
Polychronous Analysis of Timing Constraints in
UML MARTE

Huafeng Yu Jean-Pierre Talpin
Loı̈c Besnard Thierry Gautier

IRISA/INRIA Rennes/CNRS
263, avenue du Général Leclerc, Rennes, France

Email: {firstname}.{lastname}@irisa.fr

Frédéric Mallet Charles André
Robert de Simone

Université de Nice/INRIA Sophia Antipolis
2004 route des Lucioles, BP 93, Sophia Antipolis, France

Email: {firstname}.{lastname}@sophia.inria.fr

Abstract—The UML Profile for Modeling and Analysis of
Real-Time and Embedded systems (MARTE) defines a broadly
expressive Time Model to provide a generic timed interpretation
for UML models. As a part of MARTE, Clock Constraint
Specification Language (CCSL) allows the specification of systems
with multiple clock domains as well as nondeterminism. In
this paper, we propose to take advantage of Polychrony clock
calculus, named hierarchization, to analyze timed systems spec-
ified in CCSL, and to generate code for simulation considering
determinism. Hierarchization enables to identify the endochrony
property in a system that allows code generation ensuring
determinism. The presented work is being integrated into the
TimeSquare environment dedicated to the simulation of MARTE
timed systems.

Index Terms—MARTE; Polychrony; CCSL; TimeSquare;
clock calculus; simulation;

I. INTRODUCTION

The Unified Modeling Language (UML) [1] has been
widely adopted as a general purpose modeling language.
As an extension of UML that aims at system modeling in
the domain of real-time and embedded (RTE) systems, the
UML Profile for Modeling and Analysis of Real-Time and
Embedded systems (MARTE) [2] has been proposed and was
recently adopted as an Object Management Group (OMG)
specification. MARTE provides more precise semantics and
appropriate concepts in the context of RTE systems than UML.

Time plays a very important role in RTE systems. How-
ever, UML only provides a simple (even simplistic) model
of time. A richer and more adequate time model has been
therefore proposed in MARTE. It is heavily inspired by the
Tagged Signal Model [3], synchronous languages [4], and
the Globally Asynchronous and Locally Synchronous (GALS)
architecture. This time model enables to specify independent
clocks, which can be progressively composed with a family
of possible time evolutions. It is associated with the Clock
Constraint Specification Language (CCSL) [2], [5], which is
also defined in MARTE. CCSL supports both synchronous
and asynchronous compositions, as well as specifications with
nondeterminism. TimeSquare [6] is a software environment
dedicated to the design and analysis of CCSL specifications. It
is equipped with a constraint solver that enables the simulation
for nondeterministic behavior.

CCSL is a specification language that gives a timed causal-
ity semantics to UML models. TimeSquare only supports
interactive simulation and should rely on analysis-specific
environments to provide advanced analysis features, such as
identification of determinism or code generation. Behavior
determinism with regard to time is very important for the
design of embedded systems, particularly safety-critical sys-
tems. It also ensures the same system behavior in different
contexts such as design, verification and implementation. It
therefore simplifies the behavior verification and analysis. It
is interesting to find other existing tools to complement this
functionality for TimeSquare considering reduced cost and
risk.

Polychrony [7] is an integrated development environment
for the design of embedded reactive systems. The Polychrony
toolset takes Signal as kernel design language. It provides a
formal framework for the system modeling at a high level
of abstraction, design validation at different levels, as well
as simulations for deterministic specifications. The Signal
language [8] is based on synchronized data-flow. The Signal
formal model provides the capability to describe systems with
several clocks (polychronous systems) as relational specifi-
cations. Relations are useful as partial specifications and as
specifications of nondeterministic devices (e.g., a nondeter-
ministic bus) or external processes (e.g., an unsafe car driver).
Deterministic specifications allow code generation that enables
simulation, analysis, validation and synthesis. The application
domain of Polychrony includes safety-critical systems, such
as automotive and avionics.

