

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 26, 2024

Faster function blocks for precision timed industrial automation

Pearce, Hammond; Roop, Partha; Biglari-Abhari, Morteza; Schoeberl, Martin

Published in:
Proceedings of 2018 IEEE 21st International Symposium on Real-Time Distributed Computing

Link to article, DOI:
10.1109/ISORC.2018.00017

Publication date:
2018

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Pearce, H., Roop, P., Biglari-Abhari, M., & Schoeberl, M. (2018). Faster function blocks for precision timed
industrial automation. In Proceedings of 2018 IEEE 21st International Symposium on Real-Time Distributed
Computing (pp. 67-74). IEEE. https://doi.org/10.1109/ISORC.2018.00017

https://doi.org/10.1109/ISORC.2018.00017
https://orbit.dtu.dk/en/publications/c4ac5fe3-1424-458b-be55-6ce5c4eb6354
https://doi.org/10.1109/ISORC.2018.00017

Faster Function Blocks
for Precision Timed Industrial Automation

Hammond Pearce, Partha Roop, Morteza Biglari-Abhari
Department of Electrical and Computer Engineering

University of Auckland, New Zealand
Email: hpea485@aucklanduni.ac.nz,
{p.roop, m.abhari}@auckland.ac.nz

Martin Schoeberl
Department of Applied Mathematics and Computer Science

Technical University of Denmark, Denmark
Email: masca@dtu.dk

Abstract—In industrial automation, safety-critical control sys-
tems need robust timing guarantees in addition to functional
correctness. Unfortunately, devices that are typically used in this
domain, such as Programmable Logic Controllers, often feature
architectures that are not amenable to static timing analysis, for
instance relying on general purpose microprocessors or embed-
ded operating systems. As a result, designers often rely on timing
values gained from simple measurement of running applications,
an approach that only provides very weak guarantees at best. The
synchronous approach for IEC 61499 Function Blocks, in con-
trast, has been demonstrated to be time predictable when run on
appropriate hardware, such as simple microprocessors. However,
simple microprocessors are often not fast or powerful enough
for modern automation requirements. In this paper, we examine
how the performance of synchronous IEC 61499 can be improved
through the usage of the multi-core T-CREST architecture, data
scratchpads, and an optimised compiler. Overall, our improve-
ments resulted in 60% shorter worst-case execution times.

I. INTRODUCTION

There are many examples of automation systems in industry,
such as complex conveyor belt networks like those found
in airport baggage handling systems, robotic arms moving
around large parts in manufacturing roles, and controllers that
monitor and react to power systems inside smart grids.

Figure 1 shows an example of an industrial process: a
lumber processing system. This would take wooden logs
and cut them into wooden planks. As an example of safety
requirements, the metal sawblades could be required to detect
contact with human skin, such as with the SawStop system,
which stops rotation within 5 milliseconds of skin contact [1].
This is an example of a safety-critical system, where the
controller must not only ensure functional correctness, but also
must react within strict timing deadlines. Kuo et al. call these
Precision Timed Industrial Automation (PTIA) systems [2].

Fig. 1: Sawmill System Diagram

Currently, PTIA systems are implemented with modern
Programmable Logic Controllers (PLCs). These are typically
implemented with general purpose processors designed by
ARM, Intel, and Freescale, and/or have complex runtimes or
utilize Real-Time Operating Systems (RTOSs) [3], [4]. Addi-
tionally, they are programmed in domain specific languages
such as Ladder Logic or Structured Text, which abstract away
the complexities of their implementations. The latest language
for these devices is IEC 61499 Function Blocks [5], [6].

Unfortunately, while approaches using these devices can
still feature verifiable functional correctness, the underlying
architectural decisions that increase performance over the
old-fashioned bare-metal or analog approaches come with a
cost — devices such as these will always struggle with static
timing analysis and verification. As a result, designers will
often rely on simple measurement based approaches to Worst
Case Execution Time (WCET) analysis [7]–[10].

Precision Timed (PRET) machines have been proposed
as an alternative to general purpose processors for the
implementation of PLCs [2], [11], and the synchronous
approach for IEC 61499 has consistently been demonstrated as
a time-predictable way of implementing the control programs
required on these platforms [10], [11]. However, until now,
time-predictable implementations of the synchronous approach
for IEC 61499 have been restricted in performance due to two
main issues. Firstly, there are large synchronisation overheads
involved when running code under synchronous semantics
[12]. Secondly, as time-predictability is also affected by un-
derlying hardware, prior implementations have been presented
only on lower-performance but time-predictable architectures.

Hence, this paper presents the following contributions:

• A new open-source compiler (called goFB) targeting
Function Blocks, which reimplements synchronous
semantics for IEC 61499, and a comparison against the
previous compiler FBC [13].

• A demonstration of time-predictable multi-core execution
of Function Blocks on the performant T-CREST [14]
architecture. T-CREST features a network of Patmos
cores, each with their own write-through caches,
scratchpad memories, and Argo Network-on-Chip (NoC)
connections.

