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Abstract—Industries are recently considering the adoption of
cloud computing for hosting safety critical applications. However,
the use of multicore processors usually adopted in the cloud
introduces temporal anomalies due to contention for shared
resources, such as the memory subsystem. In this paper we
explore the potential of Intel’s Memory Bandwidth Allocation
(MBA) technology, available on Xeon Scalable processors. By
adopting a systematic measurement approach on real hardware,
we assess the indirect memory bandwidth limitation achievable
by applying MBA delays, showing that only given delay values
(namely 70, 80 and 90) are effective in our setting. We also test the
derived bandwidth assured to a hypothetical critical core when
interfering cores (e.g., generating a concurrent memory access
workload) are present on the same machine. Our results can
support designers by providing understanding of impact of the
shared memory to enable predictable progress of safety critical
applications in cloud environments.

Index Terms—Real-time, Temporal contention, Memory Band-
width Allocation, Access limitation

I. INTRODUCTION

As seen in Ericson’s Computing Fabric [8], and railway use
case of EU projects such as SECREDAS [9], industries are ex-
ploring cloud computing and virtualization for hosting safety-
critical applications [7] as clouds support ease of re-usability,
maintainability, and reconfiguration while providing workload
elasticity and higher availability. Thus, clouds help industries
in reducing their running costs and carbon footprint. Industries
can execute existing safety-critical applications without any
significant modifications as Virtual Machines (VMs) in a cloud
computing environment. These safety-critical VMs must run
alongside other non-critical/best-effort VMs executing in the
cloud. All VMs are unaware that they are running in a virtual-
ized environment or know the actual underlying cloud nodes or
hardware resources, thanks to the virtualization (abstraction)
provided by the hypervisor.

Cloud nodes are based on COTS multicore processors,
which are rich in shared resources to allow fast communication
and improve the average resource utilization. Nevertheless,
sharing introduces new forms of non-determinism and depen-
dencies (in space and time) between parallel flows complicat-
ing the analysis of the Worst-Case Execution Time (WCET),
which is fundamental for safety-critical applications.

Recent research on real-time hypervisors focused mainly
on CPU virtualization, adopting either hierarchical schedul-
ing [23] or CPU partitioning [22], and implementing cache

coloring [16] to reduce inter-core cache interference in multi-
cores. However, open problems regarding temporal contention
(and consequent unexpected delays) are still observed when
tasks/VMs co-executing on different cores need to access the
memory (controller) simultaneously.
Memory access contention deserves special attention for two
main reasons: (i) memory accesses are unavoidable, and,
contrarily to other sources of temporal contention [15] [21],
(ii) memory access interference can increase the WCET by
several orders of magnitude, particularly when increasing the
number of co-accessing cores [18], [20]. The picture is even
more complex on modern multicore architectures for cloud
computing where many cores (or hardware threads) share
additional resources such as a Last Level Cache (LLC). For
instance, the spatial contention in the LLC has a significant
impact on the memory access contention as LLC writebacks
lead to asynchronous memory accesses. While memory ac-
cesses are synchronous with respect to the requester demand,
asynchronous memory accesses (e.g., due to LLC writebacks)
may depend on the memory requests from other cores, as the
LLC is shared.

Existing work proposes several memory access regulation
methods to limit the maximum interference for the worst case
memory access latency analysis. The basic idea is to limit the
memory accesses from individual cores for each regulation
period [25] [17]. Thus, it is possible to distribute the available
memory access bandwidth and obtain a tighter worst case
memory access latency bound. Software-based resource limita-
tion approaches, such as Memguard [25], require monitoring
the memory requests (or cache misses) from each core and
applying a throttling policy to prevent memory accesses from
cores that have depleted the assigned memory budget for that
regulation period. Despite the design simplicity of software-
based approaches, it is not possible to achieve high resolution
and efficiency due to the coarse-grained regulation period
duration and high overheads. In addition, the throttling policy
of the approaches involve stalling the core execution to prevent
memory accesses. Such a throttling policy is not suitable for
cloud VMs as a core cannot continue its execution within the
private context, such as private caches and functional units,
reducing the private resources utilization.

