
Generic Formal Framework for Compositional
Analysis of Hierarchical Scheduling Systems

Jalil Boudjadar
Aarhus University, Denmark

jalil@eng.au.dk

Jin Hyun Kim, Linh Thi Xuan Phan, Insup Lee
University of Pennsylvania, USA

{jinhyun,linhphan,lee}@cis.upenn.edu

Kim G. Larsen, Ulrik Nyman
Aalborg University, Denmark
{kgl, ulrik}@cs.aau.dk

Abstract—We present a compositional framework for the
specification and analysis of hierarchical scheduling systems
(HSS). Firstly we provide a generic formal model, which can
be used to describe any type of scheduling system. The concept
of Job automata is introduced in order to model job instantiation
patterns. We model the interaction between different levels in the
hierarchy through the use of state-based resource models. Our
notion of resource model is general enough to capture multi-core
architectures, preemptiveness and non-determinism.

I. INTRODUCTION

Features and aspects of safety-critical systems are becoming
more diverse, and thus schedulability analysis of these systems
is becoming ever more complex. Classic analytical frameworks
provide formalisms for describing scheduling systems, such
that they can be formally analyzed. Each framework comes
with its specific set of features and limitations; some only
handle periodic tasks [19], other only handle a limited set of
scheduling mechanisms [3]. Automata-based approaches [5],
[2] to schedulability analysis allow for detailed description
of the behavior, such as task inter-dependency, environment
mode, shared resources and communication delay. On the
other hand automata-based models are very system-specific
and harder to modify. The current paper bridges the gap
between these two approaches by introducing a formal mod-
eling formalism, with an automata-based semantics, which
allows more details. Besides bridging the gap, we also ensure
our framework is compositional such that subsystems can be
analyzed individually.

In the automotive industry safety-critical features such as
braking and engine control are implemented on the same
platform as comfort-oriented features such as climate control
[10]. One major way to deal with this complexity is to organize
the scheduling system as a hierarchy of components [9], [16],
[17]. Compositional frameworks have been presented [19],
[20], [14], [15], [7] that can be used for the schedulability
analysis of hierarchical scheduling systems (HSS). A recent
trend is to use model-based techniques [3], [7], [8], [21],
[5] to obtain a more detailed analysis of the systems. We
aim at providing a formal framework which enables this
more detailed modeling while still satisfying the purpose
of introducing a hierarchy. We present a framework for the
specification of hierarchical scheduling systems with a clearly
defined formal semantics. Two novel aspects that our model
introduces are job-automata and state-based resource models.

Job-automata are used to describe any potential instantiation
pattern of each task in a given component. A job-automaton
can instantiate according to a regular periodic, sporadic or
aperiodic pattern. The separation of job invocation to an
external mechanism ensures the flexibility of our approach.
Since the resource model behavior is independent from the
scheduling system we firstly consider an abstract resource
model which specifies the common behavior of all resource
models. We refine the abstract resource model, by considering
aspects such as preemption, multi-core, resource types and
supply patterns.

Given the detailed resource models each level of the hier-
archy can be analyzed separately. Thus the formal semantics
is given at the component level. A resource model functions
as a contract between a resource supplying component and
its resource demanding components. The schedulability of a
component can be stated as a reachability problem on the
transition system defined by the formal semantics.

For this reason, we formalize a generic compositional
framework for hierarchical scheduling systems, where the
instantiation of tasks and resource model are generalized to
cover more realistic scheduling systems, and model checking
techniques are used for the analysis of subsystems.

Fig. 1 is a scheduling system having one level of hierarchy,
which will be used to explain our framework. A task template
Ti is instantiated as a job Ji,j by the job-automaton given as
a transition system. Each component consists of a scheduling
mechanism, a job-automaton and a set of tasks.

When considering component C2 its tasks are supplied

Fig. 1. Generic hierarchical scheduling system



by the resource model R(T1). R(T1) is associated to task
T1, which is the parent of the component C2. In the actual
system, the component C2 is supplied by the resource R(T1)
exactly when T1 is scheduled. The resource model serves
as an abstraction of all potential supply patterns. Internally
C2 schedules according to rate monotonic scheduling (RM).
The collective resource requirements of C2 is given by the
interface I(C2). The schedulability analysis for a component
C2 can be conducted in two steps; first, it is checked that
every task in C2 is schedulable against I(C2). Second, it is
checked that R(T1), where T1 is a task within C1, satisfies
I(C2). The schedulability of a component can be determined
by checking the tasks against the interface requirements. In
turn the interface has to be satisfiable by the resource model.

