
Elastic Infrastructure to Support Computing Clouds
for Large-scale Cyber-Physical Systems

Douglas C. Schmidt
EECS Department

Vanderbilt University
Nashville, TN

Email: d.schmidt@vanderbilt.edu

Jules White
EECS Department

Vanderbilt University
Nashville, TN

Email: d.schmidt@vanderbilt.edu

Christopher D. Gill
CSE Department

Washington University
St. Louis, MO

Email: cdgill@cse.wustl.edu

Abstract—Large-scale cyber-physical systems (CPS) in
mission-critical areas such as transportation, health care,
energy, agriculture, defense, homeland security, and manufac-
turing, are becoming increasingly interconnected and inter-
dependent. These types of CPS are unique in their need to
combine rigorous control over timing and physical properties,
as well as functional ones, while operating dynamically, reliably
and affordably over significant scales of distribution, resource
consumption, and utilization. As large-scale CPS continue to
evolve-and grow in scale and complexity-they will impose
significant and novel requirements for a new kind of cloud
computing that is not supported by conventional technologies

To meet these requirements, cloud computing advances are
needed to establish real-time computing, communication, and
control foundations rigorously at scale. Likewise, advances are
needed to apply these foundations in a flexible and scalable
manner to different real-world large-scale CPS challenge prob-
lems. To support both foundational and experimental R&D,
a new generation of elastic infrastructure must be designed,
developed, and evaluated. This paper identifies challenges,
opportunities, and benefits for this work and for the large-
scale CPS it targets.

Keywords-Computing Clouds for Cyber-Physical Systems;
Data Distribution Service; Middleware

I. INTRODUCTION

Large-scale cyber-physical systems (CPS) are increasingly
composed of applications and services deployed across a
range of communication topologies, computing platforms,
and sensing and actuation devices. Examples of these types
of CPS include advanced air traffic management [1], super-
visory control and data acquisition (SCADA) systems [2],
next-generation smart power grids [3], remote health care
delivery systems [4], integrated air and missile defense
systems [?], and electronic trading systems [5]. The services
and applications in large-scale CPS often form parts of mul-
tiple end-to-end cyber-physical flows that operate in mission-
or safety-critical resource-constrained environments.

Each service within the end-to-end cyber-physical flows
of large-scale CPS must process events belonging to other
services or applications, while providing dependable quality-
of-service (QoS) assurance (e.g., timeliness, reliability, and
trustworthiness) within limited resource constraints or with

the ability to fail over to providers of last resort (e.g., a
public utility in the case of a SCADA system or smart power
grid).

Large-scale CPS have traditionally been designed and
implemented using resources procured and maintained in-
house. Significant fiscal and technological constraints, how-
ever, are motivating researchers and practitioners to consider
alternatives that can still ensure mission- and safety-critical
properties. In particular, the emergence of dependable-and
increasingly commodity-computing clouds motivates design
and operational considerations for large-scale CPS that in-
clude:

• offering economic incentives, e,g., pay-as-you-go and
pay-as-you-grow models that emphasize computing, com-
munication, and control as operating expenditures rather
than capital expenditures;

• consolidating and sharing hardware and software
components through multi-tenancy to reduce operating ex-
penses, e.g., lower power consumption and hardware budget;

• aggregating and disaggregating behaviors dynam-
ically to reduce risk, e.g., by minimizing contention and
avoiding single points of failure; and

• elastically auto-scaling computing, communication,
and sensing/actuation resources for real-time systems to
ensure that shared system resources are used effectively
and dependably without incurring unnecessary costs when
resources are idle.

Despite the promise held by commodity cloud com-
puting, however, supporting the timing and dependability
requirements of large-scale CPS at scale is hard. This
paper discusses a number of technical issues emerging in
this context, including (1) precise auto-scaling of resources
within local and system-wide constraints; (2) flexible op-
timization algorithms to balance real-time constraints with
cost, scalability, utilization, and other (often conflicting)
goals; (3) improved fault-tolerance fail-over to support real-
time requirements; and (4) data provisioning, load balancing,
and analysis algorithms that rely on-and may be used to
optimize-physical properties of computations. This paper
also explores key technical building blocks needed to create



a dependable and elastic infrastructure for large-scale CPS.

II. THE EVOLUTION OF CPS IN SCALE AND
COMPLEXITY

This section summarizes the evolution of CPS in terms
of scale and complexity in terms of QoS fidelity, which
ranges from low fidelity (e.g., ” best effort” QoS) to high
fidelity (e.g., stringent requirements on timeliness and de-
pendability), Degree of asset sharing, which ranges from
a low degree of sharing (e.g., each application or service
is allocated a unique set of assets) to a high degree of
sharing (e.g., assets are pooled amongst many applications
and services), and System scale, which ranges from small
scale (e.g., a dozen or so system components) to large scale
(e.g., many thousands of system components).