A possible way to overcome the limitations of software-
based approaches is to rely on hardware support. In this
respect, Intel recently proposed a new hardware feature known978-1-6654-0627-7/22/$31.00 ©2022 IEEE
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as Memory bandwidth allocation (MBA) present in Xeon
Scalable processors [10], depicted in Fig. 1. MBA delays the
requests going to the interconnect from a core’s private con-
text. Intel provides nine values between 10 to 90 in increments
of 10 representative of the delays that are inserted between
the requests. MBA can be used to apply indirect memory
bandwidth throttling overcoming the limitations of software
base-approaches as: (1) we have a fine-grained regulation
period because the delays are inserted by hardware between re-
quests (2) a hardware based method does not require software
intervention, except for the initial setup, to partition memory
bandwidth statically (3) the core execution is not stalled to
prevent memory access, thus preserving the private resource
utilization.

Despite these promising features, it is still unclear if and
how MBA can be used for memory regulation to provide
real-time guarantees to safety-critical VMs. As a matter of
fact, the MBA controller does not directly allocate memory
bandwidth to cores, and hence the memory bandwidth allo-
cation/regulation is an indirect consequence of the introduced
delay.

In this paper, we present the results of a measurement
study performed on Intel Xeon Scalable processors in order to
derive the indirect memory bandwidth achieved by the cores
through MBA for providing real-time guarantees. The main
contributions and results of the study are:

1) We propose a systematic approach to derive the indirect
memory bandwidth limitation from delay values using a
single-core analysis where we highlight the importance
to consider also L2 writebacks within the design of
experiments;

2) We experimentally prove that only the 70, 80 and 90
MBA delay values are effective in our setting at limiting
the memory bandwidth even in the presence of LLC
write-backs (asynchronous memory accesses);

3) We test the derived assured memory fetching latency for
a core allocated to a critical VM when MBA limits the
bandwidth of three interfering cores with a multicore
analysis, showing the potential and effectiveness of the
approach.

The rest of the paper is structured as follows. Section II
presents the related work, while the background on new
Intel MBA feature is provided in Section III. Our design of
experiments is presented in Section IV, while Sections V and
VI presents the results of single-core and multicore analysis,
respectively. Finally Section VII ends the paper with final
remarks and hints for future work.

II. RELATED WORK

The management of memory access time interference can be
broadly classified in two approaches (extending the classifica-
tion in [13]): (i) interference estimation, to take it into account
in worst case execution time analysis, and (ii) interference
regulation by either enforcing execution models or limiting the
access to the memory controller at runtime. In the following
we review the literature falling into these two categories.

Fig. 1. Abstract model of Intel Xeon memory hierarchy depicting the MBA
controller between the cores and high-speed interconnect

A. Interference Estimation Approaches

The idea is to analytically estimate the maximum num-
ber of conflicts through static analysis. Under a worst-case
perspective, the first goal is to classify accesses depending
on the addressed hierarchical memory level. Such analysis
gets complicated with shared caches. In [14] each access is
first analyzed in the absence of inter-core cache conflicts,
and subsequently, a separate inter-core cache conflict analysis
refines each classified access. [5] improves the estimation of
inter-core cache conflicts combining abstract interpretation and
path-sensitive verification (e.g., model checking and symbolic
execution). In [6], [12], [4] shared cache and bus analysis are
combined, applying a time-division bus arbitration.
Estimation approaches suffer from several drawbacks. First,
the computational complexity increases with the number of
tasks. Second, the arbiter is supposed to be deterministic,
enabling time-division multiple access (TDMA). However, this
is not possible on modern COTS due to their optimization poli-
cies. Third, there are no independent partitions: the estimation
validity is stictly coupled with the tasks under analysis.

