
Improving Multiprocessor Real-Time Systems with
Bursty Inputs under Global EDF using Shapers

Yue Tang1, Yuming Jiang2, Xu Jiang1, Nan Guan1

1The Hong Kong Polytechnic University, Hong Kong 2Norwegian University of Science and Technology, Norway

Abstract—We propose an approach to calculate delay bound
for multiprocessor real-time systems scheduled by GEDF. Dif-
ferent from most existing analysis techniques analyzing sporadic
tasks, we consider bursty tasks which have more general arrival
patterns. In detail, we use shapers to eliminate burst in original
system inputs and generate sporadic job sequences, and then
calculate the delay bound of each task. To further improve our
approach, we design a heuristic algorithm to make as more
tasks as possible to meet their deadlines by adjusting settings
of shapers. Experiments show that the proposed algorithm can
lead to improvement of acceptance ratio and the delay bound
derived is much smaller than that by compared existing work.

Index Terms—shaper, delay bound, global EDF

I. INTRODUCTION

It is widely accepted that future real-time embedded systems

will be deployed on multi-processors, to meet their rapidly

increasing requirements of both high computational capacity

and low power consumption. One of the crucial requirements

that must be satisfied by a multiprocessor real-time system

is that it can provide bounded delay, which describes the

duration from each task activation to its execution completion.

Deriving the delay bound of each task in a system during

the design stage is important for both hard and soft real-time

systems, since delay bound can not only be used to test the

schedulability of hard real-time systems, but perform as an

indicator for system performance of soft real-time systems.

In our work, we consider the analysis of delay bound under

GEDF for multiprocessor systems.

Global Earlist Deadline First (GEDF) scheduling is widely

used and studied since it incurs less preemptions and migra-

tions compared with optimal scheduling and the maximum

delay is bounded when it is used to schedule tasks in soft

real-time systems. Most of existing work for calculating delay

bound on multiprocessors under GEDF analyzes sporadic tasks

[3]–[5], [7], where any two consecutive jobs of task τi are

assumed to be released with minimum separation time Ti.

However in real applications burst exists, where a relatively

large number of jobs are released over a short interval. Com-

paring sporadic and bursty inputs, the minimum separation

time between two consecutive jobs in different intervals keeps

more stable for the former, and it changes a lot for the latter.

As a result, the sporadic task model denoting sporadic inputs is

not a good choice for bursty inputs. When setting the period of

a sporadic task as the minimum separation time during bursty

interval in modeled bursty inputs, the over-estimated workload

leads to pessimistic results, and setting that as the minimum

separation time during more smooth intervals generates a

wrong model due to under-estimated workload. Further, when

jobs arrive simultaneously, the minimum separation time can

not be specified. In this case, the period does not exist and

bursty inputs can not be modeled as sporadic tasks.

As a result, most existing analysis techniques considering

sporadic tasks can not directly be used to analyze systems

with bursty inputs. What’s more, it is difficult to extend the

analysis techniques to bursty inputs since the complex job

sequences make it hard to specify the worst case of execution.

Compared with sporadic tasks, the work analyzing bursty tasks

is much less. And for the problem under our setting, there

is only one [8]. However, the delay bound derived by [8] is

very large compared with the real requests of each input task.

In summary, none of existing work provides a satisfactory

solution for the analysis of bursty inputs .

Contributions. We propose a new approach to calculate

delay bound for a multiprocessor system with bursty tasks

under GEDF. In detail, we model bursty inputs as bursty

tasks and deploy shapers for input bursty tasks. Once job

sequences generated by bursty tasks enter the system, they first

go through corresponding shapers, after which the behaviors

of these jobs conform to sporadic patterns. Then these output

jobs of shapers go into the scheduler and complete execution.

With shapers, existing analysis techniques analyzing sporadic

tasks can be applied (in this work we adopt the techniques in

[7]), and the delay bound of each task is calculated. To further

improve our approach, we design a heuristic algorithm which

can increase the number of tasks meeting their deadlines in

a task set by adjusting settings of shapers. Experiments show

that the proposed algorithm can improve the acceptance ratio,

and the derived delay bound is much smaller compared with

the state-of-art.

II. RELATED WORK

Shapers have been adopted to control traffic and transform

arrival patterns since its analysis method was first proposed in

[12]. In [9], shapers are used to control the traffic of higher-

priority tasks so as to reduce interference to lower-priority ones

under fixed-priority scheduling on uniprocessors, thus improv-

ing the system schedulability. Shapers are also used in EDF

scheduling [6], where arrival patterns are changed to reduce

peak temperature of chips. However, both of these two work

193

2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC)

978-1-7281-0151-4/19/$31.00 ©2019 IEEE
DOI 10.1109/ISORC.2019.00043

assumes uniprocessors and the analysis on multiprocessors is

not considered.