The main contributions of this paper are: 1) Formal specifi-
cation and semantics for compositional hierarchical scheduling
systems. 2) Job-automata as a mechanism that instantiates the
tasks of a component following any pattern. 3) State-based
resource models which can describe complex resource supply
patterns, such as multi-core contexts.

The rest of the paper is organized as follows. Section II
describes most relevant related work. Section III introduces
the formal basis needed for the framework. Section IV defines
the syntax and semantics of our framework together with
the graphical representation of our generic resource model.
Section V describes how a scheduling system specified us-
ing our framework can be analyzed compositionally. Finally
Section VI concludes the paper.

II. RELATED WORK

In the following we provide related work. Resource supply
pattern is a very important aspect in defining a hierarchical
scheduling system, as they enable the decomposition of the
system. Resources are often represented by either periodic
[19] or explicit deadline periodic [11] resource models. The
resource models represent an interface between a component
and the rest of the system. In [13], the authors introduced the
Dual Periodic Resource Model and presented an algorithm
for computing the optimal resource interface, reducing the
overhead suffered by classic periodic resource models.

We introduce a generic resource model, where the behavior
is specified using automata. At each supplying state, our
resource model can exhibit a different supplying pattern; non-
deterministic, parallel, etc.

Several compositional analysis techniques [19], [12], [11],
[20], [1], [7], [5] have been proposed. An analytical com-
positional framework was presented in [20] as a basis for
the schedulability analysis of hierarchical scheduling systems.
Such a framework relies on the abstraction and composition
of system components, which are given by periodic interfaces
without any specification of the tasks concrete behavior. Other
frameworks are also using a component-based modeling, but
not necessarily compositional analysis [21], [18], which is a
distinguishing contribution of our work.

In [15] arguments are presented for having more general
event models, not just periodic and sporadic. We achieve this

using job-automata that model the instantiation patterns. Job-
automata as presented in this paper are comparable to task-
automata [2]. The main difference is that we deliberately sep-
arate the task instantiation from the rest of the task behavior.

We generalize our prior work in [6] so that various tasks
models of hierarchical scheduling systems can be analyzed in
a compositional way. In previous work, component tasks are
scheduled by only RM and EDF on a single CPU. In this work,
we allow various resources, multi-core and I/O resources, to
be taken into account in the analysis.

III. PRELIMINARIES

The modeling and verification of real-time systems using
timed automata are mature topics, to which a large amount
of work has been devoted during the last two decades [4].
Timed automata enable the quantification of time using the
clock mechanism and also elegantly model non-determinism.

Let us first introduce the following notations:
• We assume a universe X of clocks. A clock x is a

variable whose type equals the set R≥0 of non-negative
real-numbers. The default initial value of all clocks is 0.
Moreover, clocks can only be read or reset to 0.

• We define P(X ) to be the set of clock invariants given
by α ::= x < n | x ≤ n | α∧α where x ∈ X and n ∈ N.

• Since clock invariants will be associated to states, one
needs to be able to tighten a state invariant after per-
forming a delay at the state. To this end we introduce the
operator 	. Given an invariant I , the construction I 	m
tightens the invariant I with m such that each constraint
x < n, respectively x ≤ n, in I is rewritten to x < n−m,
respectively x ≤ n−m.

• Similar to invariants, we define the set of clock con-
straints over X by G(X ) given by the following:

α ::= x < n | x ≤ n | x > n | x ≥ n | α ∧ α

• Λ is a set of instantaneous events, where two events can
synchronize if they are compatible. We have a distin-
guished internal event τ , which is non-synchronizable.

Basically, a timed automaton is a transition system where
the delay spent at each state could be constrained by a clock
invariant. Moreover, the triggering of each transition must
happen according to the time guard associated to such a
transition.

Definition 3.1 (Timed automaton): A timed automaton
(TA) over a set of events Λ is a tuple 〈L, l0,X , Inv,→〉
where L is the set of locations, l0 ∈ L is the initial location,
Inv : L → P(X ) associates an invariant to each location,
and →⊆ L×G(X )×Λ× 2P (X )×L is the transition relation.
For the sake of simplicity, we write l

G/λ/a−−−−→ l′ for
(l, G, λ, a, l′)
∈→. Timed automata can communicate with each other via
synchronization over compatible events.