B. Interference Regulation Approaches

1) Approaches based on execution models: The basic idea
of execution models is to split real-time tasks into different
phases and then enforce a high-level co-scheduling mecha-
nism. The co-scheduler rules implicitly define the contention
degree without relying on low-level arbiters. The memory
accesses are then serialized in several phases, and these phases
can be overlapped by the co-scheduler achieving a predictable
degree of interference. In [19], [3] the co-scheduler imple-
ments a TDMA policy. In particular, the work in [19] proposes
PREM handling the contention of main memory between a
single-core and several peripherals. Whereas, the work in [3]
extends the concept of the execution model to a multicore
platform dividing the execution phase into communication and
local execution slices.
Execution models are invasive, as they require program or



compiler modifications. Moreover, the TDMA policy is not
scalable with the number of cores.

2) Approaches based on resource limitation: The aim of
these approaches is to make the maximum interference pre-
dictable and deterministc, by limiting the processing element
accesses, with no modification to the original program. These
solutions are usually based on a throttling policy to stop the
processing element access in case of excessive request, and a
monitoring policy for counting the issued requests.
Notably, [2] are among the first ones to perceive the poten-
tiality of performance counters to monitor shared resource
accesses. The idea is to capture on each processing element
(PE) the only interesting available events, such as last-level
cache hits and references to extract the number of LLC misses
(representing synchronous accesses). Nowadays, LLC misses
are supported as non-architectural events on modern COTS
and are also used to monitor PE accesses, [24], [25].
As throttling policy, [1] inserts idle-loops inside TLB-miss
handler, while the works in [24], [25] propose to deschedule
the task. The work in [18] starts from the computation of
the interference-sentitive WCET taking into account a safety
bound for shared-resource interference when at runtime re-
source capacity enforcement is used to limit the actual resource
usage of each process, which are executed following a round
robin scheduling scheme. Such pessimistic model is based on
a strong assumption on the interference delays.
As software-based resource limitation approaches present the
already mentioned efficiency and resolution issues, in the rest
of the paper we focus on the new capabilities offered by Intel’s
MBA technology.

III. NEW INTEL CAPABILITIES

In this work we focus on the Intel Cascade-Lake micro-
architecture, which inherited from the Skylake-Server micro-
architecture an exclusive LLC and a mesh as a network of
interconnect. An LLC exclusive frees the last level cache to
be as large as the sum of all core private caches, saving the
private cache size scalability (i.e., we went from 254KB to
our 1MB L2 cache size). At the same time, the mesh allows
higher parallelism in the memory access and last level cache.
It is important to take into account the exclusivity property of
the LLC when designing the workload for the measurements
(see next section). An exclusive LLC does not include all pri-
vate cache lines, improving the overall cache space utilization.
Such property influences the handling in response to an LLC
miss where the new fetched cache line is not brought in LLC
to keep the inclusivity.
The considered micro-architecture, as well as all the new Intel
Xeon processors, supports temporal and spatial isolation at the
hardware level through Resource Director Technology (RDT)
[11]. We can associate spatial and temporal properties with a
class of service (CLOS) and then bind the CLOS to a virtual
core.
One physical core cannot change the class of service of another
core. However, it can configure the properties of any CLOS.
RDT makes available monitoring and allocation features.

RDT allocation features enable inter-core resource partition-
ing. While the Cache Allocation Technology (CAT) and Code
and Data Prioritization (CDP) deal with the LLC spatial
partitioning, the Memory Bandwidth Allocation (MBA) ad-
dresses the temporal memory contention. The MBA controls
a configurable delay for requests going to the network of
interconnect from the core private context. By configuring such
delays, we can apply an indirect limitation in memory access
without impacting the use of private resources such as private
caches and functional units. Operationally, a MBA delay value
can be associate with a class of service (CLOS), e.g., to limit
the memory bandwidth of cores hosting non-critical VMs. If
two virtual cores of the same physical core have different
delays, the larger delay will override the other. In our case,
disabling the Hyper Threading (HP) in the experiments, we
have a side effect [10]; in particular, the non-active hardware
threads are assigned to the CLOS0 by default even though they
are disabled. Hence, the CLOS0 has not been used. Otherwise,
the hidden delay value of the non-active virtual core (the delay
value associated with the CLOS0) overrides the MBA delay
value of the active virtual machine on the same physical core
when the first is higher than the second one.