SawmillController

WeightChangeEVENT

TouchBOOL

BadSpeedChangeEVENT

SawRun BOOL

CommandChange EVENT

StallDetectedChangeEVENT

StallDetectedBOOL

Message INTScaleOverweightBOOL

MessageChange EVENT

BadSpeedBOOL

TouchChangeEVENT

ControlRunBOOL

ControlChangeEVENT

Fig. 2: Sawmill IEC 61499 FB Interface

Fig. 3: (Partial) Sawmill IEC 61499 ECC

II. IEC 61499 FUNCTION BLOCKS (FBS)

This section introduces IEC 61499 FBs [5], the latest
domain-specific language for automation systems, through the
worked example of a safe sawmilling system. Firstly, the appli-
cation level view in Figure 1 shows the relationshop between
the various components of this system, whereby wooden logs
are introduced to a number of blades, which then perform the
cutting to output planks. For the purposes of this example, the
sawmill has a number of safety features, including capacitive
detection of skin on blade, overfull sawdust containers, and
unexpected lumber velocity change detection. Any of these
events occuring should cause the sawblades to stop rotating.

This system can be represented by FBs, one block of which
(the controller) is depicted in Figure 2.

As can be seen, components of the system are represented
directly in the IEC 61499 network via a model-driven
engineering approach. Memories and behaviours are
encapsulated directly into FBs, which are then composed into
networks, communicating with one another via event-data
interfaces, allowing for complex functionality to be realised
while preserving re-usability of each individual component.

There are three main types of FBs in the standard, namely:

• Basic Function Blocks (BFBs), which specify an
Execution Control Chart (ECC), associated data-
manipulating algorithms, and some amount of data
storage. An example ECC depicting part of the sawmill
controller is presented in Figure 3.

• Service Interface Function Blocks (SIFBs), which are
implementation-specific blocks that communicate directly
with underlying hardware (such as reading/writing LEDs
or switches).

• Composite Function Blocks (CFBs), which provide a
method of containing networks of BFBs, SIFBs, and
other CFBs inside another block.

The standard also allows for networks of FBs to be
contained within independent units of software known as
resources, with resources contained within devices, and with
networks of devices known as systems.

FBs communicate with one another via a defined event-data
interface. This is represented by the ports and linked lines in
Figure 2. Data lines only update when their associated event
triggers.

To fully implement the sawmill system, 28 FBs are required
if running on a normal single-core single-device architecture.
If a multi-core implementation is used, additional function
blocks are required to implement the communication between
the cores/devices.

A. Differing Model of Computations (MoCs) for IEC 61499

For some time, IEC 61499 lacked a rigorous MoC, allowing
for implementations to specify the precise behaviour of FB
networks themselves. The most common MoCs became the
Sequential acMoC [15], which executes FBs one at a time
in the order that they receive events, and favoured by the
FORTE [16] development environment; the Cyclic MoC [17],
which executes FBs in a round-robin fashion according to an
assigned priority, and favoured by the ISaGRAF [18] environ-
ment; and the Synchronous MoC, which cyclically executes
FBs in logical ticks according to synchronous semantics.

III. BACKGROUND AND RELATED WORK

In principle, it is simple to achieve system implementations
that are amenable to timing analysis, simply by avoiding
those architectural and software features that complicate the
process. For instance, architectures can be utilized that are
single-core, avoid caches, and don’t feature speculative or out-
of-order pipelines. However, while it was possible in the past
to do this with industrial automation, modern requirements
are starting to prevent approaches such as this from being
practical. Intensive computation and sub-millisecond response
times can now be required in physical process lines - such
as image recognition from a camera to control high-volume
conveyors managing product sorting [19].

In order to implement designs that can meet these
burgeoning requirements, then, we must have performant
architectures. The PRET philosophy proposes that with some
effort, architectures can be designed that are both predictable
and high-performance [8], [9].

However, problems can also arise at the software and appli-
cation layers. Seemingly innocuous programming techniques
such as interrupt-driven control flows, unbounded loop execu-
tion, function pointers, and firmware system calls can greatly

complicate timing analysis [7]. Compounding this issue, com-
mon RTOSs, which are used extensively in research and indus-
try as aids in implementation of embedded and cyber-physical
systems, extensively utilise difficult to analyse software [7].

Unfortunately, industry-standard PLCs are now seeing
designs which suffer from these problems. They now
employ higher-performance general purpose microcontrollers
and microprocessors, and their implementations feature
both RTOSs and complex runtimes that have not been
demonstrated to be timing predictable [2].

A. Simplifying Timing in Hardware

The PRET philosophy [8] recognises the need for
performant, predictable architectures. It proposes the usage
hardware with simple, repeatable timing properties, such as
scratchpads instead of caches, and thread-interleaved pipelines.

Since their proposal, a large number of PRET architectures
have been developed and released, including ARPRET [20],
a hardware extended MicroBlaze architecture featuring both
PRET and Reactive principles; PTARM [21], a multi-threaded
design featuring the ARM ISA, a thread-interleaved pipeline,
and exposed memory hierarchy; and FlexPRET [22], another
multi-threaded design allowing for hardware managed RTOS-
like mixed-criticality systems which require some real-time
guarantees. All of these architectures have demonstrated
varying levels of timing predictability. However, while many
of them do feature multiple hardware threads (typically due
to their thread-interleaved pipelines) they universally have
single-core designs, limiting their scalability and performance.

B. The T-CREST Platform

Similar to the PRET design philosophy is the T-CREST
project [14], which provides the time-predictable multi-core
architecture for embedded systems used in this paper. The
project focuses on making the worst-case fast, and on
simple analysis rather than repeatable timings. T-CREST is a
multicore processor which follows the Globally Asynchronous
Locally Synchronous (GALS) paradigm, where the individual
processor cores are connected by two time-predictable
Network on Chips (NoCs): (1) a message passing NoC
called Argo [23] for communication between individual core
Scratchpad Memories (SPMs) and (2) a memory NoC for
communication between the cores and a memory controller
for shared, external main memory.