Timed transition systems are the reference model used to
express and compare the behavior of real-time systems.

Definition 3.2 (Timed transition system): Given
an alphabet Λ, a timed transition system (TTS) over Λ, is a
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labeled transition system (LTS) 〈S, s0,→〉 over Λ∪R≥0 where
S is a set of states, s0 is the initial state, and the transition
relation is such that →⊆ S× (Λ∪{τ}∪R≥0)×S, with τ the
silent (discrete) event and R≥0 represents the set of continuous
actions (time domain). Here and elsewhere, we write s λ−→ s′

for (s, λ, s′) ∈→, a transition linking the state s to a state s′

via the occurrence of label (event/action) λ.

IV. FRAMEWORK

This section introduces the syntax of our system units and
the semantics defined at the component level. First of all, we
use the following sets: T is the set of all tasks, J is the set
of all potential jobs, C is the set of all components.

A. Syntax Representation

In this section we define the syntax used to specify com-
ponents of a scheduling system. Fig. 2 shows a graphical
representation of a scheduling component, consisting of a
scheduling mechanism (SC), two tasks Ti, Tj , a job-automaton
(which is the parallel composition of two processes) and a
queue for storing the component jobs.

Fig. 2. An example of a component C

Definition 4.1 (Task): A task Ti ∈ T is a tuple (et, rd)
where: et is the execution time. rd the relative deadline of the
task, with et ≤ rd.
For the sake of flexibility, we are omitting the task period and
instead specify it by an arrival pattern at the environment level,
i.e. the job-automaton, which is an instantiation mechanism
that periodically triggers the task execution. Each triggered
execution is called a job, so that a job is a task instance that
runs only once.

Definition 4.2 (Job): A job J ∈ J is a tuple
(Jid, status, d, e, type) where:
• Jid is a unique identifier of the job.
• status is one of {Ready,Running,Done}.
• d is the relative deadline.
• e is the remaining execution time.
• type ∈ T is the task from which J was instantiated.
The status Ready means that the job is ready and waiting

to be scheduled (including when it has just been preempted),
whereas the status Running indicates that the job is using the
resource. Once the execution of a job is over, the execution
time constraint is successfully satisfied, the job status is
updated to Done.

The purpose of a job-automaton is to provide the instan-
tiation patterns of tasks into jobs. Basically, a job-automaton
is a timed automaton (with Λ = {τ}) where to each location
we associate the tasks to be instantiated once such a location
is reached. A job-automaton can be a parallel composition of
several processes.

Definition 4.3 (Job-automaton): A job-automaton
JA is a tuple 〈L, l0,X , Inv,→, Instance〉 where 〈L, l0,X ,
Inv,→〉 is a timed automaton and Instance : L 7→ T is a
mapping function defining the tasks to be instantiated on each
of the job-automaton locations.

A resource model associated with a task will supply re-
source to its child component whenever at least one job instan-
tiated from the associated task is executing. We abstract the
behavior of the resource models in order to omit the specific
characteristics like preemptiveness, single and multi-core of
the given resource model. In that way we abstract the behavior
of any resource model by a transition system consisting of
two states: Supplying and non-supplying. For compositionality
purposes, the triggering of transitions between states is non-
deterministic, i.e. the resource supply is non-deterministic
because we do not know when a parent level component
supplies the resource to its child components. We assume that
the resource model is initially at location NonSupply because
when the system starts, no job is instantiated, which means that
there is no need to supply.

The resource model presented here is purposefully very ab-
stract, to keep the semantic definitions simple. In Section IV-C
we instantiate concrete resource models with detailed and
concrete supply patterns. The semantics of these resource
models still conform to the very abstract model.

Definition 4.4 (Abstract resource model): An abstract
resource model is a timed automaton 〈{Supply,
NonSupply}, NonSupply,X , Inv,→〉 where → is the
transition relation.
The abstract resource model can be viewed as an implemen-
tation of the component interface, by which an amount of
resource is guaranteed to be supplied. We can characterize
the execution traces of the abstract resource model by
〈(NonSupply1, δ11); (Supply1, δ

2
1); (NonSupply2, δ

1
2); (Supply2, δ

1
2); ..〉

where for each execution step (si, δ
j
i ), δ

j
i is the time elapsed

at location s during the ith visit to that location. For the sake
of notation, we use δ1i for the delays at location NonSupply
and δ2i for the delays at location Supply. An execution
fragment F ai of the abstract resource model is given by
〈(NonSupplyi, δ1i ); (Supplyi, δ

2
i )〉. Execution traces are

time-diverging, since the supply time for each fragment is
strictly larger than zero.