Simulations without consideration of determinism in the
clock constraints is not enough for safety-critical systems.
Hence, we propose an approach to address clock determinism
analysis of CCSL specifications using existing techniques and
tools of Polychrony. This approach is based on the hierarchiza-
tion technique that allows the identification of determinism in
the CCSL specifications. Afterwards, code is generated and
simulation is carried out, compared to the nondeterministic
one of TimeSquare. Two examples are presented in the paper.
The first example is involved in the calculation of Easter in
the calendar. The second one is an example of simplified flight
warning system. The systems in the two examples are modeled
using CCSL clock constraints and analyzed in the framework



of Polychrony to illustrate our proposed approach.
General introductions to CCSL and Polychrony are respec-

tively given in Section II and III. Our main contribution
on CCSL clock analysis, together with two examples, are
presented in Section IV. Section V summarizes related work.
Finally, conclusions are given in Section VI.

II. THE MARTE TIME MODEL AND TIMESQUARE

A. Time model in MARTE

In UML, the time notion is not clearly defined for the design
of RTE systems. In comparison, MARTE presents time in a
more precise and clear manner. Both discrete and dense times
are handled in MARTE. Clocks, which can be chronometric
or logical, are used to access time structure. A chronometric
clock implicitly refers to physical time and a logical clock
mainly addresses concrete instant ordering. The MARTE time
model allows multiform/polychronous time modeling, which
is inspired by synchronous languages [4].

We address logical clocks in this paper. A clock is a finite
or infinite set of instants. A clock may represent a timed event
and instants are its occurrences. A clock has a unit and the
instants can have a label. These instants in a clock are totally
ordered for discrete time clocks, thus they can be indexed
by natural numbers. A time structure is composed of a set of
clocks with the precedence relation between them. Precedence
is a binary relation on clocks [9], and from this relation,
we can derive the following new relations: coincidence, strict
precedence, independence, and exclusion.

B. CCSL

MARTE introduces a new stereotype of UML Constraint,
through which a MARTE timed system can be specified.
CCSL is used to express the clock constraints based on
these constraint stereotypes. It is a non normative language
annexed to MARTE (Annex C), and it is independent of any
existing language. A comprehensive informal description of
CCSL has previously been presented in [5] and a formal
semantics for a kernel of CCSL can be found in [9]. A CCSL
specification consists of clock relations and clock expressions.
alternatesWith and isPeriodicOn are instances of clock rela-
tions, delayedFor and sampledOn are clock expressions. In this
paper, only these four constraints are presented and illustrated
with examples in Section IV.

C. TimeSquare

TimeSquare is a software environment dedicated to mod-
eling and analysis of timed systems specified with clock
constraints using the CCSL language [6]. It is composed of
a set of Eclipse plugins and has been integrated into the
OpenEmbeDD platform [10]. TimeSquare has the following
functionalities: interactive clock-related specifications; clock
constraint checking; generation of a solution for clock con-
straints; visualization and exploration of the simulation results
through waveforms.

III. THE POLYCHRONY FRAMEWORK

A. Signal and Polychrony

Polychrony is an integrated development environment based
on the Signal language for design of safety-critical systems.
Signal is a synchronous language, which is based on synchro-
nized data-flow (flows + synchronization). Variables are called
signals in the Signal language. Each signal (e.g., x) represents
an infinite typed sequence, which is mapped onto the logical
time indexed by natural numbers, i.e., x is actually (xτ )τ∈N.
The symbol ⊥, which represents the absence of the signal
at certain instant on the logical time, expands the domain of
signal. A signal has an associated clock indicating the set of
instants where the signal is present. A process is considered
as a program that is composed of a system of equations over
signals and an interface.

Signal allows the specification of multiclock/polychronous
systems, in which a process can be deactivated while other
processes are still activated. Two kinds of operators are de-
fined in Signal: monochronous and polychronous. The former
operates on signals with the same clock, i.e., signals that are
always present at the same time. The latter handles signals with
different clocks. In addition, the Signal formal model allows
partial and nondeterministic specifications. The model also
supports a design methodology which goes from specification
to implementation, from synchrony to asynchrony.

The Polychrony toolset is composed of the Signal batch
compiler, a Graphical User Interface (GUI), and the Sigali tool.
The compiler provides a set of functionalities, which include
program transformations, optimizations, formal verification,
separate compilation, code generation, simulation, temporal
profiling, etc. The Sigali tool is used to build associated formal
systems for formal verification and controller synthesis [20].