A. Overview of CPS

A cyber-physical system (CPS) is an integrated set of
hardware and software that controls physical things (and
which may or may not involve humans in the loop). CPS
have historically involved a tight coupling and coordination
between a system’s computational elements (components
implemented entirely in hardware or software) and physical
elements (components that interact with the physical world).
Traditional examples of CPS include anti-lock braking sys-
tems in automobiles [6] and automated pilot features in
aircraft. These types of CPS typically exhibit high QoS
fidelity, a very low degree of asset sharing, and a small
number of system components.

Many CPS also have been used to control devices and/or
processes in environments disconnected from networks. Al-
though these types of stand-alone CPS are common, the
next-generation of CPS [7] increasingly will use local area
network (LAN) and/or wide area network (WAN) processing
elements to control devices and interactions. These inter-
actions may be influenced by physical environments (such
as is wind farms or hydro-electric power generators) or
industrial environments (such as in chemical plants). More
sophisticated emerging CPS (such as driverless cars and
smart power grids ) are also adaptive and intelligent, often
solving problems as they occur in real time without direct
human input.

Regardless of their scale and connectivity, CPS are time-
sensitive since the right information or action delivered or
performed too late results in an incorrect outcome. The QoS
of a CPS thus has both a reliability dimension and a temporal
one. In particular, system functionality must run in a timely
manner.

Large-scale CPS must address requirements and chal-
lenges that aren’t as relevant for traditional stand-alone
CPS, including partial failure, higher latency and jitter
due to shared communication links, and denial of service
attacks. Security is an increasingly important QoS concern
in CPS [8] since delivering information in a timely manner

is itself essential, but may be irrelevant if the information
has been tampered with or compromised. Today’s large-scale
CPS typically exhibit higher QoS fidelity, a higher degree
of asset sharing, and a larger number of system components
than traditional CPS.

B. Overview of Cloud Computing

Large-scale CPS have been developed in the past, pri-
marily in the aerospace, defense, and power domains. These
types of CPS, however, have been proprietary and expensive
to develop and sustain. In recent years, therefore, the enor-
mous commercial and government investment in commodity
cloud computing environments has spurred an interest in
leveraging these technologies as the basis for large-scale
CPS.

Cloud computing provides applications with ubiquitous,
convenient, and on-demand access to a shared pool of con-
figurable computing resources across a network. The goal
of this paradigm is to treat computing and communication
as utilities. In particular, these capabilities are provided to
applications as services, i.e., enabling the migration and
scaling up/down of system computing, storage, and com-
munication resources without requiring explicit involvement
from applications.

The key characteristics of cloud computing environments
typically include the following capabilities:

• On-demand self-service provisioning, which enables
end-users of clouds to unilaterally provision computing
capabilities, including networks, storage, and servers, which
are often virtualized by generalizing the physical infrastruc-
ture and making it available as a set of managed components
that are easier to use and control automatically.

• Elastic resource pooling and multi-tenant models where
multiple applications run in the context of shared server and
networking resources. Achieving these elastic capabilities
requires a means to automatically and rapidly expand and
contract the supply of computing and storage based on
dynamically fluctuating levels of demand without adversely
impacting essential QoS properties.

• Managed operations in which resource utilization can be
controlled via some type of metering capability. These man-
aged operations essentially ” outsource” key hardware and
software components and activities to third-party providers.

Most applications of commodity cloud computing envi-
ronments focus on web hosting, where low cost (e.g., via
resource sharing) and high availability (e.g., via replication)
are critical QoS attributes. A key benefit of cloud computing
in this domain lies in the economies of scale provided by
multi-tenancy and elasticity, which involve the ability to
have multiple applications and services sharing the same
computing infrastructure, as well as the potential to expand
and contract infrastructure as needed and on-demand. These
types of cloud computing environments typically exhibit low



QoS fidelity, a high degree of asset sharing, and a large
number of system components.

Although cloud computing is increasingly being adopted
by individual consumers and by companies in certain indus-
tries, many classic implementations of cloud computing are
at odds with CPS requirements, such as bounding latency
and jitter, and avoiding priority inversions. In particular,
unless managed carefully with respect to timing (e.g. as in )
and other criteria, virtualization may become detrimental in
CPS due to higher overhead and jitter, as well as (hidden)
scheduling issues. What is needed, therefore, are software
and hardware infrastructures that can support the needs of
next-generation large-scale CPS. These new large-scale CPS
require high QoS fidelity and a high degree of asset sharing,
and must support a large number of system components.