There are other techniques which implement similar func-

tion as shapers. In [11], Richter et al. proposed event model

interfaces (EMIFs) and event adaptation function (EAF) to

transform event streams to a different event model, i.e., from

periodic with jitter to simple periodic. However, the input types

of these techniques are quite limited, which differ from shapers

whose inputs are general arrival patterns.

Besides shaping system inputs, another important part of

analysis is computing delay bound of multiprocessor real-

time systems. For doing it under GEDF, there is already much

work, and one of the representative techniques is [3], which

proves that each task completes execution at most WCET plus

an expression after its deadline, where the expression is the

same for all tasks in a task set. The technique in [3] was

improved in [4], where the above mentioned added expression

is different for each task, thus reducing the pessimism. The

analysis technique was further extended to arbitrary-deadline

sporadic task systems in [5] and more general scheduling

strategies in [7].

III. PRELIMINARIES

A. System Model

Scheduling strategy and workload model. The system in-

puts are modeled as a set of n bursty tasks τ = {τ1, τ2, ..., τn},
and they are considered to be scheduled under global EDF

on m ≥ 2 identical processors. In generally considered

EDF scheduling, the relative deadline not only expresses the

constraint for delay bound, but acts as a priority indicator.

A job’s execution priority is decided by its absolute deadline

(release time plus the relative deadline of the task releasing

it). The earlier the absolute deadline is, the higher priority a

job has. In our work, we consider EDF of a more general

type where the relative deadline only constrains a task’s delay

bound, and there exists another variable deciding the execution

priority of each job. The relative deadline and the priority

indicator are set as two independent values and they are

not necessarily the same. Consistent with this general EDF

scheduling, bursty task models are as follows:

Each bursty task τi defines an infinite sequence of jobs. Jobs

released by one task are assumed to be sequential and at any

time may execute on at most one processor. We also assume

that more than one job can be released simultaneously by the

same task. A task τi is characterized by (Ci, Di, λi, αi(Δ)),
where Ci, Di and λi are non-negative integers denoting worst-

case execution time (WCET), relative deadline and priority

level respectively. Since we consider a general-style EDF

as introduced above, Di and λi are independent. αi(Δ) is

the arrival function of task τi modeling its job sequence .

Specifically, αi(Δ) is the maximum number of jobs released

by task τi in any (left-open or right-open) time interval of

length Δ.

Generally, an arrival function can be any sub-additive curve,

and it can model different types of job sequences (here we

ignore the execution time of jobs and only consider their

release time). The more complicated the expression of αi(Δ)
is, the more complex job sequences it can model. For example,

when αi(Δ) = �Δpi
�, it models job sequences generated by

a sporadic task with period pi. When αi(Δ) = �Δ+ji
pi
�, it

models sporadic job sequences with period pi and jitter ji,
where the difference between supposed and actual release time

of each job is at most ji and at most � jipi
� + 1 jobs can be

released at the same time. In our work, we do not place any

constraints on the expressions of arrival functions.

For each arrival function αi(Δ), there exists at least a pair

of (ηi, Bi) which satisfies:

αi(Δ) ≤ ηi ∗Δ+Bi for all Δ ≥ 0 (1)

, where ηi > 0 and Bi ≥ 0.

In the remaining part of paper, we set ηi =
limΔ→+∞

αi(Δ)
Δ , which is the minimum value of ηi that

satisfies formula (1).

An example. Figure 1 shows one job sequence of task τi
which generates jobs with period 5 and jitter 10. The arrival

function of task τi is αi(Δ) = �Δ+10
5 �. The jobs which should

have been released at time 0 and 5 (shown with dashed up

arrows) experience jitter of 10 and 5 respectively. As a result,

three jobs are released simultaneously at 10, corresponding

to αi(0
+) = 3. The smallest ηi satisfying formula (1) is 1

5 ,

and with ηi = 1
5 the smallest Bi satisfying (1) is 3, that is,

y = Δ
5 + 3 is the closest upper bound of αi(Δ), which is

shown by the dashed black line.

Fig. 1. A job sequence of τi and corresponding arrival function αi(Δ)

For each task τi, the maximum amount of execution units

it requires in any time interval of length Δ is Ci ∗ αi(Δ). Its

utilization is denoted by Ui = Ci ∗ ηi, and the total utilization

of task set τ is denoted by U =
∑n

i=1 Ci ∗ ηi. Based on the

analysis in [3], the following two conditions must be satisfied

to guarantee that the system is not overloaded.

ηi ∗ Ci ≤ 1,
n∑

i=1

ηi ∗ Ci ≤ m

A task is schedulable if it meets its deadline, and a task set

is schedualable when all tasks in it meet their deadlines.