We use a scheduling function to define which job has
priority over the other jobs at any point in time. The function
is so abstract as to model any real scheduling algorithm.

Definition 4.5 (Scheduling function): Scheduling
function Sched determines which job has priority over the
others, it is given by: Sched : J × J× R≥0 → J , where
R≥0 is the time domain.

In Fig. 2 we illustrate the job queue Q(C) which stores
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the jobs in prioritized order. In a practical implementation a
scheduling function will operate on the whole queue using its
particular scheduling principle. Now we define a component,
a scheduling unit which can be any level in the hierarchy.

Definition 4.6 (Component): A component is a tuple
(W,JA, Sched) where:

• W is the workload defined as a set of tasks.
• JA a job-automaton specifying the instantiation of tasks.
• Sched is the scheduling mechanism.

B. Semantics of Components

Within a component, for each created job Ji we introduce
two variables xi and xri . Variable xi will store the point in time
where the job Ji was created, and will be used to compute the
time left to deadline, whereas xri will keep track of the starting
time of the current supply for Ji.

We introduce a new function fresh(Ti) which assigns to
each newly created instance of a task Ti a fresh identifier.
Once a new identifier is created, using the function fresh(),
it will be assigned a job structure (status, et, rd, type). To
distinguish between the identifier as job name and the job
structure associated to it, we use the notation [[.]].

Since the resource model is abstract, we do not know how
long the resource is available for each supply. Thus, we do not
describe the timed transitions of the semantics and just provide
the discrete ones. However, any delay satisfying the invariant
of a location can be a potential timed transition. Timed
transitions are easily captured using a refined (more concrete)
description of the resource model as given in Section IV-C.

We introduce 3 variables clk, loc and locr such that:

• clk ∈ R≥0 is used to store the global time at any given
state in the semantics.

• loc memorizes the current location of the job-automaton
JA at any given state.

• Similarly, locr stores the current location of the abstract
resource model R.

Definition 4.7 (Component Semantics): Given component
C = (W,JA, Sched) and resource model R, the semantics
of C is given by a timed transition system 〈S, s0,→〉 where:

• S ⊆ R≥0 × 2J × {loc} × 2R≥0 × {locR} is the set of
states each of which is a quintuple configuration,

• s0 = (0, ∅, l0, ∅, NonSupply) is the initial state where
0 is the initial global time, ∅ is the initially empty job
queue, l0 is the initial location of the job-automaton JA.
The second ∅ states that no xi and xri variables are
already created since no job exists, and NonSupply is
the initial location of the abstract resource model R.

• the transition relation is given by the following rules:

Creation :

l
G/λ/a−−−−−→ l′, s(loc) = l, s |= G, ∀Ti ∈ Instance(l′)

Jf := fresh(Ti), xJf := clk, xrJf
:= 0

[[Jf ]] := (Ready, Ti.e, Ti.d, Ti)

s
λ−→ s[loc 7→ l′]‖(Jf , xJf , x

r
Jf

)

The rule Creation describes the creation of a new job of
each of the tasks Ti associated to a location l′ of the job-
automaton once this location is reached. So that if the current
location (s(loc)) of the job-automation is l and there exists an
enabled (s |= G) transition leading from l to l′, we create a job
for each task Ti ∈ Instance(l′). Each of the newly created
jobs at l′ has been assigned a new identifier, and will run
in parallel with the existing system. To each identifier Jf we
associate a job structure [[Jf ]] := (Ready, Ti.et, Ti.rd, Ti), and
introduce two variables xJf and xrJf to manage the execution
and preemption of such a created job. Since each of the created
jobs does not start running yet, the amount of execution time
elapsed is set to zero (xrJf := 0). Moreover, we store the
current time clk in xJf to keep track of the relative deadline.

In the rest of this paper the notation [[]] can be omitted if it
is clear from the context, i.e. the case where the job identifier
is followed by a dot and a field of the job structure.