B. Hierarchization

Several techniques enable static analysis, code generation,
formal verification, code distribution, etc., in the compilation
of Signal programs. In this paper, we concentrate on the
hierarchization technique [11], which helps to achieve our
objective of analyzing CCSL clock constraints. The main
objective of hierarchization is to exploit clock relations based
on the clock inclusion relation. This relation indicates that
all the instants of a clock are included in another one. A
tree structure is then built according to this exploitation. Only
Clock partition and tree fusion are briefly presented here.

A clock C2 dominates a clock C1 (left part of Fig. 1)
if the clock C1 is computed as a function of C2 (using
Boolean sampling, clock intersection, union and difference
operators) or as a function of clocks recursively dominated
by C2. Boolean sampling is the basic pattern of the hierarchy.
Let V be a Boolean signal whose clock is specified by Ĉ.
Ĉ is partitioned into [C] and [¬C]. [C] indicates a subclock
of V when the values of V are true, whereas [¬C] indicates
another complementary subclock of V when V is false. The
subtree that expresses the relation of these three clocks can be
built and it is illustrated by the right part of Fig. 1.



[C]

C

[ C]C1

C2

Fig. 1. An example of partition tree for clock C.

A Signal program is expressed by a set of clock trees
similar to the ones in Fig. 1. Fusion of these trees should
be carried out so that a concise yet global clock relation is
exhibited. The tree fusion is also carried out according to
clock inclusion. Fig. 2 presents an example of clock fusion.
C3 = C1 < op > C2 is an equation, where < op >
indicates clock union, intersection or exclusion. C is the parent
of both C1 and C2. Hence these two trees can be fused
because C can also be considered as the parent of C3.

Fig. 2. An example of clock tree fusion.

C. The endochrony property and code generation

The compilation of Signal programs partly relies on hierar-
chization, particularly the generation of control structure for
the code. Endochrony is an important property for the compi-
lation of Signal programs. An Endochronous Signal process
can reconstruct synchronous clock relations from untimed but
ordered input signals with the help of signal relations and
states defined in the process. So it is possible to execute a
Signal program even without knowing the absence status of the
input signals. The application of tree fusion on all trees leads
to two results, a clock hierarchy with one or multiple roots.
The one root hierarchy implies the endochrony property in the
Signal program. This program can be compiled into code in
if-then-else structure according to the clock hierarchization.
Fig. 3 illustrates the example of Fig. 2. In comparison, a
multi-root hierarchy signifies nondeterminism in the system.
As a result, code generation is not possible without adding
complementary information.

if C then
if C1 then ... endif
if C2 then ... endif
if C1 <op> C2 then ... endif

endif

Fig. 3. The control structure of code generated from the example in Fig. 2.

IV. HIERARCHIZATION OF CCSL CLOCK CONSTRAINTS

This paper mainly addresses the integration of the Poly-
chrony clock calculus into TimeSquare. The MARTE time
model/CCSL aims at providing a general time model with
regard to clock relations. However it is not yet supported by
many tools until now. On the other hand, Polychrony consists
of plenty of analysis tools for clock relations. Hence it is
a promising approach to benefit from the various tools of
Polychrony to enhance the analysis capacity of TimeSquare.
In addition, behavior determinism with regard to time is a very
important property for safe design of safety-critical systems.
It simplifies design validation and also ensures the coherence
between design and implementation. TimeSquare allows sim-
ulation for timed system specified in CCSL, however, it is not
adequate for safety-critical systems.

Our approach has been proposed to satisfy previous de-
mands. Polychronous clock analysis is necessary when code
generation, in consideration of deterministic simulation, is
expected from a timed system. Using the existing and so-
phisticated hierarchization technique of Polychrony helps to
reduced design cost and risk. Nevertheless, the expressivity of
the two languages, i.e., Signal and CCSL, is different as they
are not faced with the same problems. The main differences
between TimeSquare/CCSL and Polychrony/Signal are first
summarized here:
• CCSL aims at providing a more generic time model than

Signal. Both dense time and discrete time are supported
in CCSL, whereas only logical time is allowed in Signal.
Hence, it is necessary to map dense and discrete time
of CCSL onto the logical time of Signal. For instance,
the dense time is mapped onto the discrete time through
sampling or discrete observation. Then, the discrete time
is mapped onto the logical time in a natural way.