194

Resource model. The amount of resource provided by pro-

cessors is denoted by resource function β(Δ). The process of

modeling resource as resource function is different depending

on whether the resource provided to the task can be specified.

When the amount of resource a task occupies can be specified,

the resource function is derived by calculating the minimum

number of execution units available over any time interval of

length Δ. For example, if a task executes exclusively on an

identical processor providing δ units of resource every u time

units, the resource function is denoted as:

β(Δ) =
1

u
∗ (Δ− (u− δ))

When it is hard to find out the exact amount of resource

offered to each task such as in EDF scheduling, the resource

function is derived based on the delay bound of each task

when scheduled in the system.

Corollary 1: [1] Suppose the delay bound experienced by

a task when scheduled in a system is DLY , then the system

provides a service function β(Δ) to the task where

β(Δ) = δDLY (Δ) =

{
0, 0 ≤ Δ ≤ DLY

+∞, Δ > DLY

δDLY is called the ’impulse function’, and it has the prop-

erty that for any wide-sense increasing function θ(t) defined

with t ≥ 0,

(θ ⊗ δDLY)(t) =

{
θ(t−DLY), t ≥ DLY

θ(0), otherwise

B. Analysis in Network Calculus

Execution of tasks in systems is modeled into abstract

components in Network Calculus. Assume that a task τi with

arrival function αi(Δ) and WCET Ci is executed in a system

providing service function βi(Δ), then Ci, αi(Δ) and βi(Δ)
make up inputs of the corresponding component, based on

which the delay bound DLYi of τi is calculated as:

DLYi = Del(Ci, αi(Δ), βi(Δ)) (2)

where

Del(C,α(Δ), β(Δ)) = sup
λ≥0
{inf{d ≥ 0 : C∗α(λ) ≤ β(λ+d)}

If τi goes through an integrated system composed of

a sequence of m subsystems providing service functions

β1(Δ), β2(Δ)...βm(Δ), then its execution on the integrated

system is modeled into a sequence of m components , where

the output arrival function of a component is the input arrival

function of its subsequent component. There are two ways to

calculate the delay bound of τi. The first one is to add up the

segregated delay bound calculated with formula (2) at each

component.

DLY i
add = DLY i

1 +DLY i
2 + ...+DLY i

m

, where DLY i
j = Del(Ci, α

i
j , βj), αi

j is the input arrival

function of j − th component and αi
0 = αi.

The second way, which is more precise and widely used, is

to concatenate the service function of m components first and

get the service function provided by the integrated system

βcont(Δ) = β1(Δ)⊗ β2(Δ)...⊗ βm(Δ) (3)

Then the delay bound of task τi through the integrated system

is

DLY i
cont = Del(Ci, αi, βcont) (4)

C. Greedy Shaper

A greedy shaper S processes job sequences and forces its

output job sequences to conform to some time constraints

which generally set the minimum separation time between two

consecutive jobs. A shaper works as follows:

when a job arrives at a shaper, the shaper first checks

whether outputting the job is consistent with the supposed time

constraint. If so, the job will leave the shaper immediately.

Otherwise, the shaper will buffer the job and output it as soon

as outputting the job satisfies the constraint.

In Network Calculus, a greedy shaper is modeled as an

abstract component. Each shaper S is designed with a shaping

function σ(Δ), which uniquely decides the behavior of the

shaper, and thus its output job sequence. For example, when

the shaping function is designed as σ(Δ) = �Δp �, the output

job sequence has minimum separation time p between any two

consecutive jobs. In this special case of generating sporadic

job sequences, we call p the period of the shaper.

Assume that the job sequence of a task with arrival function

α(Δ) passes a shaper with shaping function σ(Δ), then the

arrival function of output job sequence is calculated by:

α′(Δ) = α(Δ)⊗ σ(Δ) = min(α(Δ), δ(Δ)) (5)

And the delay bound of the task experienced at the shaper

is calculated by 1

DLYs = Del(1, α(Δ), σ(Δ))

An example. Assume that the job sequence shown in upper

part of Figure 2 passes a shaper, whose shaping function is

shown by σ′(Δ) in Figure 3. The output job sequence of the

shaper is shown in the lower part of Figure 2. Based on σ′(Δ),
there can not be more than 1 output job in any time interval

of length 3, so the three jobs released simultaneously at time

10 can not leave the shaper at the same time. While the first

one of these simultaneously released 3 jobs is output exactly

at 10, the other two jobs are delayed in the shaper until time

13 and 16, respectively. The delay of release time is shown by

the dashed arrows. The arrival function of output job sequence,

denoted by α′(Δ), is same as σ′(Δ) according to formula (5).

And the maximum delay experienced is 6, corresponding to

the delay experienced by the third job released at time 10.