IV. DESIGN OF EXPERIMENTS

We design a set of experiments to perform two main
analyses. The single-core analysis is based on a systematic
approach to deriving the indirect memory bandwidth limitation
achieved when the MBA delays the requests. Contrarily, the
multi-core analysis is focused on the guarantees rather than
the limitation. Multi-core analysis tests the memory bandwidth
achieved by a core executing a critical VM when the MBA
(indirectly) limits memory accesses from 3 interfering cores
(performing best-effort tasks). Both, single-core and multi-core
analysis, share the following architectural parameters (Table
I). We use only one socket (one processor) composed of eight
cores at most. We set the number of active cores via BIOS
configuration. We only used one memory channel in both
analyses. We set the DRAM refresh rate to periodic and the
CPU core frequency to maximum (no power saving) in the
BIOS. These parameters helped keep the latency variability to
a minimum and maximize the memory requests rate. Similarly,
we disabled the Pre-fetcher and Hyperthreading to reduce vari-
ability since hardware threads on the same physical core share
the same “queue” to the memory, while the prefetcher can
preload several lines after a single cache miss. Experiments
are conducted on an Intel Xeon Silver processor, Cascade-
Lake microarchitecture, with 8 cores, 2,10 GHz, 512KB L1
cache (256KB out of 512 KB are dedicated for the Code),
1MB L2 cache, and 11MB LLC. Next subsections present the
design of experiments for both analyses. Our measures achieve
the 99% of accuracy calculated as the 99% mean confidence
interval using a student’s t distribution divided by the sample
mean.



TABLE I
DESIGN OF EXPERIMENTS: SHARED PARAMETERS

Shared parameters setting
Sockets no. 1

Used DRAM channel 1
Prefetcher disabled

SMT disabled
DRAM refresh cycles periodic

Core frequency Maximum

TABLE II
DESIGN OF EXPERIMENTS: SINGLE-CORE ANALYSIS

Parameters setting
Cores no. 1
Factors values

MBA delay d ∈ D,D = {10; 40; 50; 60; 70; 80; 90}
Workload k ∈ K,K = {RI ;RII ;W II}

RI : { RII : { W II : {
8192 CAS R, 8192 CAS R, 8192 CAS R,
no L2WBs, with L2WBs, with L2WBs,

no LLCWBs} no LLCWBs} with LLCWBs }
Metric description

Memory memory fetching latency in terms of CPU cycles
fetching Lk;d, k ∈ K, d ∈ D
latency

A. Single-core analysis

Single-core analysis has the objective to estimate the mem-
ory access limit for an interfering core when MBA is enabled
with different delays. We exclude 20 and 30 delays from the
analysis as they are erroneous on our processor (as reported
in an Intel errata [10]) and produce the same results as delay
value 10. Table II describes the design of experiments of
the single-core analysis. Our experiments measure the latency
execution variability for different kinds of workloads: memory
read workload considers only synchronous memory accesses,
while memory write workload accounts also the asynchronous
memory writes. One of the main contributions is to specialize
the memory read workload regarding the L2 writebacks as
motivated later. The number of observations achieves more
than 99% of accuracy.

1) Memory read workload: A read request in the worst case
corresponds to a memory read operation when there is an LLC
miss. Since we consider this worst-case in our workload, read
request and memory read operation are interchangeable terms.
However, we identify two different L2 traffic patterns for this
worst-case due to the LLC exclusivity in the processor.
In the exclusive architecture, L2 writebacks (L2WBs) to the
LLC happen whenever new memory is read and the L2 set is
full, even though the evicted L2 cache line is clean (contrarily
to the inclusive architecture).

We include the two L2 traffic patterns as a factor motivating
this choice in Fig.2 and Fig.3 where we fetch 2 MB of dynamic
memory in several blocks of 64 KB when the MBA is disabled
(0-delay) and enabled with 90-delay. While the above plot
represents the latency (CPU cycles) for each block, the graph
below shows the respective L2WBs for each fetched block.

