified PT1 and PT2
because MIDAS will configure their respective flows with the
highest priority which means they have the most opportunity
to starve the other flows if they misbehave. This represents a
worst case scenario for our approach. When run on the best
effort network (i.e., with no flow prioritization) PT1 and PT2
were able to starve enough of the network forwarding capacity
from the flow associated with PT3 to cause all messages to
be dropped. Figure 8 contains the observed latencies when
MIDAS was managing the network. Again, each point in the
graph represents a single message. The y-axis is latency of
that message, and its x-value is the moment the message was
transmitted. Under MIDAS, no messages were dropped and
all messages arrived earlier than their required latency bounds,
8ms.
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Fig. 8: Latency bounds for ST3 when PT1 and PT2 are
malfunctioning

VII. RELATED WORK

To our knowledge the RTMB is the first example of a
publish-subscribe middleware that uses OpenFlow to provide
real-time guarantees on COTS Ethernet networks. Most re-
search into middleware for distributed real-time systems can
be divided into two categories. The first category involves
research into how various CPU scheduling and determinism
features can be used in middleware to effectively support
the predictable execution of distributed tasks in a distributed
environment. Examples of such work include TAO [15] and
the many middleware other real-time Corba [14] middleware
works such as FC-ORB[16], QuO [17] and [8].

The other, less extensively studied, category includes mid-
dleware which tries to achieve deterministic network behavior
by coordinating the activity of the application nodes. Examples
of such work are [10], FTT-Ethernet [13] and the Synchronous
Scheduling Service for RMI [4]. These approaches all offer
some notion of guarantee but they are not robust because they
depend on the cooperation of each node on the network: if
a node does not cooperate (either due to a fault or malicious
activity) then that node can distrupt the whole network.

There have also been a number of projects where Open-
Flow has been used to provide some type of QoS guarantee.
However, these projects have not focused on real-time sys-
tems aspects. Instead, their application focused on data center
centric QoS (like minimum guaranteed bandwidth) [9] or for
multimedia systems [7].

VIII. CONCLUSION

The work in this paper represents a first step towards DRE
middleware that can automatically provide strong real-time
guarantees in a dynamic environment. We believe support for
providing these guarantees in a dynamic environment will be
critical for the success of newly emerging types of Cyber-
Physical Systems. We described MIDAS, a prototype publish-
subscribe middleware which uses OpenFlow to manage the
underlying network and provide guarantees for real-time QoS
in order to illuminate some of the architectural and technical
issues that apply to middleware designed for this environment.

Our initial evaluations showed that our prototype does en-
able more deterministic timing behavior. Even with a relatively
high network load of 815 megabits per second all publish-
subscribe network flows satisfied their millisecond-level timing
requirements while on the normal Ethernet network latency
constraints were violated and almost half the messages were

dropped. The evaluations also showed that MIDAS’ ability
to provide guarantees is robust: when we reconfigured two
publishers as babbling idiots MIDAS prevented the remaining
flow from deviating from its specified QoS constraints.

We believe the results in the paper encourage further
research into OpenFlow and how it can be used to benefit DRE
middleware. Such research topics include better scheduling and
reconfiguration algorithms designed for use with the OpenFlow
primitives, other types of QoS (beyond timing) that could
benefit from full network control, and ways to detect and adapt
to network faults dynamically.

REFERENCES

[1] Pica8 3290 Product Literature (2013), http://www.hp.com/rnd/products/
switches/HP ProCurve Switch 5400zl 3500yl Series/specs.htm

[2] Audsley, N., Dd, Y.: Optimal priority assignment and feasibility of static
priority tasks with arbitrary start times (1991)

[3] Audsley, N.C.: Deadline monotonic scheduling (1990)
[4] Basanta-Val, P., Almeida, L., Garcia-Valls, M., Estevez-Ayres, I.: To-

wards a synchronous scheduling service on top of a unicast distributed
real-time java. In: Real Time and Embedded Technology and Appli-
cations Symposium, 2007. RTAS’07. 13th IEEE. pp. 123–132. IEEE
(2007)

[5] Bini, E., Nguyen, T.H.C., Richard, P., Baruah, S.: A response-time
bound in fixed-priority scheduling with arbitrary deadlines. Computers,
IEEE Transactions on 58(2), 279 –286 (feb 2009)

[6] Bouillard, A., Jouhet, L., Thierry, É.: Tight performance bounds in the
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