If we change the shaping function to σ′′(Δ), then the output

arrival function is changed to α′′(Δ) correspondingly, and the

maximum delay is 8. It can be seen that given the same input

1Since we only concern about the number of jobs that can be output during
certain length of intervals, the WCET of the task can be viewed as 1.

195

function, the lower the shaping function is, the larger the delay

bound is.

Fig. 2. The input job sequence and output job sequence of a shaper

Fig. 3. Different shaping functions and corresponding output arrival functions

IV. OVERVIEW

Basic idea. In existing work about calculating the delay

bound for tasks scheduled on multiprocessors under global

EDF, jobs are assumed to directly enter the ready queue of the

scheduler as soon as being released. Under this assumption,

the more complex the released job sequence is, the harder it

is to accurately analyze the worst-case amount of interference

suffered by the analyzed task. As a result, it is difficult to

analyze the delay bound of each task.

The difficulty brought by complex job sequences to schedul-

ing analysis can be sidestepped when deriving the delay

bound, which is implemented in our work by the adoption

of shapers. We assume that jobs first go through shapers then

enter the ready queue of scheduler, rather than directly being

ready for scheduling after being released as in existing work.

Using the traffic control function of shapers, complex job

sequences are shaped to conform to sporadic patterns, where

the separation time between two consecutive jobs is no smaller

than a constant, and then existing analysis techniques targeting

sporadic tasks are applied.

A system with shapers behaves as follows: after a job is

released by a task, it first goes through a shaper. The shaper

checks the separation between release time of current job and

the output time of its predecessor job. If it is no shorter than

the supposed constant specified by the shaping function, the

shaper outputs the job instantaneously and then the job enters

the ready queue of the scheduler. Otherwise, the shaper buffers

the job and outputs it as soon as the minimum separation time

is satisfied. In total, the delay a job experiences is from its

release to leaving the shaper to completing execution at the

scheduler, rather than the single part at the scheduler. And the

delay bound of a task is the maximum delay among that of

all its jobs.

System architecture. A system with shapers eliminating

burst in inputs is shown in Figure 4. For each bursty task

τi, a greedy shaper Si is deployed to shape the job sequence

released by it. Each shaper has a buffer, which is used to store

jobs that can not enter the ready queue of the scheduler due to

violation of minimum separation time constraint. We assume

that the buffer size of each shaper equals 0 when the first job

is released and is large enough so that there is no job loss.

Then the input of the scheduler is transformed from bursty

tasks (when without shapers) to sporadic tasks and the delay

bound becomes analyzable.

Fig. 4. The system architecture with shapers

V. ANALYZING THE SYSTEM WITH SHAPERS

This section introduces the approach to derive the delay

bound for a multiprocessor real-time system with bursty inputs

under global EDF by the adoption of shapers. We first model

the scheduler as an abstract component. Then the system

with shapers can be modeled as sequential components where

the outputs of shapers constitute one of the inputs of the

scheduler component. After that, we show how to compute

the delay bound and adjust shapers to increase the number of

schedulable tasks in a task set.

A. Modeling the Scheduler

In this subsection we first model the input job sequence

of the scheduler, then model EDF scheduler as an abstract

component, and specify how to calculate its inputs and outputs.

Note that original input tasks and shapers are assumed to be

given.

In a system with shapers, the burst in original input job se-

quences is eliminated and the inputs to the scheduler conform

to a sporadic pattern. Based on this, we define virtual sporadic
task:

Definition 1 (Virtual sporadic task): Suppose that the job

sequence released by task τi passes a greedy shaper Si with

shaping function θi(Δ) = � Δ
T i
s
�. Then the output job sequence

of Si has minimum separation time T i
s , and is modeled by

an implicit-deadline sporadic task τ ′i . τ
′
i is called the virtual

196

sporadic task of τi, whose period equals T i
s and WCET equals

that of τi.
2

Next we model an EDF scheduler as an EDF component.

Definition 2 (EDF component): A scheduler that sched-

ules a task set τ = {τ1, τ2, ..., τn} under global EDF is

modeled as an EDF component, which is characterized by

(
−→
C ,−→α ,

−→
β ,
−→
α′), where

−→
C = {C1, C2, ..., Cn} is the WCET

of each task, −→α = {α1, α2, ..., αn} is the arrival function,−→
β = {β1, β2, ..., βn}) denotes the service curve provided for

each task, and
−→
α′ = {α′

1, α
′
2, ..., α

′
n} is the arrival function of

processed jobs.

In the framework shown in Figure 4, the inputs to EDF

scheduler are virtual sporadic tasks. So for an EDF component,

each element in
−→
C equals the WCET of corresponding input

bursty task. Next we will show how to derive −→α ,
−→
β ,
−→
α′ for

an EDF component.