• CCSL allows the specification of clock relations with
numerical properties. Some of them can be also specified
in Signal. However, some numerical properties, e.g.,
duration, are not well supported by the code generation
of Signal programs. On the other hand, Signal arithmetic
operations on numbers are not supported in CCSL.

• Asynchronous clock constraints are more easily specified
and addressed in CCSL than in Signal. TimeSquare pro-
vides a constraint solver that addresses these constraints
in a nondeterministic way, thus it allows nondeterminism
in the simulation. Signal also allows the specification
of asynchronous clock constraints, whereas the Signal
compiler refuses direct code generation for these non-
deterministic constraints. Hence, a valid specification
of TimeSquare is not always accepted by the Signal
compiler for code generation.

Due to these differences as well as the objective of clock
determinism analysis, we take advantage of the hierarchization
technique. As the presented work uniquely addresses behavior
with regard to time in a system, only clock expressions,
Boolean expressions and CCSL logical clocks without con-
sideration of values and numerical characteristics are involved



here, similar to the TimeSquare constraint solver. Typical
CCSL clock relations and expressions are analyzed with the
hierarchization technique separately, based on which a system
of clock constraints is analyzed. The result of the analysis
assists code generation with consideration of determinism,
which is finally used for simulation in the framework of
Polychrony.

A. Hierarchization analysis

This work partly relies on the translation of typical CCSL
relations into Signal [12]. In this paper, we focus on the
hierarchization analysis of these CCSL clock relations, which
helps to identify the potential determinism in the application.

1) Clock relation alternatesWith: it indicates the alter-
nate occurrences of instants in two clocks. More precisely,
A alternatesWith B implies the first occurrence is A, then
between two successive occurrences of A, there is one and
only one occurrence of B. A concrete example is a reliable
asynchronous communication: data sending is always before
data receiving. Obviously, the two clocks A and B are not syn-
chronous if there is no other relation specified between them.
In this case they are only constrained by an asynchronous
relationship. This relationship implies nondeterminism. Fig. 4
shows an example of alternatesWith between the two clocks A
and B. Clocks A and B are in different trees in the hierarchiza-
tion so they are placed in different triangles. Furthermore, the
dotted line tagged with alternatesWith indicates a constraint
relation. There are two forms of alternatesWith: weak form and
strict form. As these two forms have the same hierarchization,
they will not be detailed here.

Fig. 4. An example and the hierarchization of alternatesWith.

2) Clock relation isPeriodicOn: it can be used to
build a subclock from a given clock. For instance,
B isPeriodicOn A period = p offset = o builds a
subclock B from the clock A according to a periodicity p
and an offset o. The time index of A has a linear relation with
that of B. The left part of Fig. 5 illustrates an example of this
relation. As there is an explicit inclusion relation between A
and B, hierarchization of A and B is comparably simple, as
illustrated in Fig. 5. A special case of isPeriodicOn is when
p = 1 and o = 0, A and B are completely synchronous, i.e.,
A = B.

Fig. 5. An example and the hierarchization of isPeriodicOn.

In addition, a more general clock relation filteredBy has also
been defined in CCSL to filter a clock and build a subclock
by selecting some instants (not necessarily periodical). Using
the clock relation filteredBy the relation isPeriodicOn can
be written A = B filteredBy 0o(1.0p−1) (o indicates
offset and p implies period), where 0o(1.0p−1) is the filter
pattern based on the instants of a clock [9]. The number 1
indicates the instant selection and 0 indicates disregard. They
are separated by “.”. The power of o and p-1 means the
repetition number of 0 or 1. () implies the infinite repetition
of it inside pattern. Both filteredBy and isPeriodicOn have the
same form in hierarchization.

3) Clock relation sampledOn: it is based on sampling.
C = B sampledOn A indicates C is a subclock of A
and each instant of C corresponds to an instant of A that
closely follows an instant of B. There are two forms of
the sampledOn relation: weak form and strict form, which
defines the exact occurrence of C with regard to A. As only
clock inclusion relation is involved in this paper, they will
not be further distinguished as these two forms have the
same hierarchization result. Fig. 6 presents an example of
the sampledOn relation and the hierarchization result: C is
a subclock of A; A and B are polychronous clocks.