III. THE EVOLUTION OF DESIGN AND OPERATIONAL
PARADIGMS FOR CPS

During the past 4̃0 years many paradigms relevant to
large-scale CPS have come and gone. This section sum-
marizes the evolution in the paradigms used to design and
operate CPS at various levels of scale and complexity during
this time.

A. Early Paradigms

In the 1970s and 1980s, there was a tendency to build CPS
via a tightly-coupled design paradigm, where most elements
of these CPS were proprietary and controlled or built by
a single system integrator. These systems were designed in
isolation with little reuse or sharing. Likewise, they were
non-adaptive, e.g., if changes were made to requirements or
the runtime environment many other parts of the systems
could be adversely affected.

In general, a key limitation of such a tightly-coupled
design paradigm for CPS was that small changes made to
the software or hardware could affect the correctness of
almost any other part of the system . Examples of these
problematic changes include adjustments to requirements,
implementation, infrastructure, operating systems, program-
ming languages, middleware, and networks. As a result,
these large-scale CPS were expensive to sustain and evolve,
in addition to incurring vulnerabilities due to not being
designed to connect to publically accessible networks, such
as the Internet.

This tightly-coupled design paradigm also was problem-
atic due to the ways in which developers and operators
traditionally provisioned, scheduled, and certified CPS. The
operational capabilities and characteristics of traditional CPS
were typified by the need to obtain all the required resources.
If such a provisioning process goes smoothly, traditional
CPS usually work well. If not all of the resources are
acquired, however, there could be major issues and a CPS
simply might not work as needed.

The tight-coupling exhibited by such CPS was exac-
erbated by their stringent end-to-end QoS requirements,
including bounded latency and absence of priority inversion.
To meet these requirements, developers of traditional CPS
typically hard-coded many implementation details, shared
limited information between system components, and al-
located resources statically. While this strategy works for
small CPS in closed stand-alone environments, it simply
doesn’t scale up to meet the needs of large-scale CPS being
developed and planned (e.g., based on emerging proposed
industry standardization efforts, such as the Industrial Inter-
net [9]. Moreover, it is not feasible to leverage commodity
computing clouds as the basis for these types of CPS due
to their reliance on statically provisioning and aversion to
sharing.

B. Recent R&D Progress

Over the past decade, there have been tremendous ad-
vances in research and development for CPS, as well as
evolution in the adoption and application of newer design
paradigms. For example, cutting-edge CPS in both military
and civilian domains are more layered and componentized
than those of previous decades. In particular, modern large-
scale CPS include layers of network, operating system,
middleware, and programming language standardization and
have become more robust at the infrastructure level. More-
over, advances in loosely coupled CPS software and system
architecture have improved, so that when problems arise,
properly programmed systems are able to cope through on-
line adaptation.

A further benefit of these modern, less tightly coupled
large-scale CPS is that solutions are potentially more cost-
effective to evolve and retarget. Developers are less apt
to have to backtrack and recertify an entire CPS when
minor changes are made, which is a key cost-driver for
sustainability in legacy CPS. Consequently, changes can
be made to a CPS environment, requirements, and aspects
of implementation, including those that are hidden behind
component or module boundaries.

Modern large-scale CPS have also improved from an
operational point of view. The majority of new loosely
coupled large-scale CPS are being constructed via data-
centric and reusable protocols. Event and messaging buses
are more resilient in these types of large-scale CPS. When
constructed properly, these large-scale CPS are designed to
work appropriately even if they don’t receive all resources
in a timely manner, which enables dynamic allocation and
management. There is the added benefit of better sharing
support for resources, especially in environments with the
ability to describe priorities and importance of information
flow at multiple levels.

Some of the operating platforms that have evolved to
support modern large-scale CPS have much in common
with computing clouds. For example, the total ship com-



puting environment developed for the US Navy’s DDG-
1000 destroyer include advances in distributed resource
management based on many of the technologies mentioned
throughout this paper (and discussed further in [10]). While
the scale of a DDG-1000 destroyer is not nearly as large
as envisioned large-scale CPS (e.g. based on a continent-
wide Industrial Internet), it serves as a good example of how
metropolitan area network (MAN)-sized large-scale CPS can
be developed reliably and securely.