1) Deriving −→α
Suppose the periods of virtual sporadic tasks which are

inputs to an EDF scheduler are:
−→
Ts = {T 1

s , T
2
s , ..., T

n
s }, then

the arrival function of each input task of EDF component is

denoted by:

αi(Δ) = �Δ
T i
s

�

Then we have

−→α = {� Δ
T 1
s

�, � Δ
T 2
s

�, ..., �Δ
T i
s

�}

2) Deriving
−→
β and

−→
α′

Suppose the delay bound experienced by each in-

put task at EDF scheduler is known as DLYschd =

{DLY 1
schd, DLY 2

schd, ..., DLY n
schd}, then

−→
β and

−→
α′ can be

derived. Next we will first introduce the derivation of delay

bound of each task at EDF scheduler part, and then show how

to derive
−→
β and

−→
α′ with DLYschd.

Since each input task of EDF scheduler is a virtual sporadic

task in our system, the delay bound experienced can be

calculated by existing analysis techniques analyzing sporadic

tasks scheduled under global EDF. We first model the analysis

process of deriving the delay bound at the scheduler:

Definition 3 (Calculation of delay bound): Assume that the

input of a global EDF scheduler is a task set of n sporadic

tasks. The task set is characterized by
−→
C∗ = {C∗

1 , C
∗
2 , ..., C

∗
n},−→

T ∗ = {T ∗
1 , T

∗
2 , ..., T

∗
n}, and

−→
D∗ = {D∗

1 , D
∗
2 , ..., D

∗
n},

which denote each sporadic task’s WCET, period and rel-

ative deadline respectively. Suppose the analysis technique

ξ is adopted to derive the delay bound DLYschd =
{DLY 1

schd, DLY 2
schd, ..., DLY n

schd} at the scheduler for each

task in the task set, then the analysis process can be modeled

as a function Caldelay with

DLYschd = Caldelay(ξ,
−→
C∗,

−→
T ∗,

−→
D∗)

2Note that virtual task τ ′i does not exist in real systems and is defined only
for analysis. Also, the deadline of a virtual sporadic task is more used as an
indicator for scheduling priority than a constraint for completion time.

In our work, we adopt analysis techniques in [7] (denoted

by ξG) and the delay bound at the scheduler can be calculated

as

DLYschd = Caldelay(ξG,
−→
C ,
−→
Ts,
−→
Ts)

, where
−→
C equals the WCET and

−→
Ts = {T 1

s , T
2
s , ..., T

n
s }

equals the period of n virtual sporadic tasks.

Then
−→
β and

−→
α′ can be derived based on DLYschd.

The service function βi provided for each virtual task τ ′i
can be derived based on DLYschd and Corollary 1:

βi(Δ) = δDLY i
schd

(Δ)

{
0, 0 ≤ Δ ≤ DLY i

schd

+∞, Δ > DLY i
schd

Each output arrival function is calculated as α′
i(Δ) =

αi(Δ−DLY i
schd), so we have

−→
α′ = {α1(Δ−DLY 1

schd), α2(Δ−DLY 2
schd), ..., αi(Δ−DLY i

schd)}
B. Calculating the Delay Bound

Fig. 5. Modeling the system in Figure 4 into a set of abstract components

After modeling the EDF scheduler as EDF component, the

system in Figure 4 is modeled into a network composed of n
greedy shapers and one EDF component in Figure 5. Based

on formula (3) and (4), to derive the delay bound of each

task traversing the system with shapers, the service function

provided by each shaper component and EDF component must

be known. In this subsection, we assume that σi(Δ) is given,

based on which we can derive the period of each virtual

sporadic task, the delay bound at the scheduler DLYschd, and−→
β . Next we explore the remaining unknown parameter, that

is, the service function provided by each shaper.

Lemma 1: Assume a job sequence generated by task τi with

WCET Ci passes a shaper with shaping function σi, then the

shaper provides to the task a service function βs(Δ) denoted

by βs(Δ) = Ci ∗ σi.

Proof 1: The lemma can be easily proved with Corollary

1.5.1 in [1].

Now we can calculate the delay bound DLYi for each task

τi.
Lemma 2: The delay bound of each task τi is calculated as

DLYi = DLY i
s +DLY i

schd.

197

Proof 2: Based on the concatenation property, the delay

bound is computed as

DLYi = Del(Ci, αi, (Ci ∗ σi(Δ))⊗ βi)

, where βi = δDLY i
schd

.

Based on the property of βi,

(Ci ∗ σi(Δ))⊗ βi = Ci ∗ σi(Δ−DLY i
schd)

Then we have

DLYi = Del(Ci, αi, Ci ∗ σi(Δ−DLY i
schd))

= Del(Ci, αi, Ci ∗ σi(Δ)) +DLY i
schd

= Del(1, αi, σi(Δ)) +DLY i
schd

= DLY i
s +DLY i

schd

Then the lemma is proved.