Done :

Ji ∈ s, s(Ji.status) 6= Done
s.clk ≤ s(Ji.d) + xi, s(Ji.e) ≤ 0

s
τ−→ s[Ji.status 7→ Done]

The rule Done describes the successful termination of a
job execution (s(Ji.e) ≤ 0) without missing the deadline
(s.clk ≤ s(Ji.d) + xi). For any existing job Ji in the current
component state (queue), if the execution time constraint is
already satisfied (s(Ji.e) ≤ 0) and the deadline is not missed
the job will be declared as successfully done.

Missed :

∃Ji ∈ s | s.clk > s(Ji.d) + xi

∧

 s(Ji.e) > 0 ∧ s(Ji.status) = Ready
∨
(xri + s(Ji.e) > s.clk) ∧ s(Ji.status) = Running

s
τ−→ Deadlock

The rule Missed describes the deadline miss of a job which
is either running or waiting to be scheduled. A deadlock occurs
when a deadline is reached and the remaining execution time
is greater than zero. The rule has two cases for Running and
Ready respectively. In the case where the job is ”Running”,
we ensure that the deadline is not missed even if it finishes
exactly on the deadline. The current interpretation of missing a
deadline is viewed as a deadlock, modeling the safety property
of a hard real-time system.

Run :

s(locr) = Supplying, ∃Ji ∈ s | s(Ji.status) = Ready
∧ ∀Jj ∈ s Sched(Ji, Jj , s.clk) = Ji

s
τ−→ s[Ji.status 7→ Running, xri := clk]

The rule Run describes that a job can start executing when it
is scheduled and the resource is available. We store the current
time clk in xri in order to later be able to calculate when the
execution time will expire. The job keeps running until it is
either done, preempted or misses its deadline. The rule Run
will only be applied when no job is currently running. In all
other cases, one of the two preemption rules will be applied.

If the resource model R is multi-core (see Section IV-C)
then R is supplying (s(locr) = Supplying) if at least one
core is currently supplying the resource.
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Preempt1 :

s(locr) = Supplying, ∃Ji, Jj ∈ s |
s(Ji.status) = Ready ∧ s(Jj .status) = Running∧

Sched(Ji, Jj , s.clk) = Ji

s
τ−→ s[Ji.status 7→ Running, Jj .status 7→ Ready,

Jj .e := Jj .e− (clk − xrj ), x
r
i := clk]

The rule Preempt1 describes the preemption of a job Jj by
another job Ji.

Preempt2 :

∃Ji ∈ s | s(Ji.status) = Running ∧
s(locr) = NonSupply

s
τ−→ s[Ji.status 7→ Ready

Ji.e := Ji.e− (clk − xri )]

The rule Preempt2 describes the preemption of the execu-
tion of a job Ji due to the non-availability of the resource.

C. Resource Models for HSS

In order to model any particular resource model, a generic
resource framework would need to be able to specify urgency,
preemptiveness and single/multi-core supply patterns. After
introducing the different characteristics that a resource model
can be specified with, we formally define the class of potential
resource models that can be instantiated. The semantics of
resource models is given as a Timed Transition System (TTS).

We use resource models to describe the interface between
different levels of the hierarchy, in such a way that the system
can be analyzed compositionally. In this way, a resource
model abstracts the scheduling behavior of the parent task. It
describes all potential ways in which resources can be supplied
to the level below it. For exactly this reason non-determinism
is needed to model a concrete resource model.

Generally, a resource of a scheduling system is characterized
by the following properties.
• Regularity: A resource allocation may be given according

to a strict period or a loose (quasi) period.
• Time-wise: A resource allocation may be given according

to a time schedule.
• Event-triggered: A resource allocation initiated by an

event.
• Availability: Resource availability at some point in time.
• Amount: The amount of resource to be supplied within

a time duration.
In order to make our schedulability analysis technique

compositional, we add non-determinism to describe the supply
of resources as follows:
• Non-deterministic preemption: The resource supply may

be preempted at any point in time as long as it is
accomplished according to a resource contract.

Generally our resource model, given in Definition. 4.8, can
be seen as a specialization of Timed Automata. We identify
four different types of locations that can be part of a resource
model. Each of these types has distinctively different semantic
interpretation.
• Non-urgent (non-deterministic) and preemptible re-

source supply (NP ). The resource allocation can be
delayed and preempted.