Fig. 2. 2048 KB memory fetching in several blocks of 64KB when the MBA
is disabled (0-delay)

Fig. 3. 2048 KB memory fetching in several blocks of 64KB when the MBA
90-delay is enabled

The number of L2WBs grows as the L2 cache fills its capacity
(L2 size is 1 MB). While initially, no L2WBs are observed
(when L2 capacity is available), subsequently, when the L2
becomes full, each memory read will sure correspond to one
L2WB (so 1024 memory reads of 64 bytes (64KB) generate
1024 L2 writebacks).
Looking at the figures, we have two main observations. (i)
Without throttling (0-delay), the memory load latency does
not change significantly when the L2WBs are present (Fig.2)1.
However, (ii) the latency changes when the MBA is enabled
(Fig.3) on the two traffic patterns. From the results on CPU
cycles, it is evident that the MBA delays the L2WBs requests,
doubling the latency of read operations when writebacks
are present. This might be possible because the controller

1Note that our memory read workloads are designed to not cause LLC
writebacks (LLCWBs)



should introduce a delay towards all outgoing requests on the
interconnection network, thus also including reads and writes
to the last level cache.
The second observation motivates us to consider L2 traffic
pattern as a factor. The RI and RII in Table II represent the
read workload respectively in the first (without L2WBs) and
the second operational condition (with L2WBs). In particular,
the read workload is composed of 8192 read requests where
each request is an LLC miss (readReqs = LLCmisses =
CASReads = 8192) and hence a memory read operation
(CAS R is the command issued on the DRAM channel). The
number of 8192 requests (meaning 512KB of memory fetching
because each request retrieves 64 bytes which is the cache line
size) has been chosen since it assures us to not have L2WBs
in RI (L2WBs = 0), given the L2 cache size of 1MB. This
is also visible from Fig.2, where after 8 fetchings of 64 KB
each, the number of L2WBs is still 0. On the opposite, in RII

the total L2 write-backs must be equal to the total memory
requests (L2WBs = 8192). This is achieved by performing a
pre-read workload to fill the L2 cache. Note that, considering
the results in Fig.2 and Fig.3, RI is the worst case workload (it
has less limitation), since the frequency (latency) of memory
reads is not reduced (delayed) by concurrent L2WBs.

As a side note, looking at Fig.3, we can observe that
the MBA keeps the same limitation for each of the 1024
memory reads. Such workload in software-based approaches
would require to set an infeasible regulation period of 10
microseconds, hence proving the better granularity offered by
MBA-based approaches.

2) Memory write workload: We have memory writes in
a writeback policy when a dirty LLC cache line is evicted.
Hence, since our write workload reproduces the worst case,
every request of the workload causes one memory read and
one memory write operation, due to the cache line eviction
and substitution. The W II in Table II represents this kind of
workload. In particular, the W II workload is composed of
8192 requests where each request is the cause of one memory
read, and one memory write (writeReqs = LLCmisses =
CASReads = CASWrites = 8192). Only the second
operational condition (II) is possible for the write workload
since an LLC writeback can only be the result of a L2
writeback.

B. Multi-core analysis

While the single-core analysis gives us information about
the memory access limitation when the MBA delay and work-
load are fixed, the multi-core analysis analyzes the assured
memory fetching latency for a critical core when the MBA
limits the accesses of the other cores. For our evaluation, we
deploy a quad-core system where one of them is critical.
In particular, we consider a specific case where the critical
core fetches its dynamic memory without MBA limitation,
reproducing a workload RI . In contrast, the MBA limits the
other three cores that perform the most permissive workload
k′ under limitation resulting by the single-core analysis. The
range of delays considered for the interference cores range

TABLE III
DESIGN OF EXPERIMENTS: MULTI CORE ANALYSIS

Parameters setting
crit. cores no. 1

crit. workload RI

int. cores no. 3
int. workload the most permissive workload k′ ∈ K under D′

Factors values
MBA delay di for the i-th interference core

di ∈ D′, i ∈ {1; 2; 3}
Metric description

Memory critical memory fetching latency in terms of CPU cycles
fetching Lk′;(d1,d2,d3)
latency

from 10 to 90, however we will consider only significant
ones D′, depending on the result of single-core analysis. The
Table III describes the design of experiments. The multi-
core analysis requires thirty observations to achieve a 99%
of accuracy.