Each processor core is a Patmos processor [24], which is
a RISC pipeline optimized for low WCET bounds. Patmos
contains a statically scheduled dual-issue pipeline. The Patmos
processor contains scratchpad memories for time-predictable
and low latency access to local data and instructions. The
access to main memory is backed up by three different
caches: (1) a method cache caches the instructions of full
methods [25], (2) a stack cache caches data allocated on the
stack [26], and (3) a data cache for the other data.

To support larger programs and data structures T-CREST
uses external, shared memory. For the access to shared
memory T-CREST provides two solutions: (1) the Bluetree

memory tree with prefetching [27] and (2) the TDM based
memory arbiter [28]. The Bluetree memory tree is optimized
for the Predator memory controller [29], while the TDM
arbiter is a general purpose burst based TDM arbiter.

T-CREST is supported by an adaption of the LLVM
compiler that targets the Patmos instruction set and optimizes
for the WCET [30]. The T-CREST project also includes the
open-source, academic WCET tool called Platin [31].

C. Timing IEC 61499 Software

While IEC 61499 has plenty of literature examining the
functional verification of networks under the different MoCs,
such as in [32] where Dubinin et al. validate IEC 61499
networks on the basis of transition systems using the cyclic
MoC, and in [33], where Yoong et al. show formal verification
of IEC61499 FBs using the synchronous MoC, demonstrating
reactivity and causality under any composition.

However, there is a lack of concrete examples and
methodologies for timing verification for IEC 61499 networks
in the literature. Often, proposed solutions to the timing
issues focus on network-level reasoning rather than on
concrete implementations. One example of this is in [34],
which considers the timing composability of Function Blocks
through the specification of event and internal trigger times,
and validates the entire network based on these values. Another
example of this is in [35], where new timing semantics for
IEC 61499 were presented, adapted from Real-time for the
Masses, which is a pre-existing set of experimental languages
and tools for embedded software. However, these approaches
do not provide a methodology to actually compute the
execution times for the underlying IEC 61499 code on real
architectures, instead focusing on reasoning on the network
once those values have been obtained.

The main issue when considering concrete timing of exist-
ing IEC 61499 implementations, such as with Forte [16] or IS-
aGRAF [18], is that they rely on complex underlying software
which have not had worst-case timing analysis performed [10].

However, the synchronous approach for IEC 61499
does not have this limitation. Synchronous programming,
commonly associated with languages such as Esterel [36] and
SCADE [37] involves breaking up sections of code into logical
ticks, with values crossing tick boundaries only being updated
at the end of each tick. For a program to be valid, it must
meet the so-called synchrony hypothesis, which states that the
delay between any environmental inputs must be greater than
the amount of time the processor will take to execute any
reaction, i.e., the Worst Case Reaction Time (WCRT) must
be shorter than the minimum arrival time between inputs.

The synchronous approach has consistently been
demonstrated to have predictable timing for IEC 61499
on PRET architectures. An example of this is in [10], where
a Timed Control Flow Graph (TCFG) was constructed and
WCRT derived for IEC 61499 FBs running on a simple
MicroBlaze processor. Likewise, a second example is in [11],
where a similar methodology was used to derive WCRTs

for IEC 61499 FBs shared amongst the multiple hardware
threads on the FlexPRET architecture.

There are two main enablers for static timing analysis with
the synchronous MoC. Firstly, no complex runtime or RTOS
is required for the execution of the IEC 61499 code.Secondly,
as the execution of the different sections of code is broken
up into the concept of logical ticks, definitive points are
provided whereby execution boundaries can be computed and
compared from. This simplifies often-complex control flow
analysis [33], [38].

Unfortunately, synchronous approaches to execution of code
bring other limitations. Typically, average-case performance
is worse due to the overheads in synchronising the global tick
[12]. In addition, the WCRT must be knowable to ensure that
programs meet the aformentioned synchrony hypothesis [39].

Some work has been undertaken to try and re-examine
the underlying synchronous semantics to try and reduce this
overhead - for instance in [12], GALS semantics are applied to
IEC 61499 for the purposes of distributing the execution across
multiple devices and cores. However, the issue again arises that
no concrete timing analysis was presented for this approach.

IV. THE GOFB COMPILER

The current IEC 61499 Function Blocks compiler that
targets synchronous semantics is called FBC, and was first
released in [13]. This section will first describe synchronous
semantics for IEC 61499, and then how the compilers run
internally. Both goFB and FBC input IEC 61499 XML format
[40] files, and output C code for further compilation.

A. The Synchronous Model for Function Blocks

The synchronous MoC for IEC 61499 Function Blocks
sees FBs within a network as concurrently executing modules
of a synchronous system. This is convenient as industrial
control software is often described as a collection of
concurrently-running processes.

In the model, the notion of the logical tick is mapped
directly to the period of a scan cycle. During each tick, the
following steps happen:

1) Input signals captured.
2) Each FB within the network is invoked.
3) Output signals emitted.

Hence, all function blocks in a given network are conceptually
viewed as running concurrently in lock-step with one another,
performing atomic computations in each tick.

Across a resource, the atomic operations within a tick
consist of the evaluation of all ECC transitions in all current
ECC states, and the corresponding computation of the action(s)
in all destination states, should individual transitions be taken.
The lifetime of events is strictly defined to persist for the
duration of the tick in which it occurred. Thus, no more than
one ECC transition can occur within a tick in each ECC within
a network. Note that this differs to the official IEC 61499 stan-
dard [5], whereby the run of an ECC should consume one input
event, and continue until no more valid transitions can occur.