• Urgent (deterministic) and non-preemptible resource
supply (UN ). The resource allocation must start imme-
diately and cannot be preempted.

• Non-urgent and non-preemptible supply (NN ). The
start of resource allocation can be delayed, but cannot be
preempted once it begins.

• Non-supply (N ). No resource is allocated.
In Table I, we summarize the supplying location types.

Notice that an urgent supply location cannot be preemptible.

TABLE I
RESOURCE SUPPLYING LOCATION TYPES.

Preemptible Non-preemptible
Urgent - UN

Non-urgent NP NN

As the supplying resource model behavior is quite indepen-
dent from the resource demanding component, the semantics
of resource models is given separately. This means that we
can explore the state space and show the different behaviors
of the concrete resource model (Definition. 4.8) regardless of
the scheduling system.

Given a set of resourcesR, a buffer B : R → N is a function
that specifies the amount of resource that a given resource
model guarantees to provide at each supplying location. The
guaranteed resource amount will be supplied according to a
supply pattern sPattern, which specifies how the different
resource units collaborate to provide the amount of resource
guaranteed by B. If two resource units supply in parallel, the
supply time of the resource model could be half of the resource
usage time specified in B. The supply patterns of each resource
model are specified by:

α ::= α ‖ α | α+α | r

where r ∈ R is a resource unit. Resource units can be used
in a strict parallel mode (α‖α) and choice mode (α+ α).

Using the choice pattern, only one resource unit is non-
deterministically selected to supply the resource. The strict
parallel pattern states that the resource units are used to supply
resource simultaneously. In the individual resource pattern (r),
only one individual resource unit is used.

Given a time duration x and a supply pattern α, we
characterize the amount of resource that minimally will be
provided according to α during x by x⊗ α given as follows:

x⊗ α =


x if α ::= r
2∑
i=1

x⊗ αi α ::= α1‖α2

min(x⊗ α1, x⊗ α2) α ::= α1 + α2

One can wonder why we consider the minimum amount in
case of choice pattern, this is simply because min(x⊗α1, x⊗
α2) is the resource amount that is always guaranteed to be
supplied independently of the choice of α1 or α2. In fact,
the resource amount supplied by a resource model during a
given time interval depends mainly on the concurrency of the
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resource units. For hierarchical scheduling systems, we define
concrete resource models as follows:

Definition 4.8 (Resource model (RH )): A resource model
RH is a tuple (L, l0,X , Inv,R, locType,B, sPattern,→)
where:
• L is a set of locations,
• l0 ∈ L is the initial location,
• X is a set of clocks,
• Inv : L → P(X ) associates to each location a clock

invariant,
• R is a set of resource units,
• locType : L → {NP,UN,NN,N} gives the type of

each location; for the initial location locType(l0) = N .
• B : L \ {l | locType(l) = N} → N is a buffer function

that associates to each supplying location the amount of
resource guaranteed to be supplied at that location.

• sPattern : L \ {l | locType(l) = N} → α states the
supply patterns used at each supplying location,

• →: L× G(X )× Λ×A× L, where Λ is a set of events,
and A is a set of actions.

In order for a model to be well constructed, we assume
that the invariant associated to each supplying location l is
larger than the buffer B(l) of that location. The resource model
defined above is a refinement of the abstract resource model
given in Definition 4.4, where the Supply state of the abstract
resource model is refined by a sequence of transitions over a
set of supplying locations having different supply patterns at
the concrete resource level.

The semantics of the concrete resource model RH is given
as 〈S, s0,→〉 where S ⊆ R≥0 × L× R≥0. In fact, each state
of the semantics is a triplet configuration 〈clk, loc, amount〉
where clk is already introduced to store the global time at
each state, loc stores the location of the resource model, and
amount is used to keep track of the remaining amount of
resource to be supplied. We introduce the operator ⊕ to update
the global time of a state with a given amount. Given a state
s = 〈clk, loc, amount〉, s⊕δ = 〈clk+δ, loc, amount〉 defines
a state identical to s except that the global time variable clk
is updated with δ.