C. Measurement tool and workload considerations

We performed experiments in Linux as the high server
boot duration (several minutes) makes it time-consuming to
do bare-metal development and experimentation.
Our measurement tool captures the latency and several factors
(such as LLC writeback, L2 writeback, and CAS commands)
of a particular workload. The latency is captured in terms of
TSC (Timestamp counter). The fixed TSC frequency is close to
the maximum CPU frequency. Hence, we refer to TSC cycles
as CPU cycles. We favor the latency rather than bandwidth
measurements because the latter requires a regulation period
limiting the resolution.
We maximize the interference writing the workload as consec-
utive memory operations (full-loop unrolling) and choosing a
stride between consecutive accesses equal to the cache line
size (our cache line size is 64 Bytes). Even though the loop
unrolling of memory requests increases the code size, we
design our experiments controlling the absence of extra LLC
misses.
We reproduce the L2 traffic patterns for a read workload
through initial setup operations. To avoid L2 writebacks and to
have memory accesses, we flush the dynamic memory before
the workload execution, while to reproduce L2 writebacks for
the RII workload, we also perform a pre-read workload to fill
the L2 cache, as previously mentioned.
Contrarily, for the write workload W II , we reproduce the
worst-case executing a pre-workload of write-requests filling
the entire cache space of dirty and useless cache-lines. In
addition to synchronous memory accesses, the previous in-
jected dirty cache lines assure LLC writeback (memory write)
whenever an LLC eviction occurs.

V. RESULTS FROM THE ONE-CORE ANALYSIS

This section describes the single-core analysis results where
the main goal was to estimate the indirect limitation of



memory bandwidth when the MBA is enabled. Below, we
represent our results for the three workloads RI , RII ,W II .

A. Results representation

Lk;d is the execution latency of the workload k when the d
MBA delay is active.
Fig. 4 shows the Lk;d boxplots for each experiment of Table
II and a mean interpolation for the observations of the same
workload and different MBA delays.
Observing the boxplot width, the latency variability is the same
(or lower) when the limitation is enabled or not (0-delay).
Hence, the MBA seems to be not a new source of variability.
The main source of that variability is the periodic DRAM
refresh cycles.

B. Results interpretation

The Fig. 4 shows two effects clearly. The first is that the
limitations have not an important impact on the relative 0-
delay observations until the 70-delay in our setting. The second
is that the boxplots of workload RII and W II overlap for high
delays, meaning a similar behavior due to L2WBs.
To better interpret the results from Fig. 4 for the 70, 80, and 90
delays, we prefer to go from the latency to bandwidth domain.
Being T the minimum execution latency min(LRI ;0) to
synchronously fetch 8192 cache lines (our chosen reference,
as explained earlier), we calculate the achievable bandwidth
(memory operations in T ) of a generic configuration k; d,
where k is the workload, and d is the delay, as:

BWk;d =
T ∗ 8192
Lk;d

;

We report in Table IV the maximum observed bandwidth for
delays from 60 to 90.
We evaluate also the maximum percentage of synchronous
bandwidth as

max(BWk;d)% =
max(BWk;d) ∗ 100

8192

Note that the synchronous memory bandwidth could be lower
than the achievable memory bandwidth as also memory writes
are accounted (i.e., the workload W II achieves 155% of
synchronous bandwidth with the less restrictive 60-delay limi-
tation). This is due to the fact that, in the worst case set by our
write workload, each write request causes one memory read
and one memory write operation, due to the eviction. The ”2x”
in Table IV accounts for this double access regarding memory
writes.
Observing the results in the table, we can note that:

max(BWRI ;d) > max(BWRII ;d) (1)

hence, the less restrictive limitation for a memory read work-
load is when there are no L2 writebacks, confirming what
anticipated in the previous section. We can also note that:

max(BWRI ;70:90) ≈ max(BWW II ;70:90) (2)