Fig. 6. An example and the hierarchization of sampledOn.

4) Clock relation delayedFor: A watchdog can be modeled
by the relation delayedFor. A watchdog is composed of a
starter, a delay number and a timer. A timeout is emitted
when the starter occurs after a period of the delay time
according to the timer. If there is another starter that occurs
during this period, the time counter will not be reset. Fig. 7
illustrates the relation delayedFor with an example and its
hierarchization result. A is not synchronous with B, thus they
are polychronous. Clock C (timeout) is a subclock of A (timer)
but not B (starter).

Fig. 7. An example and the hierarchization of delayedFor.

B. Code generation and simulation

One of the main objectives of the hierarchization technique
is to determine an endochronous clock system E from the
analysis of an original Signal program S. An endochronous
system implies a unique root node in the hierarchization tree.



This endochronous system ensures the deterministic schedul-
ing of arriving events only according to the internal signal
state and structure of S. In Polychrony, E can be used to
generate code, for instance, the control structure of code in
Fig. 3 is generated from the example in Fig. 2. Once the
code is generated, it can be used for simulation, which is a
deterministic one compared to that of TimeSquare. Traces in
VCD format [13] can be generated for the visualization of
simulation results through graphical VCD viewers [6].

However it is not always obvious to build an endochronous
system from S as S can be polychronous, i.e., there are
independent clocks. These clocks can be completely inde-
pendent, i.e., no communication occurs between processes.
These clocks can also have constraints between them, but
no synchronous relationships specified between them. For
instance, clock A and B in the relations sampledOn and
delayedFor. In this case, it leads to nondeterminism in the
system. In TimeSquare, the user can choose amongst a set
of possible simulation policies (random, as soon as possible,
priority-based) to select one solution out of the many possible
ones. However, in Polychrony, code cannot be generated due
to the nondeterminism in the specification. It therefore results
in a Signal compilation issue.

There are several solutions available in Polychrony to obtain
the deterministic behavior. One of the solutions relies on
adding supplementary clocks to endochronize polychronous
clocks, i.e., these clocks should be mapped onto the added
supplementary clocks, through which the original clocks are
endochronized. For instance, Fig. 8 illustrates a possible
solution of endochronizing polychronous clocks. Clock A and
B are two polychronous clocks. C is a supplementary clock
that is added to endochronize A and B. C has two subclocks
C1 and C2. The endochronization of A and B can be achieved
by synchronizing A with C1 and B with C2 respectively.
A concrete example is presented here. Let A alternatesWith
B. A Boolean signal C is a supplementary clock, which has
alternate true and false as its values. C1 and C2 are subclocks
of C indicating C is true and false respectively. Then the clock
A is synchronized with C1, and B is synchronized with C2.
This approach endows the endochrony property to the system
so code generation in the framework of Polychrony is possible.

Fig. 8. Examples of endochronizing polychronous clocks.

C. An example of Easter days

An example of Easter calculation that has been presented
in [14] is taken here to illustrate the usage of hierarchization.
Easter Day is the first Sunday after the 14th day of the lunar
month that falls on or after March 21st (nominally the day of

the vernal equinox). In comparison to [14], which presented
the example with UML and MARTE models, only its CCSL
specification is shown here (starting from the 1st of March
2008).

sunday isPeriodicOn days period 7 offset 1;

newMoon = days filteredBy 06(1.029);

vEquinox = days filteredBy 020(1.0365);

fullMoon = newMoon delayedFor 14 on days;

easterMoon = vEquinox weakly sampledOn fullMoon;

easter = easterMoon strictly sampledOn sunday;

Fig. 9. The Easter example specified in CCSL.

Fig. 9 illustrates the CCSL specification of the Easter
example. Important dates, such as day, Sunday, new moon,
full moon, vernal equinox, and Easter are modeled as pure
clocks (without definition of values). These days are defined
as days, sunday, newMoon, fullMoon, vEquinox, and
easter in CCSL respectively. According to the calendar,
the relations of these dates are modeled by clock constraints
in CCSL (Fig. 9).

Fig. 10. Hierarchization result of the Easter example.

Hierarchization of the Easter example is illustrated in
Fig. 10. It implies an endochronous system, i.e., all the clocks
have a unique root days. The Signal compiler succeeded in
code generation when the CCSL specification was translated
into Signal. The generated code in C has a similar control
structure as presented in 3 and implies deterministic behavior.