Since all inputs are read at the start of the tick, and the
tick itself is conceptually instantaneous, simultanous events
are possible in this model, as in other cyclic-scan models
[33]. This is again in contrast to the official standard, which
states that only one event may be present in any given instant
in an IEC 61499 network [5].

However, if the standard is followed, and multiple events
can be emitted in a given ECC state, and event-connection
loops exist in the network, the official event-driven approach
will either result in the purposeful loss of events, or the
need for unbounded queues to store events. Both of these are
undesirable in safety-critical systems.

Even with the synchronous model, however, compositions
of function blocks involving event connection loops may
still be problematic, with event feedback loops possibly
resulting in non-causal cycles, where the distinction between
input and output events are blurred [33]. In synchronous
systems, non-causal cycles will manifest themselves as either
deadlocks or as starvations of modules not part of the cycle.
As a result of this, all FB communication in the synchronous
MoC is delayed by one cycle, to the next tick.

This pipelining of the send and receive operations in each
function block guarantees that their parallel composition will
always be acyclic [33]. In addition, since all communications
within a function block network are delayed by one cycle,
the function blocks can be arbitrarily scheduled, while still
ensuring an overall deterministic behaviour.

B. Compiling Function Blocks (FBs)

Both FBC and goFB represent compiled function blocks
with a C structure and several associated functions. To derive
these functions, the compilers traverse the FB network, via
a depth-first search through all layers, then perform a bottom
up compilation of each block in the network.

1) Compiling Basic Function Blocks (BFBs): For both
compilers, the main task in compiling a BFB is the translation
of the internal ECC and associated data-manipulating
algorithms into a C run function. Internally, the run function
must perform the following steps:

(i) In the current state, check possible exit transitions in
order of priority.

(ii) If a transition can be taken, enter destination state.
(iii) Invoke associated algorithms, then emit associated

events/data.
This is managed by converting the ECC to a C switch

statement. In FBC there is a single switch for both transitions
and algorithms, inside a double-entering for loop. This has
the unintended consequence of causing most static timing
analysis tools to believe that the worst-case path is through the
long algorithms twice (even though this path is not possible).

goFB’s procedure for BFB generation is presented in
Listing 1. As can be seen, the loop is unwound, and there are
two switch statements generated instead.

2) Compiling Composite Function Blocks (CFBs): When
compiling CFBs, both compilers convert the internal list
of components into a netlist, embedding instances of the

Listing 1: goFB’s BFB Generation

1 procedure GenerateBFB (fb)
2 S := s e t o f a l l s t a t e s in fb ;
3 IE := s e t o f a l l i n p u t e v e n t s in fb ;
4 OE := s e t o f a l l o u t p u t e v e n t s in fb ;
5 ID := s e t o f a l l i n p u t d a t a in fb ;
6 OD := s e t o f a l l o u t p u t d a t a in fb ;
7 T := 1 i f fb took a t r a n s i t i o n t h i s t i c k ;
8 c l e a r a l l o u t p u t e v e n t s in OE;
9 f o r e a c h s ∈ S do

10 w r i t e new c a s e f o r s in swi t ch−s t a t e m e n t ;
11 f o r e a c h t r a n s i t i o n c o n d i t i o n , t , o f s do
12 i f t l e a d s t o n e x t s t a t e n ∈ S then
13 g e n e r a t e code t o t e s t f o r t ;
14 a s s i g n n e x t s t a t e t o n ;
15 a s s i g n T = 1 ;
16 end
17 end
18 end
19 w r i t e check f o r T c o n t a i n i n g :
20 f o r e a c h s ∈ S do
21 w r i t e new c a s e f o r s in swi t ch−s t a t e m e n t ;
22 f o r e a c h a c t i o n , a , o f s do
23 i f a has a l g o r i t h m , a l g then
24 g e n e r a t e c a l l t o f u n c t i o n [a l g] ;
25 end
26 i f a has oe ∈ OE then
27 s e t oe ;
28 end
29 end
30 end
31 end
32 end procedure

component blocks inside a structure in C, and listing the
members of the event-data interface.

FBC breaks CFBs into two functions, init and run.
init ensures correct initialisation of all components in the
network, and run recursively calls the run functions of those
embedded blocks as well as blindly copying events and data
around the network.

This is because in FBC compile code, there are two
copies of each data variable inside each BFB instantiation,
an internal, and an external. The external variable is updated
every cycle by the connected FBs, and inside the BFB,
whether it needs to be or not, and the data is only copied to
the internal variable if the associated event is active.

This blind copy is a source of much inefficiency in FBC,
especially in architectures with write-through caches (such
as T-CREST). Every IO signal in the entire network is
propogated, even if it hasn’t changed, and even if it is going
to be ignored at the destination.

In goFB, this behaviour is optimised away by removing the
extra copy of variables. Instead of a blind copy, the parent
block itself examines the events associated with data lines (i.e.
a memory read), and only performs the costly write command
if necessary. To achieve this, synchronisation is separated of
the run function and into a number of other sync functions,
similiar to how FBC’s code was broken up in [11].

During each tick, communication is resolved via several
depth-first traversals of the IEC 61499 Function Block
networks, first for events, and then for data. Once this is
completed, each FB is invoked in turn, just like with FBC.
This communication can be seen in Listing 21. As can be
seen, in each tick, firstly all events are resolved by recursively
calling PullEvents and then PushEvents, which will copy

1connectionSet() returns the set of connections to a given port.