The semantic interpretation of each state of the resource
model depends on its main characteristic (supplying, non-
supplying) together with the way (urgentness, preemptiveness)
the resource is supplied. The semantic interpretation of the
different location types is given by the following rules:

Delay :

locType(s(loc)) ∈ {N,NN,NP}
s(clk) + δ |= Inv(s(loc))	m

s
δ−→ s⊕ δ

m is the time duration for the resource model to supply the
resource amount B(s(loc)) guaranteed at the current location
s(loc) according to the supply pattern sPattern(s(loc)). The
supply time m is calculated as follows:

 m = 0 if locType(s(loc)) = N
m⊗ sPattern(s(loc)) = B(s(loc)) if locType(s(loc)) = NN
m⊗ sPattern(s(loc)) = s(amount) if locType(s(loc)) = NP

The rule Delay describes the delay at a non urgent location,
either supplying or non-supplying, while the invariant of that
location together with the potential resource amount to be
supplied are guaranteed. Inv(s(loc)) 	 m is the slack time,
which an invariant obtained by tightening each constraint
in Inv(s(loc)). The delay must consider the slack time for
supplying the resource if the current location is either NN or
NP , so that the time left (m) before violating the invariant
should cover the whole amount B(s(loc)) of resource to be
supplied. For locations of type NP , the slack time is calculated
using amount because the supply is preemptive thus we
need to know the remaining amount after the most recent
preemption.

FSupply :

locType(s(loc)) ∈ {UN,NN}, s(clk) +m |= Inv(s(loc))
m⊗ sPattern(s(loc)) = B(s(loc))

s
m−→ s⊕m

This rule describes the supply of the full resource amount
B(s(loc)) guaranteed by the current location s(loc). Thus,
once the current location is reached the resource supply
starts immediately and cannot be preempted. Moreover, the
the global time at the current location after delaying for
m time units must still satisfy the location invariant, i.e.
s(clk) +m |= Inv(s(loc)).

PSupply :

locType(s(loc)) = NP, s(amount) > 0
m⊗ sPattern(s(loc)) ≤ s(amount)

s(clk) +m |= Inv(s(loc))

s
m−→ s[amount := amount−m⊗ sPattern(loc)]⊕m

This rule describes a partial supply. Variable amount is
the current remaining resource budget to be supplied. After
each supply chunk m ⊗ sPattern(s(loc)) ≤ s(amount),
we remove the current supplied resource amount from the
remaining budgeted resource amount.

The semantics of a transition l
G/λ/a−−−−→ l′ of the resource

model RH is then obtained by sequencing the semantics
associated to the location l, given by the rules presented above,
and the event transition s λ−→ a(s[loc := l′; amount := B(l′)])
with s |= G ∧ Inv(l′). Similarly to the abstract resource
model, we define the time diverging execution traces of the
concrete resource model RH by a sequence of fragments
〈(siN , δiN ); (si1, δ

i
1); ..; (sim, δ

i
m)〉, where sN refers to states s

with locType(s(loc)) = N and each tuple 〈siN ; si1; ..; sim〉 is
the sequence of states visited during the ith execution of the
resource model together with the associated delay δ.

D. Graphical Representation

Fig. 3 shows the graphical notations we use to represent
the different types of states of our generic resource model.
Each of the states has been distinguished by a specific shape
and provided with a label. States as well as transitions can be
associated with timing constraints.

Fig. 4 shows an example of our resource model. It consists
of 3 supplying states, having different supply patterns, and
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Fig. 3. Graphical representation of the locations

2 non-supplying states. Basically, the example is a resource
model that provides 2 computation CPUs and a specific IO
unit. After processing a message by CPU1 for 5 time units, it
will be sent without preemption at the second supplying state
(top, right corner) using CPU1 and IO unit. After sending
a message, the resource model keeps waiting at the second
non-supplying state (bottom, right corner). As soon as the
reception is acknowledged, the resource starts immediately
either the processing of a new message, in case of a successful
communication (fulfilled), or resending the old message
in case of fail using either CPU1 or CPU2 for 2 time units.
The action Replenish(x) refuels the resource buffer at the
target state with the specified amount x. In Definition 4.8 we
have chosen to use the buffer variable B as a tank to store the
refuel of action replenish() at state level instead of using
the action itself. Thus, 4 types of information can be inferred
from each state:
• The number of resource units to be used at that state.
• The supply pattern of the resource units at that state.
• The resource supply time at that state.
• If the resource supply is urgent/preemptive or not.