From Lemma 2, the delay bound of each task equals the sum

of that at the shaper and at the scheduler. Also, given fixed

inputs, processors and analysis techniques for sporadic tasks,

the shaping function of each shaper uniquely decides the delay

bound of each task.

C. The Design of Shapers

Different from above two subsections where shapers are

known, in this subsection they are not given and become the

target of our analysis. We will discuss how to implement a

shaper with sporadic output and specify settings of shapers to

increase the number of schedulable tasks.

1) The implementation of greedy shaper

At the first sight, a token bucket seems to be one choice for

generating sporadic outputs. However, the following example

shows that the output job sequence of a token bucket can not

satisfy the minimum separation time constraint in all cases.

An example. Suppose that a token bucket with token

generation rate 1/Ts is used to generate a job sequence with

minimum separation time Ts. Consider that two jobs arrive at

the same time at a(1) and the bucket is full with one token

generated at e(1) with e(1) ≤ a(1). At a(1), one of the two

jobs can pass the shaper and the other is buffered. Then at

e(1)+Ts, a new token is generated and the second job can be

emitted. However, the separation time between it and the first

job is e(1) + Ts − a(1) ≤ Ts. The example shows that only

when e(1) = a(1), the minimum separation time constraint

can be guaranteed by the token bucket. However, e(1) = a(1)
is only one special case and the behavior of token bucket when

e(1) = a(1) can not represent general cases.

Based on this observation, we define an interval-

guaranteeing shaper whose output always satisfies the mini-

mum separation time constraint.

Definition 4 (Interval-guaranteeing shaper 3): [2] An

interval-guaranteeing shaper outputs jobs at e(i) satisfying

e(1) = a(1); e(i) = max{a(i), e(i− 1) + Ts}
3An interval-guaranteeing shaper is a type of greedy shaper.

where a(i) denotes the arrival time of job i to the shaper, and

Ts is the minimum separation time in the output job sequence.

Lemma 3: The shaping function σ(Δ) of an interval-

guaranteeing shaper satisfies σ(Δ) = � Δ
Ts
�, where Ts is the

minimum separation time in its output.

Proof 3: Can be obtained based on the behavior of an

interval-guaranteeing shaper.

2) Specify the setting of shapers

Now we have already designed a shaper with shaping

function σ(Δ) = � Δ
Ts
� to implement minimum separation time

Ts in its output job sequence. From last two subsections, for

fixed input tasks executed on a multiprocessor platform, the

periods of shapers uniquely decide the delay bound. Next we

focus on how to adjust the value of period T i
s of each shaper

Si to make more tasks schedulable.

To guarantee the system is not overloaded and jobs buffered

at the shaper are limited, the following two conditions must

be satisfied:
n∑

i=1

Ci

T i
s

≤ m (6)

0 ≤ T i
s ≤

1

ηi
(7)

A simple choice to set T i
s = 1

ηi
with ηi defined in Section

III. However, this can not guarantee the task meets its deadline.

Actually, the shaper that makes a task meet its deadline can not

be derived with simple observation and the reason is two-fold.

First, the total delay bound is the sum of that at the shaper

and that at the scheduler. Although larger period leads to lower

utilizations and intuitively smaller delay bound in the part of

EDF scheduler, it causes larger delay bound at the shaper.

So it is hard to decide whether to increase or decrease the

shaper’s period without real computation. Second, changing

the period of shaper corresponding to one virtual sporadic task

will influence the execution of other virtual sporadic tasks. So

the choice of period can not be independent.

To make more tasks schedulable, it is necessary to enumer-

ate all possible values of T i
s satisfying formula (6) and (7).

The process can be time-consuming and we propose a simple

heuristic to increase the number of schedulable tasks.

In Algorithm 1, τ is the input task set. A shaper is put into

set sched if its corresponding bursty task meets its deadline,

else is put into unsched. We first decrease the period of each

shaper in unsched on the condition that the number of shapers

in sched does not decrease and the corresponding bursty task’s

delay bound is smaller than before. After adjusting the periods

of all shapers in unsched, we increase the period of each

shaper in sched on the condition that its corresponding bursty

task does not miss its deadline. For each iteration, we check

whether the number of shapers in sched increases. If not, the

iteration stops.