Listing 2: goFB’s CFB Generation

1 procedure g e n e r a t e C F B P u l l E v e n t s (fb)
2 B := s e t o f a l l f b s in t h e ne twork of fb ;
3 EO := s e t o f e v e n t o u t p u t p o r t s on fb ;
4 f o r e a c h b ∈ B do
5 i f b . t y p e = CFB then
6 g e n e r a t e c a l l t o t h i s f u n c t i o n on b ;
7 end
8 end
9 f o r e a c h eo ∈ EO do

10 I := eo . c o n n e c t i o n S e t () ;
11 g e n e r a t e code t o a s s i g n eo = or o f a l l i∈ I ;
12 end
13 end
14
15 procedure gene ra t eCFBPushEven t s (fb)
16 B := s e t o f a l l f b s in t h e ne twork of fb ;
17 f o r e a c h b ∈ B do
18 bEI := b . E v e n t I n p u t s ;
19 f o r e a c h b e i ∈ bEI do
20 I := b e i . c o n n e c t i o n S e t () ;
21 g e n e r a t e code t o a s s i g n b e i = or o f a l l i∈ I ;
22 end ;
23 end
24 f o r e a c h b ∈ B do
25 g e n e r a t e c a l l t o t h i s f u n c t i o n on b ;
26 end
27 end
28
29 procedure g e n e r a t e C F B P u l l D a t a (fb)
30 B := s e t o f a l l f b s in t h e ne twork of fb ;
31 D := s e t o f d a t a o u t p u t p o r t s on fb ;
32 f o r e a c h b ∈ B do
33 i f b . t y p e = CFB then
34 g e n e r a t e c a l l t o t h i s f u n c t i o n on b ;
35 end
36 end
37 f o r e a c h d ∈ D do
38 I := d . c o n n e c t i o n S e t () ;
39 g e n e r a t e code t o a s s i g n d = I ;
40 end
41 end
42
43 procedure genera teCFBPushData (fb)
44 B := s e t o f a l l f b s in t h e ne twork of fb ;
45 f o r e a c h b ∈ B do
46 i f b . t y p e = BFB then
47 bEI := b . E v e n t I n p u t s ;
48 bDI := b . D a t a I n p u t s ;
49 f o r e a c h b e i ∈ bEI a s s o c i a t e d wi th b d i ∈ bDI do
50 b d i ′ := b d i . c o n n e c t i o n S e t () ;
51 u p d a t e b d i wi th b d i ′ when b e i o c c u r s ;
52 end
53 e l s e
54 f o r e a c h b d i ∈ bDI do
55 b d i ′ := b d i . c o n n e c t i o n S e t () ;
56 u p d a t e b d i wi th b d i ′ ;
57 end
58 end
59 end
60 end
61
62 procedure generateCFBRun (fb)
63 B := s e t o f a l l f b s in t h e ne twork of fb ;
64 f o r e a c h b ∈ B do
65 c a l l run f u n c t i o n on b ;
66 end
67 end
68
69 procedure GenerateTopRun (f)
70 f := topmos t CFB ;
71 g e n e r a t e c a l l t o CFBPul lEvents (f) ;
72 g e n e r a t e c a l l t o CFBPushEvents (f) ;
73 g e n e r a t e c a l l t o CFBPullData (f) ;
74 g e n e r a t e c a l l t o CFBPushData (f) ;
75 g e n e r a t e c a l l t o CFBRun (f) ;
76 end procedure

events between all function blocks. Then, data that can
be copied, is copied, by recursively calling PullData and
PushData. There must be two functions as data must be
able to propagate from the most embedded FBs to the least
embedded and vice versa between each tick. Events and Data
must be handled separately, as all events must be resolved
before any associated data copies can occur.

C. Multi-core Execution on T-CREST with FBC and goFB

Both FBC and goFB produce code amenable to multi-core
execution, due to their support of the conceptual IEC 61499
resource. Resources are meant to be self-contained networks

of FBs, with no direct inputs nor outputs, except via those
provided through internal SIFBs (such as to hardware
or networking). However, until now, this has never been
undertaken on a time-predictable multi-core platform.

For this paper, both goFB and FBC’s outputted C code was
given a new top-level file to distribute the resources amongst
the different cores of T-CREST, rather than sequentially
executing them on a single core.

Because T-CREST has bounded timing on all parts of its
execution semantics, including within its predictable memory
hierarchy and arbitration, the entire system as a whole can be
considered timing predictable if the running software is also
time predictable.

In addition, as T-CREST’s NoC Argo is also time
predictable, timing bounds for applications that use it (such
as the Sawmill) can still be obtained.

V. RESULTS

goFB was initially benchmarked against FBC using the
T-CREST and Patmos platforms running at 50MHz with the
worked sawmill example from Section II. Six benchmarks
were conducted, and WCRT from both static analysis (using
the static analysis tool platin [31]) and measurement (using the
built-in cycle-accurate timers) were gathered and compared.
Each processor cycle takes 20 nanoseconds. When compiling
to the four-core T-CREST architecture, it was necessary to
change the top-level C file, as described in Section IV-C.

The six benchmarks are:
1) (g-T4-S) goFB compile FBs to four-core T-CREST,

using SPM.
2) (g-T4-M) goFB compile FBs to four-core T-CREST,

using main memory.
3) (g-P1-S) goFB compile FBs to single-core Patmos, using

SPM.
4) (g-P1-M) goFB compile FBs to single-core Patmos,

using main memory.
5) (F-T4-M) FBC compile FBs to four-core T-CREST,

using main memory.
6) (F-P1-M) FBC compile FBs to single-core Patmos, using

main memory.