D. Another example of a flight warning system

Another example of a simplified flight warning system is
also considered here. This system has been proposed by the
Aerospatiale Company (France) for Airbus A340 aircraft and
was presented as a case study in [15]. The system is used
to decide when and how to emit warning signals in case
of an anomaly. It is composed of two processes: an alarm
manager and an alarm notifier. An alarm manager receives
an alarm a in the system, and a is changed to a confirmed
alarm after a given period of time or removed according to
its present or absent status. Confirmed alarms are sent to the



alarm notifier. Once the alarm notifier receives the alarm, it
emits a corresponding warning signal w.

Fig. 11 illustrates the CCSL specification of this example.
The alarm manager and alarm notifier are concurrent and they
have different clocks: clk_am and clk_an. The confirmed
signals a1 and w1 ared based on the clocks of clk_am and
clk_an respectively. The communication between the alarm
manager and notifier is asynchronous: the data sending and
receiving is modeled by an alternatesWith relation.

a1 = clk am filteredBy 0k(1.0n);

a = a1;

w1 alternatesWith a1;

w1 = clk an filteredBy 0k(1.0n);

w = w1;

Fig. 11. The flight warning system example specified in CCSL.

Fig. 12 shows the hierarchization result, which indicates the
system is polychronous, so code generation is not direct. Sup-
plementary clocks should be added to endochronize clk_am
and clk_an for the code generation (not for distribution),
similar to the approach presented in Fig. 8. For distributed
code generation, [16] proposed to use clock-less memory so
that the memorized signal value can be available whenever it
is required without consideration of their different clocks.

Fig. 12. Hierarchization result of the flight warning system example.

E. Discussions

The objective of our proposed approach is to identify
behavior determinism with regard to time in systems, par-
ticularly those who are specified using the MARTE CCSL.
The MARTE time model implies a general time model, which
is heavily inspired by the Tagged Signal Model, synchronous
languages, and the Globally Asynchronous and Locally Syn-
chronous (GALS) architecture. Based on this time model, the
presented work has a broad application domain, and it does
not aim at certain specific technologies.

Our work is considered as a continuation of [12] with regard
to behavior determinism analysis. In [12], the translation
of certain main CCSL clock relations has been presented.
Formal semantics of these relations were exhibited with the
help of this translation, and comparisons of relevant CCSL
and Signal operators are also given. However, systematic
clock analysis, particularly time-related determinism analysis,
is absent. In this paper, this aspect has been addressed. The

advantage of our approach is that it enables to identify the
behavior determinism with regard to time in a system. Thus a
deterministic simulation for a safety-critical system is possible.

A polychronous system, which is not endochronous, implies
nondeterministic behavior with regard to time. This can be
simulated by TimeSquare. TimeSquare does not reject de-
terministic simulation. The TimeSquare simulation implies a
nondeterministic choice of a solution from solution space. In
comparison, Polychrony only accepts deterministic simulation,
hence a polychronous system should be firstly endochronized
as presented previously. The endochronization implies a de-
terministic choice of a specific solution from the solution
space. However it is not always possible to find appropriate
supplementary clocks for endochronization in consideration of
the determinism requirement. In this case, clock constraints of
the system are expected to be improved.

V. RELATED WORK

Affine clock systems are considered as a Signal clock refine-
ment [17]. They are based on the affine relation of time indexes
of signals, from which the synchronizability of these signals
is analyzed. Periodic clocks can be easily specified in CCSL,
however they need to be specified with the help of counters
in Signal. Moreover their synchronizability is difficult to be
analyzed. Affine clocks allow the specification of periodic
clocks in an efficient way, and analyze the synchronizability
between periodic clocks. Hierarchization only takes clock
inclusion relation in consideration now. But it is promising
to consider affine relation and clock synchronizability.

As endochrony is not well situated to address issues of com-
positionality [18], asynchronous clock relations, etc., weakly
endochronous systems [19] have been proposed for the Glob-
ally Asynchronous Locally Synchronous (GALS) architecture.
They aim at meeting the requirements of building deterministic
asynchronous implementations from polychronous specifica-
tions. Weak endochrony enables identical execution results of
synchronous specifications in any asynchronous environment.
So weak endochrony is a good complement to address asyn-
chronous composition while preserving deterministic system
behavior. Therefore, it is a complementary technique to hier-
archization for the analysis of asynchronous clock relations.