Fig. 4. Boxplot latencies for the different workloads and interpolation of the
respective mean latencies

TABLE IV
THE MAXIMUM RATE AND THE PERCENTAGE OF SYNCHRONOUS MEMORY

BANDWIDTH CORRESPONDING TO MINIMUM LATENCY (MEMORY
OPERATIONS IN T ).

Metrics 60-delay 70-delay 80-delay 90-delay
max(BWRI ;d) 8192 8079 6080 4105
max(BWRI ;d)% 100% 98% 74% 50%
max(BWRII ;d) 7237 4183 3080 2084
max(BWRII ;d)% 88% 51% 38% 25%
max(BWW II ;d) 2x6376 2x4183 2x3091 2x2097
max(BWW II ;d)% 155% 101% 75% 51%

that is, the maximum memory accesses in the 1st and in the
2nd operational condition with writes is approximately the
same for 70, 80 and 90 delays. Finally, we can note that:

max(BWRII ;70:90) ≈
max(BWW II ;70:90)

2
(3)

meaning that the memory read requests in the 2nd operational
condition for 70,80 and 90 delays are halved due to L2WBs.
This regulation choice is pessimistic because L2 writebacks
does not always cause LLC writebacks and therefore writes to
memory.

The results confirm an important hint for systematic MBA
evaluation. When testing the memory bandwidth limitation for
read operations, it is necessary to run measurements without
L2 writebacks (first operational condition) capturing the most
permissive limitation. In addition, we discovered that even
though some delays do not contribute to the indirect memory
bandwidth limitation in our setting, the delays 70, 80, and 90
have interesting behavior. Indeed, they limit and conserve their
limitation even if there are memory writes. In particular, the
80 and 90 delays limit the synchronous memory bandwidth
to 75% and 50%, respectively. In contrast, the 70 delay only
avoids the overload of asynchronous requests due to L2WBs,



halving the synchronous bandwidth in the second operational
condition.
These are important aspects to be considered when dimension-
ing a system with MBA in order to assure a given memory
bandwidth to a critical core.
Along this direction, in the multicore analysis, we choose to
evaluate the assured bandwidth when the MBA limits the in-
terference workloads RI only with 80 and 90 delays, covering
the significant cases of synchronous bandwidth limitation.

VI. RESULTS FROM THE MULTI-CORE ANALYSIS

While the single-core analysis focused on the memory
bandwidth limitation, we analyze the guaranteed bandwidth
of a critical core when the MBA throttles the other cores in
the multi-core analysis.
We analyze the delays that significantly limit the synchronous
memory bandwidth: 80 and 90 delays reduce synchronous
bandwidth by 75 and 50 percent, respectively. In addition, we
design an interpretative model to explain the observed data.
We choose RI as interfering workload, as motivated by the
single-core analysis results. In the experiments, we deploy a
quad-core system where all four cores start with empty private
caches. In this way, the interference cores reproduce the RI

workload, while the critical core emulates a critical task that
fills its private caches. In particular, the critical task fetches
512KB, while the interference cores 768KB, to be sure to last
longer than the critical task.
In Table V, we associate an interference degree id to each
experiment combination considering the limitation calculated
in the single-core analysis.2 An interference degree, for us,
represents the synchronous memory accesses that we would
execute without interference. If that load equals the number
of requests performed by a single-core with a maximum rate,
then the interference degree is equivalent to one.
The interference degree considers only the limitation of the
single-core analysis and not the observed interference. Hence,
for instance, the third combination of Table V, where two
cores interfere with 80-delays (75% of synch. bandwidth) and
one core with 90-delay (50% of synch. bandwidth), has the
same interference degree of two cores that interfere without
limitation. In Fig. 5, we report the boxplots of our critical
latency observations for each combination of interference
degrees in Table V, and we interpolate the 95-percentile. As
expected, the lower the interference degree (achieved with high
MBA delays) the lower the impact on the latency of the critical
workload.
To better interpret this result, we also report the interpolation
of the 95-percentile of the critical core latency when having
exactly 1, 2 or 3 interfering cores with 0-delay, that is, no
MBA limitation (blue line of Fig. 5).