A. Results for the Sawmill Scenario

The results for the sawmill example are shown in Figure 4.
It used 28 FBs in single-core mode, and 37 when on the
four-core T-CREST platform (the increase is due to the Argo-
specific FBs). The original design took 1.63 milliseconds of
processor time in the worst case to detect skin contact.

As can be seen, each of the optimisations in turn resulted
in a measured speed increase, although just using FBC with
the multi-core architecture resulted in a statically analysed
worse-case — this is due to the combination of large numbers
of read-write operations in FBC causing possible contention
in the Bluetree memory hierarchy.

Individually, moving from FBC to goFB sees a 30.1 %
lower analysed worst-case time in the single-core Patmos, and
37.0 % lower in the multi-core design. As expected, using

(g-
T4-S

)

(g-
T4-M

)

(g-
P1-S

)

(g-
P1-M

)

(F
-T

4-M
)

(F
-P

1-M
)

0

20,000

40,000

60,000

80,000

#
C

yc
le

s

Sawmill

Platin WCRT

Measured WCRT

Fig. 4: Sawmill Scenario

the SPM gives further improvements, for instance giving an
additional 27.4 % speed increase for the four-core T-CREST.

Overall, with all optimisations taken into account
(increasing cores, using goFB, and using the SPM) now takes
786 microseconds to respond in the worst case, giving a total
speed increase of 51.8 % from the original

B. Results for other Scenarios

In addition to the sawmill scenario, four other IEC 61499
networks were examined using this methodology on the
T-CREST platform, the results of which are presented in
Figure 5a. Bottling Plant (36 FBs) and VVI Mode Pacemaker
(32 FBs) were presented in [11], and represent the controller
for a bottling plant and pacemaker respectively. Message
Passer (88 FBs) and PID Controller (20 FBs) are two
additional networks created for this paper. Message Passer is
simply a chain of FBs that receive tokens from a generator
and pass them on to a receiver. PID Controller implements a
PID controller and simple plant.

As can be seen, all of these networks also show similar
results to the sawmill example. There is always a speed-up
when moving from FBC to goFB, and usually a speed-up
when moving from single-core to four-core. In addition, and
as expected, there is always a speed up when the data for the
networks can be located on the SPM instead of main memory.
This is because the SPM has single-cycle access time, whereas
main memory requests must pass through the Bluetree memory
hierarchy if the data is not cached and ready to access.

C. Scaling large networks with multiple cores

To examine the speed-up of large networks when executing
on the four-core T-CREST compared to the single-core Patmos
further, the PID Controller and Message Passer networks
were each duplicated a varying number of times, and WCRT
computed statically by Platin. The results of this are shown
in Figure 5b. As can be seen, the WCRT savings (according
to Platin) is almost static, for the PID Controller at around
15% and for the Message Passer at around 7% (reflecting the
increased computational difficulty in the PID Controllers).

Typically, benefits from executing code on multi-core
architectures present themselves when the code to be executed

(g-
T4-S

)

(g-
T4-M

)

(g-
P1-S

)

(g-
P1-M

)

(F
-T

4-M
)

(F
-P

1-M
)

0

20,000

40,000

60,000

80,000

#
C

yc
le

s
Bottling Plant

Platin WCRT

Measured WCRT

(g-
T4-S

)

(g-
T4-M

)

(g-
P1-S

)

(g-
P1-M

)

(F
-T

4-M
)

(F
-P

1-M
)

0

10,000

20,000

30,000

#
C

yc
le

s

VVI Mode Pacemaker

Platin WCRT

Measured WCRT

(g-
T4-S

)

(g-
T4-M

)

(g-
P1-S

)

(g-
P1-M

)

(F
-T

4-M
)

(F
-P

1-M
)

0

50,000

100,000

#
C

yc
le

s

Message Passer

Platin WCRT

Measured WCRT

(g-
T4-S

)

(g-
T4-M

)

(g-
P1-S

)

(g-
P1-M

)

(F
-T

4-M
)

(F
-P

1-M
)

0

20,000

40,000

60,000

80,000

#
C

yc
le

s

PID Controller

Platin WCRT

Measured WCRT

(a) Other Scenarios

0 2 4 6 8

·104

0

2·107

4·107

6·107

Function Blocks

#
C

yc
le

s

Scaling Message Passing

T-CREST
Patmos

0 1,000 2,000 3,000 4,000
0

2·107

4·107

6·107

PID Controllers

#
C

yc
le

s

Scaling PID Controllers

T-CREST
Patmos

(b) Multi-Core Scaling

Fig. 5: Results

features low numbers of memory accesses and high numbers
of computational instructions. Unfortunately, FBs typically
feature relatively low computation between loads and stores of
their internal data. As a result, there typically isn’t a significant
gain when moving to a multi-core architecture (of the five
networks examined, the savings were around 10% each time).

VI. CONCLUSION

In this paper a new approach for compiling IEC 161499
Function Blocks to C using synchronous semantics is
presented and compared with the old methodology from the
FBC compiler. The output is demonstrated to be significantly
faster than the old compiler’s output. In addition, multi-
core execution using both the old and new compiler is
demonstrated on T-CREST, although the multi-core execution
of IEC 61499 proved to be somewhat lacklustre due to the

high memory bandwidth requirements of each core (as FBs
typically have large numbers of memory operations compared
to their pure computation instructions.