IV. R&D TRENDS AND CHALLENGES FOR
LARGE-SCALE CPS

Current trends and challenges within the domain of large-
scale CPS are a hot topic of discussion. For example, the
US National Science Foundation (NSF) recently convened
stakeholders from academia, industry, and government at
a workshop on research and implementation challenges at
the intersection of Cloud Computing and CPS [11], from
which a community report is currently being drafted. Topics
discussed during this workshop included (1) the role of
computing clouds in data collection, integration, analysis,
and mining for CPS, (2) the roles of computing clouds in
CPS control systems, (3) stability, safety, security, privacy,
and reliability considerations in integrating cloud computing
with CPS, and (4) programming models and paradigms for
computing clouds that support CPS. When considering what
is happening in this space now, it is useful to be familiar
with approaches used by developers in the past and the
insight those experiences provided when envisioning future
directions.

A. The Benefits and Limits of Elastic Hardware

The CPS space is diverse and complicated, but it is
reasonable to expect that some of the key answers can be
found in research conducted on elastic hardware platforms
in cloud computing environments. Elastic hardware refers to
platforms with the ability to add or remove CPU capacity
within a reasonable time frame and price. This technology
enables cloud providers to add or subtract hardware without
the need to change underlying logic or configurations of the
software. Since programmers’ time has become a precious
commodity the flexibility enabled by elastic hardware is
tremendously valuable.

One complication of elastic hardware is that most plat-
forms have been utilized for hosting web applications in
public cloud environments or data-centers. Although those
environments have been relatively reliable for conventional
web hosting services, they pale in comparison to the com-
plexities and mission-criticalities of Industrial-Internet-style
applications, where support for secure, real-time communi-
cations and failover are essential.

Elastic hardware is thus necessary, but not sufficient
for building elastic applications that possess cyber-physical
properties. There are a number of reasons why programming

elastic hardware for CPS is hard. The first is due to the
fact that many programming models used by developers are
inadequate. Developers tend to use complicated or obtrusive
APIs, which are challenging to program. Conversely, there
are solutions that are simple to program, but tend to have
problems with respect to scalability and predictability. These
solutions work well if timeliness is not a concern, but they
are not a viable solution when timeliness is paramount.

Another issue is the general lack of understanding for real-
time, concurrent network solutions. There are many inherent
and accidental complexities in this area, including race con-
ditions, deadlocks, priority inversions, and missed deadlines.
The CPS development community needs to become more
familiar with these issues so they can work more effectively
to address them with the available tools.

Some operating platforms provide good support for multi-
core solutions, but do not have sufficient support to transition
seamlessly from multicore to distributed core. When this is
the case, the system will work well up to 1̃6 cores, (i.e., the
current scale supported by high-end Intel or AMD multicore
chip sets) and then start to degrade significantly when the
system scales beyond that.

Finally, there is the long observed issue of inadequate sup-
port for QoS at scale. In this context, QoS refers to the ability
to control systematic quality attributes (sometimes referred
to as ” para-functional properties”), including prioritization,
failover and robustness, and system-wide resources in an
end-to-end environment over various types of networking
infrastructure. Approaches that work well for conventional
web-based systems often do not work as well in the mission-
critical CPS domain.

The impediments to programming elastic applications on
elastic hardware described above affect the majority of
computing systems, though they are particularly problematic
for large-scale CPS. As a result, organizations may believe
that since the traditional Internet works well for ecommerce
or file sharing, it should work just as well for more complex
large-scale CPS, until they ultimately discover that is not the
case.

B. Key Challenges for Elastic Large-scale CPS

Large-scale CPS are increasingly used to connect people,
data, and machines to enable access and control of mechani-
cal devices in unprecedented ways. These types of CPS often
integrate sophisticated machines embedded with sensors and
sophisticated software to other machines (and end users) to
extract data, make sense of it, and find meaning where it
did not exist before. The overarching theme is that such
machines-ranging from jet engines to gas turbines to medical
scanners-connected via large-scale CPS have the analytical
intelligence to self-diagnose and self-correct, so they can
deliver the right information to the right people dependably
at the right time.



Despite the promise of large-scale CPS, however, sup-
porting the end-to-end QoS requirements is fundamentally
hard and requires new advances in a number of key areas,
including those discussed below.

1. Precise auto scaling of resources with an end-to-
end focus needs to be a feature of CPS. Auto scaling is
often thought about as adding cores when demand rises.
Although this is certainly useful, it comes with the downside
of not working properly from a system-wide perspective.
Enabling technologies for large-scale CPS (such as the
Industrial Internet [9]) require ways to scale up scheduling
and auto scaling in a broad environment, to support precise
behavior for end-to-end task chains. Stability and safety
properties within mission-critical large-scale CPS require
complex analysis to provide confidence that they will work
as expected. Supporting this need calls for analysis examin-
ing reachability of states in a system, which is currently a
particularly challenging part of the research space.