An example. We consider a task set composed of 5 tasks

τ = {τ1, τ2, ..., τ5}. The arrival function αi of each task τi
is characterized by αi(Δ) = �Δ+ji

pi
�. The parameters and

calculated delay bounds are shown in Table I. DLY is the

calculated delay bound when setting T i
s = pi. T

′ is randomly

198

Algorithm 1 Decide the period of each shaper

1: for each shaper Si, T
i
s = 1/ηi

2: calculate DLYi = DLY i
s +DLY i

sched

3: calculate sched and unsched
4: numsched = size(sched)

5: sort unsched with descending DLY −D
6: sort sched with descending D −DLY
7: num = size(τ)
8: while unsched(τ) and numsched < num do
9: numsched = size(sched)

10: while notempty(unsched) do
11: current ←− pop the first from unsched
12: while unsched(τ) and candecrease(T current

s) do
13: T current

s = T current
s − 1

14: end while
15: end while
16: calculate sched and unsched
17: while notempty(sched) do
18: current ←− pop the first from sched
19: while unsched(τ) and canincrease(T current

s) do
20: T current

s = T current
s + 1

21: end while
22: end while
23: calculate sched and unsched
24: num = size(sched)
25: end while

generated period for shapers on the condition that formula

(6) and (7) are satisfied, and DLY ′ is corresponding delay

bound. T ′′ is period derived with Algorithm 1, and DLY ′′ is

the corresponding delay bound.

From the table, in the first two settings of shapers, some

task will miss its deadline. After adjusting the period with the

heuristic, all tasks meet their deadlines and the original task

set becomes schedulable.

τ1 τ2 τ3 τ4 τ5
C 4 4 12 8 4
p 24 8 16 12 28
j 24 8 16 12 28
λ 16 8 16 12 24
D 36 36 56 52 40
T ′ 12 7 14 11 22
T ′′ 10 8 16 12 12

DLY 62 30 54 42 70
DLY ′ 39 29 51 41 59
DLY ′′ 34 30 54 42 38

TABLE I
A TASK SET AND ITS DELAY BOUND CALCULATED WITH DIFFERENT

SETTINGS OF SHAPERS

VI. EVALUATION

We implement our proposed approach in RTC Toolbox [10]

and conduct experiments to evaluate the performance.

Task generation. We first generate its arrival function based

on the PJD workload model in RTC Toolbox [10] characterized

by (p, j, d), where p denotes the period (1/p is the long-time

slope of arrival function, so p = 1/η, where η is defined in

task model), j is the jitter, and d is the minimum separation

time between two consecutive jobs:

αu(Δ) = min{�Δ+ j

p
�, �Δ

d
�}

The range of p, j, d will be specified in following content

and j/p is set to be an integer in all experiment settings. After

generating p, j, d, other parameters are randomly chosen in

following ranges: C ∈ [1, p], λ ∈ [C, p], and D ∈ [p∗ j
p +C+

p, p ∗ j
p + C + p+ 500].

For each task set, we generate 5 tasks. Then the total

utilization U of the task set is calculated as U =
∑5

i=1
Ci

pi
,

and the number of processors m is set as m = ceil(U).
In this section, we compare the performance of 4 ap-

proaches:

(1) the approach in [8], denoted by ′EXT ′.
(2) the approach proposed in our work with setting T i

s = pi,
denoted by ′T = p′.

(3) the approach proposed in our work with randomly

generated T i
s satisfying formula (6) and (7), denoted by

′T = random′.
(4) the approach proposed in our work with the period

setting derived with Algorithm 1, denoted by ′T = heuristic′.
Note that in (2) (3) (4) we adopt the techniques in [7] at

EDF scheduler part, T i
s is the period of shaper corresponding

to task τi and pi is defined in the generation of task τi.
Experimental results. The above 4 approaches are com-

pared in two aspects: acceptance ratio and normalized delay

bound.

1) Acceptance ratio

Figure 6-(a) and (b) show the comparison among 4 ap-

proaches under different jitter-period-ratio (X-axis). We gen-

erate 500 task sets for each different jitter-period-ratio. In

Figure 6-(a), p is randomly generated in [1, 60] and d = 0.

d = 0 means that jobs can be released simultaneously.

Figure 6-(b) has the same parameter setting as Figure 6-(a)

except that d is randomly generated in [1, p], meaning that

no two jobs are released at the same time. The Y-axis shows

the percentage of schedulable task sets among all task sets

generated for each jitter-period-ratio, denotedy by Acceptance
Ratio. Based on the experiment results, our approach performs

better than ′EXT ′ regardless of the jitter-period-ratio and

settings of shapers. In detail, with the increasing of jitter-

period-ratio, the acceptance ratio of ′EXT ′ decreases, since

jobs released simultaneously can potentially lead to unfair

allocation of processor resources, causing large incremental in

calculated delay bound. What’s more, the improvement by the

heuristic increases with jitter-period-ratio, since same decrease

of shaper period can potentially lead to more delay reduction

at the shaper. The performance under d �= 0 is slightly better

than d = 0, since when d �= 0 no two jobs are released

simultaneously and the delay experienced by each task at the

shaper is comparatively smaller.