The optimised approach, using the four-core architecture,
goFB, and SPMs, proved to have 60 % lower statically
analysed Worst-Case Reaction Times (on average) than FBC
running on a single-core Patmos. In the sawmill scenario,
this meant savings of 844 microseconds, meaing that more of
the hard real-time deadline of 5 milliseconds could be used
by other physical components of the braking system.

VII. SOURCE ACCESS

The source code for goFB, and all examples used
in this paper, are available under the MIT License at
https://github.com/PRETgroup/goFB.

REFERENCES

[1] SawStop. (2018) How it works. [Online]. Available:
www.sawstop.com/why-sawstop/the-technology

[2] M. M. Y. Kuo, S. Andalam, and P. S. Roop, “Precision timed industrial
automation systems,” in 2016 Design, Automation Test in Europe
Conference Exhibition (DATE), March 2016, pp. 1024–1025.

[3] A. Zoitl, Real-Time Execution for IEC 61499. ISA, 2008.
[4] M. D. Schwartz, J. Mulder, J. Trent, and W. D. Atkins, “Control system

devices: Architectures and supply channels overview,” Sandia Report
SAND2010-5183, Sandia National Laboratories, Albuquerque, New
Mexico, 2010.

[5] International Standard IEC 61499-1: Function blocks - Part 1: Archi-
tecture, International Electrotechnical Commission Std., April 2013.

[6] V. Vyatkin, “The IEC 61499 standard and its semantics,” IEEE
Industrial Electronics Magazine, vol. 3, no. 4, pp. 40–48, Dec 2009.

[7] M. Lv, N. Guan, Y. Zhang, Q. Deng, G. Yu, and J. Zhang, “A survey of
WCET analysis of real-time operating systems,” in Embedded Software
and Systems, 2009. ICESS ’09. International Conference on, May 2009,
pp. 65–72.

[8] S. A. Edwards and E. A. Lee, “The case for the precision timed (PRET)
machine,” in Proceedings of the 44th Annual Design Automation Con-
ference, ser. DAC ’07. New York, NY, USA: ACM, 2007, pp. 264–265.

[9] I. S. Liu, “Precision timed machines,” Ph.D. dissertation, University of
California at Berkeley, 2012.

[10] M. Kuo, L. H. Yoong, S. Andalam, and P. Roop, “Determining the
worst-case reaction time of IEC 61499 function blocks,” in Industrial
Informatics (INDIN), 2010 8th IEEE International Conference on, July
2010, pp. 1104–1109.

[11] H. A. Pearce, M. M. Y. Kuo, P. S. Roop, and M. Biglari-Abhari,
“RunSync: A predictable runtime for precision timed automation
systems,” in 2016 IEEE 19th International Symposium on Real-Time
Distributed Computing (ISORC), May 2016, pp. 116–123.

[12] L. H. Yoong, G. D. Shaw, P. S. Roop, and Z. Salcic, “Synthesizing
globally asynchronous locally synchronous systems with IEC 61499,”
IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), vol. 42, no. 6, pp. 1465–1477, Nov 2012.

[13] L. H. Yoong, P. Roop, and Z. Salcic, “Efficient implementation of IEC
61499 function blocks,” in Industrial Technology, 2009. ICIT 2009.
IEEE International Conference on, Feb 2009, pp. 1–6.

[14] M. Schoeberl, S. Abbaspour, B. Akesson, N. Audsley, R. Capasso,
J. Garside, K. Goossens, S. Goossens, S. Hansen, R. Heckmann,
S. Hepp, B. Huber, A. Jordan, E. Kasapaki, J. Knoop, Y. Li,
D. Prokesch, W. Puffitsch, P. Puschner, A. Rocha, C. Silva, J. Sparsø,
and A. Tocchi, “T-CREST: Time-predictable multi-core architecture for
embedded systems,” Journal of Systems Architecture, vol. 61, no. 9,
pp. 449–471, 2015.

[15] V. Vyatkin and V. Dubinin, “Sequential axiomatic model for execution of
basic function blocks in IEC 61499,” in Industrial Informatics, 2007 5th
IEEE International Conference on, vol. 2, June 2007, pp. 1183–1188.

[16] 4DIAC. (2015, Dec.) FORTE. [Online]. Available:
http://www.eclipse.org/4diac/en rte.php

[17] P. Tata and V. Vyatkin, “Proposing a novel IEC61499 runtime
framework implementing the cyclic execution semantics,” in Industrial
Informatics, 2009. INDIN 2009. 7th IEEE International Conference on,
June 2009, pp. 416–421.

[18] I. T. I. Inc. (2015, Dec.) ISaGRAF. [Online]. Available:
http://www.isagraf.com/

[19] W. Dai and V. Vyatkin, “Redesign distributed PLC control systems
using IEC 61499 function blocks,” IEEE Transactions on Automation
Science and Engineering, vol. 9, no. 2, pp. 390–401, April 2012.

[20] S. Andalam, P. Roop, and A. Girault, “Predictable multithreading of
embedded applications using PRET-C,” in Formal Methods and Models
for Codesign (MEMOCODE), 2010 8th IEEE/ACM International
Conference on, July 2010, pp. 159–168.

[21] I. Liu, J. Reineke, D. Broman, M. Zimmer, and E. Lee, “A
PRET microarchitecture implementation with repeatable timing
and competitive performance,” in Computer Design (ICCD), 2012 IEEE
30th International Conference on, Sept 2012, pp. 87–93.