Comparing the two 95-percentile interpolations, we can see
how the MBA is effective at limiting the interference. For
instance, when the interference degree is set to 2 (with 1

2Note that we are assuming the combinations position-independent (i.e., if
we limit core 1 memory accesses, we suppose to be the same of limiting the
core 2).

TABLE V
CRITICAL CORE LATENCY VARIABILITY WHEN THE THREE INTERFERENCE

CORES ARE THROTTLED BY 80 OR 90 DELAY

#80d #90d interference degree id calculation resulting id

0 3 (0 ∗ (3/4) + 3 ∗ (1/2) 1.5
1 2 (1 ∗ (3/4) + 2 ∗ (1/2) 1.75
2 1 (2 ∗ (3/4) + 1 ∗ (1/2) 2
3 0 (3 ∗ (3/4) + 0 ∗ (1/2) 2.25

Fig. 5. Comparison between the critical execution latencies of the interpre-
tative model and those observed as the degree of interference varies

interfering core with 90-delay and 2 interfering cores with
80-delay) the MBA is able to reduce the interference of 3
cores to at most the one we would have with 2 interference
cores running without limitation. The blue line can thus
be seen as the worst-case memory access latency we can
achieve, when varying the interference degree, which is useful
to establish a predictable behavior of the critical workload
when run in a cloud system. This worst-case line is also
easily achievable, from a practical point of view, by running
interfering workloads with an increasing number of cores with
no MBA.
Hence, our experiments show that the MBA can provide
several safety upper bounds for the memory fetching phase of
a critical task in a mixed-criticality Cloud infrastructure.Such
bounds can be used in the WCET analysis of real-time
tasks, without requiring invasive interventions to task code or
execution. In particular, this solution doesn’t require to modify
the program of non-critical task to respect execution models
(contrarily to [19], [3]) and it preserves private resource
utilization limiting only the access versus the shared context
(contrarily to software solutions such as Memguard [25] which
halt the core execution).



VII. CONCLUSIONS AND FUTURE WORK

MBA is an interesting and reliable hardware feature for
resource limitation in real-time systems. It can be used to
regulate the access contention by limiting the arrival rate
of the single physical cores. In this paper, we provide a
systematic approach to estimate the indirect limitation of
the MBA using three main workloads: memory reads with
no L2 writebacks, memory reads with L2 writebacks and
memory reads with L2 writebacks and memory writes. With
experiments conducted on real hardware we discover that a
good approach to measure the limitation in the worst-case is
to run measurements without L2 writebacks. In addition, we
found that only the Intel’s 70, 80, and 90 delays values lead
to significant limitations un our setting. Such limitation for
the maximum synchronous bandwidth continues to be valid
when there are memory writes, differently from state-of-the-
art software-based solutions such as Memguard [25].
Our evaluation in the multi-core analysis showed that the MBA
is able to provide memory bandwidth isolation for a critical
task under heavy memory-intensive workloads on multi-core
platforms. In addition, the MBA enables short regulation
periods that would be hardly achievable with software-based
methods. Finally, the MBA hardware limitation does not
require to stop the execution of interfering cores to prevent
memory accesses, and it does not require to execute the peri-
odic regulation subroutine, improving the overall efficiency.
Although results are achieved for a specific processor, we
believe the proposed method is general enough to be applicable
on different processor models.
In the future, we plan to design a MBA-based approach to
regulate the memory demand based on the current status of
the memory controller and requirements of critical tasks, by
dynamically assigning the required delay to interference cores,
approaching an efficient regulation algorithm.
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