Figure 6-(c) and (d) show the comparison among 4 ap-

proaches under different range of p (X-axis). For each value i

199

(a) Different jitter/period, d = 0 (b) Different jitter/period, d �= 0

(c) Different period, d = 0 (d) Different period, d �= 0

Fig. 6. The comparison of acceptance ratio

in X-axis, we generate 500 task sets with p ∈ [1, i]. In Figure

6-(c), j/p = 1 and d = 0. Figure 6-(d) has the same parameter

setting as 6-(c) except that d ∈ [1, p]. It can be seen that
′T = heuristic′ still has the best performance.

2) Normalized delay bound

Figure 7-(a) and (b) show the comparison among 4 ap-

proaches under different jitter-period-ratio (X-axis). The pa-

rameter settings and corresponding number of task sets are

same as Figure 6-(a) and (b) respectively. We choose the delay

bound calculated with ′T = p′ as the standard, and the Y-axis

shows the ratio between the delay bounds derived with other

three different approaches and ′T = p′, namely Normalized
delay bound, calculated as

∑5
i=1 DLY i

comp/DLY i
p

5 , where DLY i
p

is the delay bound of task τi calculated with ′T = p′, and

DLY i
comp is that calculated with one of other three approaches.

Each result for X-axis value i is the average of the normalized

delay bound of task sets with jitter-period-ratio equal to i.
Figure 7-(c) and (d) show the comparison among 4 ap-

proaches under different range of p (X-axis). The parameter

settings and corresponding number of task sets are same as

Figure 6-(c) and (d) respectively.

Experiments show that the delay bound calculated by our

methods is much smaller than that by ′EXT ′ under both

different jitter-period-ratio and range of p.

VII. CONCLUSION

We propose an approach to derive the delay bound of real-

time multiprocessor systems with bursty inputs scheduled by

GEDF. In detail, shapers are inserted before the scheduler to

transform bursty tasks into sporadic ones. Then we calculate

the delay bound of each task based on scheduling analysis

and Network Calculus. What’s more, we propose a heuristic

algorithm to improve the acceptance ratio of task sets by

adjusting the periods of shapers.

(a) Different jitter/period, d = 0 (b) Different jitter/period, d �= 0

(c) Different period, d = 0 (d) Different period, d �= 0

Fig. 7. The comparison of normalized delay bound

In the future, we aim to combine shapers with other different

types of workload and scheduling strategies.

VIII. ACKNOWLEDGMENT

This work is supported by the Research Grants Council

of Hong Kong (GRF 15204917 and 15213818), National

Natrual Science Foundation of China under grant 61532007

and 61672140 and the Ministry of Education Joint Foundation

for Equipment Pre-Research under grant 6141A020333, and

in part by the Fundamental Research Funds for the Central

Universities under Grant N172304025.

REFERENCES

[1] J. L. Boudec and P. Thiran. Network calculus - a theory of deterministic
queuing systems for the internet. Springer Verlag, 2012.

[2] Cheng-Shang Chang. Performance guarantees in communication net-
works. 2000.

[3] U. Devi and J. Anderson. Tardiness bounds for global edf scheduling
on a multiprocessor. Real-Time Systems, 38(2):133–189, 2008.

[4] J.P. Erickson, U. Devi, and S.K. Baruah. Improved tardiness bounds for
global edf. In ECRTS, pages 14–23, 2010.

[5] J.P. Erickson, N. Guan, and S.K. Baruah. Tardiness bounds for global
edf with deadlines different from periods. In OPODIS., pages 286–301,
2010.

[6] Pratyush Kumar and Lothar Thiele. Cool shapers: shaping real-time
tasks for improved thermal guarantees. In DAC, pages 468–473, 2011.

[7] H. Leontyev and J. Anderson. Generalized tardiness bounds for global
multiprocessor scheduling. Real-Time Systems, 44(1-3):26–71, 2010.

[8] H. Leontyev, S. Chakraborty, and J. Anderson. Multiprocessor exten-
sions to real-time calculus. Real-Time Systems, pages 47–562, 2011.

[9] L. Phan and I. Lee. Improving schedulability of fixed-priority real-time
systems using shapers. In RTAS, pages 217–226, 2013.

[10] K. Richter. Compositional scheduling analysis using standard event
models. In Ph.D. Thesis, Technical University Carolo-Wilhelmina of
Braunschweig. Springer Verlag, 2005.

[11] K. Richter, M. Jersak, and R. Ernst. A formal approach to mpsoc
performance verification. Computer, 36(4):60–67, 2003.

[12] E. Wandeler, A. Maxiaguine, and L. Thiele. Performance analysis of
greedy shapers in real-time systems. In DATE, pages 444–449, 2006.

200