[22] M. Zimmer, D. Broman, C. Shaver, and E. Lee, “FlexPRET: A
processor platform for mixed-criticality systems,” in Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2014 IEEE
20th, April 2014, pp. 101–110.

[23] E. Kasapaki, M. Schoeberl, R. B. Sørensen, C. T. Müller, K. Goossens,
and J. Sparsø, “Argo: A real-time network-on-chip architecture with
an efficient GALS implementation,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 24, pp. 479–492, 2016.

[24] M. Schoeberl, P. Schleuniger, W. Puffitsch, F. Brandner, C. W. Probst,
S. Karlsson, and T. Thorn, “Towards a time-predictable dual-issue
microprocessor: The Patmos approach,” in First Workshop on Bringing
Theory to Practice: Predictability and Performance in Embedded
Systems (PPES 2011), Grenoble, France, March 2011, pp. 11–20.

[25] P. Degasperi, S. Hepp, W. Puffitsch, and M. Schoeberl, “A method
cache for Patmos,” in Proceedings of the 17th IEEE Symposium on
Object/Component/Service-oriented Real-time Distributed Computing
(ISORC 2014). Reno, Nevada, USA: IEEE, June 2014, pp. 100–108.

[26] S. Abbaspour, F. Brandner, and M. Schoeberl, “A time-predictable stack
cache,” in Proceedings of the 9th Workshop on Software Technologies
for Embedded and Ubiquitous Systems, 2013.

[27] J. Garside and N. C. Audsley, “Prefetching across a shared memory
tree within a network-on-chip architecture,” in System on Chip (SoC),
2013 International Symposium on, Oct 2013, pp. 1–4.

[28] M. Schoeberl, D. V. Chong, W. Puffitsch, and J. Sparsø, “A time-
predictable memory network-on-chip,” in Proceedings of the 14th
International Workshop on Worst-Case Execution Time Analysis
(WCET 2014), Madrid, Spain, July 2014, pp. 53–62.

[29] M. D. Gomony, B. Akesson, and K. Goossens, “Architecture and
optimal configuration of a real-time multi-channel memory controller,”
in Design, Automation Test in Europe Conference Exhibition (DATE),
2013, 2013, pp. 1307–1312.

[30] P. Puschner, D. Prokesch, B. Huber, J. Knoop, S. Hepp, and G. Gebhard,
“The T-CREST approach of compiler and WCET-analysis integration,”
in 9th Workshop on Software Technologies for Future Embedded and
Ubiquitious Systems (SEUS 2013), 2013, pp. 33–40.

[31] S. Hepp, B. Huber, J. Knoop, D. Prokesch, and P. P. Puschner, “The
platin tool kit - the T-CREST approach for compiler and WCET
integration,” in Proceedings 18th Kolloquium Programmiersprachen
und Grundlagen der Programmierung, KPS 2015, Pörtschach, Austria,
October 5-7, 2015, 2015.

[32] V. Dubinin, V. Vyatkin, and A. Shalyto, “Formal modeling and
verification of IEC 61499 function blocks on the basis of transition
systems,” in 2016 International Siberian Conference on Control and
Communications (SIBCON), May 2016, pp. 1–4.

[33] L. H. Yoong, P. Roop, V. Vyatkin, and Z. Salcic, “A synchronous
approach for IEC 61499 function block implementation,” Computers,
IEEE Transactions on, vol. 58, no. 12, pp. 1599–1614, Dec 2009.

[34] L. Lednicki, J. Carlson, and K. Sandström, “Model level worst-case exe-
cution time analysis for IEC 61499,” in Proceedings of the 16th Interna-
tional ACM Sigsoft Symposium on Component-based Software Engineer-
ing, ser. CBSE ’13. New York, NY, USA: ACM, 2013, pp. 169–178.

[35] P. Lindgren, M. Lindner, A. Lindner, V. Vyatkin, D. Pereira, and L. M.
Pinho, “A real-time semantics for the IEC 61499 standard,” in 2015
IEEE 20th Conference on Emerging Technologies Factory Automation
(ETFA), Sept 2015, pp. 1–6.

[36] G. Berry and G. Gonthier, “The ESTEREL synchronous programming
language: Design, semantics, implementation,” Sci. Comput. Program.,
vol. 19, no. 2, pp. 87–152, Nov. 1992. [Online]. Available:
http://dx.doi.org/10.1016/0167-6423(92)90005-V

[37] (2016, September) SCADE. Esterel Technologies. http://esterel-
technologies.com.

[38] L. H. Yoong, P. S. Roop, Z. E. Bhatti, and M. M. Y. Kuo, Model-Driven
Design Using IEC 61499: A Synchronous Approach for Embedded and
Automation Systems. Springer Publishing Company, Incorporated, 2014.

[39] E. Yip, M. M. Y. Kuo, P. S. Roop, and D. Broman, “Relaxing the
synchronous approach for mixed-criticality systems,” in 2014 IEEE
19th Real-Time and Embedded Technology and Applications Symposium
(RTAS), April 2014, pp. 89–100.

[40] International Standard IEC 61499-2: Function blocks - Part 2: Software
Tool Requirements, International Electrotechnical Commission Std.,
April 2013.

www.sawstop.com/why-sawstop/the-technology
http://www.eclipse.org/4diac/en_rte.php
http://www.isagraf.com/
http://dx.doi.org/10.1016/0167-6423(92)90005-V