2. Optimization algorithms that balance real-time con-
straints with cost and other goals must be used. Often
these problems can be solved by additional hardware, but
not all developers have those resources available to them.
Although deployment and configuration algorithms-along
with services and infrastructure-are key to successful large-
scale CPS, implementing these algorithms effectively is hard
in domains where the cost commodity marginal basis is
driven down. For example, the automotive industry needs
to sell in volume, and thus cannot afford to spend thousands
of dollars on high-end hardware in low-end to mid-level cars
because the costs will not be recouped.

Another objective for large-scale CPS is co-scheduling
or performing admission control and eviction of assorted
task sets deployed on shared computing and communication
resources to ensure that high priority operations take place
at the appropriate time. These requirements are not typically
met in conventional cloud computing environments, i.e.,
when these systems get overloaded, the QoS degrades and
there is no way to prioritize between tasks.

Improved fault-tolerance fail-over that supports real-time
requirements, which is crucial in environments with high
probability of failures and attacks. One way to do this is
semi-active replication [12], which is used so that running
systems can fail-over rapidly and predictably. This replica-
tion style is designed to have some of the benefits of both
the active replication and passive replication styles, including
predictable fail over times and predictable behavior during
program execution.

3. Finer-grained and faster allocation of resources to
enable CPS to be precisely scaled to meet demands driven
by real-world phenomena. Current elastic resource allocation
approaches focus on virtual machines as the sole resource
allocation unit. While virtual machines provide excellent
isolation and resource partitioning properties, they incur
significant allocation and startup costs. A single virtual

machine in a cloud may take tens of seconds to minutes
to allocate and initialize resources for a CPS.

CPS are also influenced by a wide array of physical
phenomena for which science has not developed accurate
or fast predictive models. For example, predicting the exact
load in a financial market even within a few minutes time
is not a solved problem. Since it is hard to predict how the
physical world will drive a CPS, it is hard to forecast far
into the future the precise resource allocations that will be
needed to meet CPS QoS goals.

Ensuring that CPS receive needed resources becomes
hard when limited physical world predictability is combined
with slow resource allocation. Either more precise predictive
models are needed or cloud computing resource allocation
must become more nimble to support timeliness and other
QoS requirements. Research on faster and finer-grained re-
source allocation beyond virtual machines is thus needed to
meet the challenge of producing fast and accurate predictive
models for all physical systems that drive CPS.

4. Data provisioning and load balancing algorithms that
can take into account a variety of properties, including
geo-physical, when deciding where to migrate work. Cloud
computing is generally considered so flexible that there is
little distinction between where computation takes place and
storage resides, which makes sense when there are no real-
time QoS needs. As real-time QoS needs arise, however,
exactly where parts of the system are located becomes more
important. In these cases, affinity should be emphasized to
reduce latency and jitter.

Storage is a key factor in CPS, as it does not do much
good to virtualize storage if it then takes too long to
move data from one node to another. At the same time,
rebalancing and replication also need to happen. Taking
physical dimensions into account in the context of load
shaping is also beneficial and necessary. Developers must
also discover ways to exploit physical characteristics of data
and computation to better distribute work throughout CPS
clouds.

In short, developers of large-scale CPS need a holistic
approach. Advances in this area will be particularly chal-
lenging because success will require new approaches from a
research point of view (which may be developed in isolation)
to be combined across multiple system layers and to work
seamlessly and effectively end-to-end in a CPS.

C. Next-generation Challenges: Larger-Scale CPS

Over the past decade organizations have had greater suc-
cess developing large-scale CPS. There has also, however,
been a trend toward attempting to develop a new generation
of more complex and large-scale CPS. Systems in this
context are evolving towards ultra large-scale, i.e., they are
pushing far beyond the size of even today’s large-scale
CPS by every measure, including: lines of code; amount
of data stored, accessed, manipulated, and refined; number



of connections and interdependencies; number of hardware
elements; number of computational elements, number of
system purposes and user perception of these purposes;
number of routine processes, interactions, and emergent
behaviors; number of (overlapping) policy domains and
enforceable mechanisms; and number of people involved
in some way (see [13] for further discussion). Examples
of these ultra-large-scale CPS are evolving in smart grid,
Industrial Internet, and air traffic management domains.

The dynamic behavior of ultra-large-scale CPS can trigger
transient overloads. There are numerous time critical tasks,
and many resources depend on the environment. Often there
are trade-offs and conflicts between the aforementioned
resources. One of the most prominent challenges observed
is integration with legacy systems and sub-systems.

The technologies historically used by system integrators
to develop and sustain large-scale CPS have themselves
incurred many challenges stemming from accidental and
inherent complexities. For example, these technologies have
tended to be highly heterogeneous in terms of program-
ming languages, operating systems, middleware, and tool-
ing. Likewise, technologies implemented several years ago
may now be unusable in some environments due to rapid
advances in the solution space.