Fig. 4. Example of a resource model

E. Instantiation for Classic Resource Models

In this section, we show how classic resource models,
PRM and EDP, can be instantiated from our generic resource
description. For instance, if an interface requirement adopting
the parameters of PRM, (period, executionTime), is (10,3)
meaning that 3 time units of resources are required every 10
time units by the demander, all the resource models in Fig. 5
satisfy this requirement. The Periodic Resource Model (PRM)
[19] can be instantiated from the generic resource model using
one supplying location (NP, UN or NN) having a single supply
pattern (α ::= r) together with a non-supply location. The time
spent at the supplying location each period is constrained by
the budget of the PRM. Examples of the instantiation for PRM
are depicted in Fig. 5(a) and Fig. 5(b).

For the Explicit Deadline Periodic (EDP) resource model
[11], which is a PRM with deadline, the invariant of the
supplying location must be constrained with the given deadline
as depicted in Fig. 5(c). An instantiation for PRM with a urgent
non-preemptible supply is illustrated in Fig. 5(d).

(a) (b)

(c) (d)

Fig. 5. Instantiation for PRM and EDP

Fig. 5(a) specifies that cpu1 is available for 3 time units
every 10 time units and the assignment is possible at any time
before the period of 10 time units expires. In the same way,
Fig. 5(b) specifies that the same behavior as Fig. 5(a) but
the assignment is non-preemptive once it begins. Fig. 5(c)
specifies a deadline of the resource assignment. Once the
resource model begins the assignment of cpu1, the assignment
of 3 time units should be over no later than 8 time units.
Finally, Fig. 5(d) states that the assignment of the resource
must start as soon as a new period begins and it is non-
preemptive.

V. SCHEDULABILITY ANALYSIS

In this section we show how to analyze the schedulability
of a component. The process consists of three different kinds
of steps, with examples given in Figure 6.

Fig. 6. Analysis steps for a generic HSS

A. Component Schedulability Check

This analysis step consists in checking that a given com-
ponent is schedulable with respect to its interface. For that
purpose we consider the component structure (W,JA, Sched)
and the behavior of its interface, given by the abstract resource
model, then check whether the semantics (Definition 4.7)
reaches a deadlock state. A component is schedulable if the
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deadlock state will never be reached. This analysis process can
be done using symbolic model checking using the following
CTL query: ∀ [] not deadlock.

B. Interface Check

This analysis step consists in checking that the resource
requirement of a demanding component is satisfied by the
concrete resource model supplying such a component. We con-
sider the interface behavior, specified by the abstract resource
model, and check that each potential scenario of supplying a
resource at the abstract level can be satisfied by the behavior
of the concrete resource model.

For each execution trace of the abstract resource model,
〈(NonSupply1, δ11); (Supply1, δ

2
1); (NonSupply2, δ

1
2); (Supply2, δ

2
2); ..〉

there exists a matching execution trace of the concrete resource
model. For each execution fragment 〈(NonSupplyi, δ1i );
(Supplyi, δ

2
i )〉 and its corresponding execution fragment of

the concrete resource model 〈(siN , δiN ); (si1, δ
i
1); (si2, δ

i
2); ..;

(sim, δ
i
m)〉 the following must hold:

• δiN ≤ δ1i ; the delay of the concrete resource model at
a non-supplying state is at least as tight as the delay of
the abstract resource model at the corresponding location
NonSupply,

• Σjδ
i
j ≥ δ2i the amount of resource supplied by the

concrete resource model must be at least as large as the
amount specified in the abstract resource model.

C. Resource Model Check

This analysis step consists in checking the behavior of
the concrete resource model against the task to which it is
associated in the parent level component. Such an analysis
can be done via a simulation relation between the component
behavior restricted to the jobs instantiated from a given task
and the concrete resource model associated to that task. This
analysis step is left as future work.

VI. CONCLUSIONS

We have presented a compositional framework for the
specification and analysis of hierarchical scheduling systems
(HSS). In the framework we model the interaction between
different levels in the hierarchy through the use of state-based
resource models. The resource models are general enough
to capture multi-core architectures, preemptiveness and non-
determinism.

As the most relevant future work we see: Checking the
concrete resource against the behavior of the task in the right
context. Future work also includes; automatic generation of
concrete resource models from specific task behavior, check-
ing concrete resource models against abstract interfaces and
automatically generating Uppaal models from HSS models.
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