Not surprising, it is tedious and error-prone to map
problems and requirements from the problem space to
the technologies that exist in the solution space. System
integrators are ultimately responsible for trying to make
these connections. These problems have recently become
even harder to address because their requirements exceed
the capabilities provided in today’s commodity computing
clouds.

Adding further complication, the U.S. government, which
has been a major player in funding for large-scale CPS,
has been forced to cut back significantly on research and
development due to the fiscal constraints arising from se-
questration. The following quote is attributed to Winston
Churchill: ” Gentleman, we’ve run out of money-it’s time
to start thinking,” which serves as an accurate metaphor for
what is happening in ultra-large-scale CPS domains today.

V. A VISION FOR SOFTWARE INFRASTRUCTURES FOR
LARGE-SCALE AND ULTRA-LARGE-SCALE CPS

This section outlines emerging research solutions and
approaches for architecting large-scale CPS systems. The
architecture covers the core components needed for CPS and
specific technologies that can help to fill these gaps, such as
the OMG’s DDS.

A. Key Requirements for Large-scale CPS Software Infras-
tructure

Meeting the challenges of large-scale CPS-including, but
not limited to, approaches being discussed in the context

of proposed industry standards, such as the Industrial Inter-
net [9], requires rethinking basic properties and principles
commonly ascribed to cloud computing. Whatever the future
of elastic cyber-physical systems software infrastructure may
be, it should support the following requirements:

• Systems must be flexible as they must be able to replace,
reuse, analyze, distribute, isolate, and then compose these
pieces back together in a dependable way.

• Systems need to be open so that programmers do not
program themselves into a corner with a solution that only
works with commitment to a single vendor.

• Systems need to be uniform with respect to treating
multicore and distributed core semantics in a common way.
Uniformity keeps these two components transparent from
the applications and services they run.

• Systems must be scalable as the demand for increasing
scope rises. Solutions, such as load balancing algorithms,
must take advantage of elastic hardware resources at the
infrastructure level.

An important paradigm for meeting these requirements
of large-scale CPS is middleware, which resides between
applications and the underlying operating systems, networks,
and hardware. Middleware provides services that are essen-
tial to design and operate large-scale CPS at scale. Below
we discuss the key layers of large-scale CPS software
infrastructure.

B. Key Layers of Large-Scale CPS Infrastructure

Anyone who has taken a networking course knows that
there are seven layers in the OSI stack and four layers in the
Internet stack. In general, however, there’s less familiarity
of the layers within the middleware stack, which is essential
for success in developing next-generation software infras-
tructure for large-scale CPS. The key layers are described
briefly below.

Operating systems and communication protocols form
essentially a hardware abstraction layer that allows higher-
level services and applications to ignore differences in
the underlying computing and networking hardware. Host
infrastructure middleware is an operating system abstraction
layer that abstracts away from the operating system and
removes accidental complexities of the system’s APIs. It am-
plifies programming software in a portable way. Examples of
host infrastructure middleware include Java, Real-time Java,
and Microsoft CLR.

The next level is distribution middleware, which allows
for decoupling and abstracting the fact that there is a network
between the sender and receiver of messages. Distribution
middleware provides the ability to communicate across
address and host boundaries in a way that is unobtrusive
to the application. Examples of this type of middleware
include SOAP, Web Services, CORBA and DDS. Common
middleware services comprise the next layer.



After distribution middleware is implemented, it is easier
to program across a network. The next challenge is deciding
how to build reusable services that name the information,
discover services, detect subscribers’ presence, send events
predictably, monitor the infrastructure, provide information
durability, maintain historical data, record data flows and
transactions, perform failover operations, etc., which fall
within the realm of common middleware services .

Domain-specific middleware services form an important
layer. These middleware services involve intellectual prop-
erty or value added in a particular domain such as avionics,
SCADA, C4ISR, air traffic management, and healthcare.
This area is where the next generation of standards and ca-
pabilities must be researched and transitioned into practice.

C. Promising Foundations Towards Elastic CPS Middle-
ware: Data Distribution Service (DDS)

The Object Management Group’s (OMG) Data Distribu-
tion Service (DDS) [15] supports many of the criteria for
large-scale CPS software infrastructure mentioned above,
i.e., it is flexible, open, uniform, and scalable. DDS offers a
pattern language and a powerful software infrastructure for
building loosely coupled, heterogeneous, evolvable, scalable,
and dependable large-scale CPS.

DDS supports different types of information modeling,
including relational modeling which uses a data-centric
publish-subscribe abstraction in which events and their re-
lationships to each other may be defined. It also supports
object-oriented information modeling with its data local
reconstruction layer.

DDS defines a global data space that enables publishers
and subscribers to read and write topic data asynchronously,
anonymously, and in a manner that is decoupled in time
and space. It allows the production and consumption of data
in this global data space and offers control over the ways
in which information flows through a space, which is an
essential capability for large-scale CPS.

DDS is also well suited for large-scale CPS in because
of its rich set of QoS policies, which allow variables es-
sential to delivering information in a timely and dependable
manner to be controlled. There are about two-dozen QoS
policies available in DDS, to handle priorities, deadlines,
data durability, replication and redundancy, history, resource
utilization and more. QoS policies that are particularly
relevant to large-scale CPS include the ability to indicate
latency and reliability bounds. Likewise, these QoS policies
also support the ability to manage coherency issues and
resource constraints.

DDS allows matching of publishers and subscribers in
terms of QoS policies that are requested/offered (RxO). This
distributed matching capability allows DDS implementations
to decide how best to connect end-to-end flows among
producers and consumers. When this capability is integrated

on top of intelligent communication infrastructure, it is able
to provide enhanced control over the network core.

The ability to bridge diverse components of a CPS
together is crucial. DDS provides many ways to bridge
other technologies through the DDS data bus, which en-
ables communication with other services and protocols in
a way that can interoperate seamlessly with both legacy
and new components and systems. There are also a number
of standards available within the DDS ecosystem, such as
language mappings for C++ and UML, and it is possible to
take advantage of other standards as well, such as through
mappings to RESTful services for tracking system status,
and sending alerts and updates to key people.

When integrating large-scale CPS, no single vendor is
likely to offer a sufficient set of services to realize an
entire CPS. The potential to interwork and connect between
different parties using a heterogeneous selection of middle-
ware is thus both valuable and necessary. Interoperability
protocols supported by DDS make it possible for services
from different vendors to interoperate. There is also currently
a vibrant research community focused on DDS [16], which
further motivates its potential applicability as a context
within which further refinement of policies and mechanisms
for enforcing CPS semantics can be prototyped, explored,
evaluated, and deployed.

D. Promising Foundations towards Large-scale Sensing and
Processing: Mobile Cloud Computing

As outlined in Section 5.1, a key goal of large-scale CPS
systems is building systems that are flexible, open, uni-
form, and scalable. Mobile cloud computing is an emerging
paradigm for building large-scale CPS that can sense the
world through commodity mobile device sensors, aggregate
this data in the cloud, and then make decisions that impact
real world processes and decisions [17], such as vehicle
navigation. These large-scale mobile cloud systems are
attractive because of the ubiquitous deployment of existing
mobile devices that can be used to rapidly construct large-
scale CPS that sense and react to their environments in real-
time. Moreover, these systems contain software APIs and
distribution mechanisms that span huge numbers of devices
in the Internet of Things. Cloud computing provides the
additional scalability needed to adjust resource allocation
and utilization as mobile devices join and leave the large-
scale CPS.

VI. CONCLUSION

Despite advances in elastic hardware and middleware
technologies such as DDS, it is still hard to deploy CPS
in cloud environments, making it necessary to investigate
further advances in the state of the art for integrated elastic
hardware-software infrastructures. It is unlikely that public
clouds will serve as the basis of mission-critical large-scale
CPS. It is more likely that private clouds will be used,



but that does not mean those systems will not benefit from
standards and existing technologies.

What will matter most in developing new computing
clouds for CPS is how a fundamental tension between multi-
tenancy and elasticity on the one hand, and precision in the
resulting CPS properties on the other hand, can be addressed.
Virtualization may be beneficial if it can be afforded, but
an alternative could be to run on the bare hardware using
powerful integrative middleware technologies, such as those
provided by (or perhaps evolved from) successful software
infrastructure standards, such as DDS.

As an exemplar of the kind of flexible and efficient
middleware that can be helpful for developing large-scale
CPS, DDS is a particularly intriguing venue for further
investigation because it is standards-based and includes a
number of open-source solutions that facilitate the mixing
and matching of capabilities and the ability to build infras-
tructure for dependable cyber-physical systems.

Combining the precise QoS fidelity needed by CPS with
the scale and elastic sharing of resources offered by Cloud
Computing is a promising direction for systems researchers.
Although progress has been made, there remain many hard
research challenges surrounding large-scale CPS, as dis-
cussed in the forthcoming report from the NSF Workshop
on Cloud Computing for Cyber-Physical Systems [11].

In particular, thorough investigation of the trade-offs
among the dimensions of QoS fidelity, system scale, and
degree of asset sharing, is essential to separate accidental
complexity that can be avoided from inherent complexity
that must be managed. Experience so far developing large-
scale CPS, and ongoing research towards even larger scale
CPS, suggest that we have not yet reached the limits of those
tradeoffs, but also suggest that new approaches, models,
analyses, and techniques will be needed for further progress
in large-scale CPS.

REFERENCES

[1] J. Ding, J. Sprinkle, C. Tomlin, S. Sastry and J. Pau-
nicka. ”Reachability Calculations for Vehicle Safety during
Manned/Unmanned Vehicle Interaction.” AIAA Journal of
Guidance, Control, and Dynamics, 35(1):138-152, 2012.

[2] S. Boyer, ” SCADA: Supervisory Control And Data Acquisi-
tion (4th Edition),” International Society of Automation, 2009,
ISBN 1936007096.

[3] Q. Li, T. Cui, Y. Weng, R. Negi, F. Franchetti, M. Ilic, ”An
Information-Theoretic Approach to PMU Placement in Electric
Power Systems,” IEEE Transactions on Smart Grid 4(1), pp.
446-456, March 2013.

[4] R. Bashshur, T. Reardon, and G. Shannon, ” Telemedicine: A
New Health Care Delivery System,” Annual Review of Public
Health, 21(1), pp. 613-637, May 2000.

[5] M. Khalifa and R. Davison, ”SME adoption of IT: the case of
electronic trading systems,” IEEE Transactions on Engineering
Management, , 53(2), pp.275-284, May 2006.

[6] M. Schinkel and K. Hunt, ”Anti-lock braking control using a
sliding mode like approach,” American Control Conference,
2002.

[7] Y. Le Gorrec, J. Magni, C. Doll, and C. Chiappa, Modal
Multimodel Control Design Approach Applied to Aircraft
Autopilot Design, Journal of Guidance, Control, and Dynamics
21(1), 1998.

[8] M. Pajic and R. Mangharam, ”Spatio-Temporal Techniques for
Anti-Jamming in Embedded Wireless Networks”, EURASIP
Journal on Wireless Communication and Networking, 2010.

[9] P. Evans and M. Annunziata, ” Industrial Internet - Pushing the
Boundaries of Minds and Machines,” General Electric, avail-
able from www.ge.com/docs/chapters/Industrial Internet.pdf.

[10] P. Lardieri, J. Balasubramanian, D. C. Schmidt, G. Thaker,
A. Gokhale, and T. Damiano, “A Multi-layered Resource
Management Framework for Dynamic Resource Management
in Enterprise DRE Systems,” the Journal of Systems and
Software: special issue on Dynamic Resource Management in
Distributed Real-Time Systems, editors C. Cavanaugh and F.
Drews and L. Welch, Vol 80, Issue 7, July 2007, pgs. 984-996.

[11] ISIS, ” NSF Workshop on Cloud Computing
for Cyber-Physical Systems,” available from
www.isis.vanderbilt.edu/workshops/cc4cps.

[12] J. Balasubramanian, A. Gokhale, A. Dubey, F. Wolf, C.
Lu, C. Gill and D. Schmidt, ” Middleware for Resource-
Aware Deployment and Configuration of Fault-tolerant Real-
time Systems,” IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS’10), April 2010.

[13] Linda Northrop et al, ” Ultra-Large-Scale Systems,”
Software Engineering Institute, 2005, available from
www.sei.cmu.edu/uls.

[14] A. Hakiri, P. Berthou, A. Gokhale, D. Schmidt, T. Gayraud,
” Supporting End-to-End Quality of Service Properties in OMG
Data Distribution Service Publish/Subscribe Middleware over
Wide Area Networks, ” Journal of Systems and Software
86(10), October 2013.

[15] D. C. Schmidt, A. Corsaro, and H. Van’T Hag,?” Addressing
the Challenges of Tactical Information Management in Net-
Centric Systems with DDS,” CrossTalk special issue on Dis-
tributed Software Development, May, 2008, pgs. 24-29.

[16] A. Hakiri, P. Berthou, A. Gokhale, D. Schmidt, T. Gayraud,
” Supporting End-to-End Quality of Service Properties in OMG
Data Distribution Service Publish/Subscribe Middleware over
Wide Area Networks, ” Journal of Systems and Software
86(10), October 2013.

[17] J. White, S. Clarke, C. Groba, B. Dougherty, C. Thomp-
son, and D.C. Schmidt, ” R&D challenges and solutions for
mobile cyber-physical applications and supporting Internet
services,”Journal of internet services and applications, 2010,
1(1), pgs. 45-56.