Hierarchization is a powerful mechanism to determine the
endochrony property of a given system specified in CCSL.
Code generation for polychronous systems has always been
a difficult problem. Several solutions have been presented
previously, however it is still interesting to explore the existing
work on code distribution in the framework of GALS via
Polychrony. For instance, consider each endochronous sub
system and the overall polychronous system as local systems
and the global system in the GALS architecture respec-
tively. These endochronous sub systems are interconnected
with asynchronous communications. Thus, the presented work
makes its extensions in the framework of GALS possible,
particularly weak endochrony [19].

In addition to the clock calculus presented previously,
controller synthesis [20] is another approach that enables to



restrain system behavior with regard to certain expected prop-
erties, such as invariance and reachability. The controllers to be
synthesized in the system ensure a deterministic scheduling of
system compared to the construction of a deterministic system
a posteriori via clock calculus. In Polychrony, Sigali is an
associated tool to achieve controller synthesis.

VI. CONCLUSIONS

This paper presents an approach to identify the determinism
in a timed system, specified with the MARTE Clock Constraint
Specification Language (CCSL). This approach is based on
hierarchization, the clock calculus provided by Polychrony.
Deterministic behavior identification via clock analysis is a
desired feature of TimeSquare, a software environment dedi-
cated to the simulation of MARTE timed systems. Polychrony
and its hierarchization technique is a good complement to
TimeSquare.

Hierarchization of typical CCSL clock relations is first
presented, which can be recursively applied on a system of
clock constraints. Two kinds of systems can be identified
through hierarchization: endochronous and polychronous. An
endochronous system implies synchronization of all clocks
is completely defined, hence it has a deterministic behavior.
Whereas a polychronous system does not ensure the synchro-
nization of all clocks, so it remains nondeterministic, which
complicates the system design, validation, implementation,
etc. In order to make them deterministic, a specific solution
to endochronize clocks, i.e., adding synchronization clocks,
has been presented. In addition, weak endochronous systems,
affine clock systems, and controller synthesis are briefly dis-
cussed as they are related to our work and are also good
candidates to improve our work to some extent.

REFERENCES

[1] Object Management Group (OMG), “UML 2.2 Superstructure and
Infrastructure,” http://www.omg.org/spec/UML/2.2, February 2009,
formal/2009-02-04.

[2] ——, “Modeling and Analysis of Real-
time and Embedded systems (MARTE), v1.0,”
http://www.omgmarte.org/Documents/Specifications/08-06-09.pdf,
November 2009, document number: formal/2009-11-02.

[3] E. Lee and A. Sangiovanni-Vincentelli, “A Framework for Comparing
Models of Computation,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 17, no. 12, pp. 1217–1229,
December 1998.

[4] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic,
and R. de Simone, “The Synchronous Languages Twelve Years Later,”
Proceedings of the IEEE, vol. 91, no. 1, pp. 64–83, January 2003.

[5] C. André, F. Mallet, and R. D. Simone, “Modeling Time(s),” in
ACM/IEEE Int. Conf. on Model Driven Engineering Languages and
Systems (MoDELS/UML’07), ser. LNCS 4735. TN, USA: Springer,
October 2007, pp. 559–573.

[6] INRIA AOSTE team, “TimeSquare,” http://www-
sop.inria.fr/aoste/dev/time square, 2009.

[7] INRIA ESPRESSO team, “Polychrony V4.15.10,”
http://www.irisa.fr/espresso/Polychrony, December 2008.

[8] L. Besnard, T. Gautier, P. Le Guernic, and J.-P. Talpin, “Compilation of
polychronous data flow equations,” in Correct-by-Construction Embed-
ded Software Synthesis: Formal Frameworks, Methodologies, and Tools,
S. Shukla and J.-P. Talpin, Eds. Springer, 2010.

[9] C. André, “Syntax and Semantics of the Clock Constraint Specification
Language (CCSL),” INRIA, Research Report RR-6925, 2009, 37 pages.
[Online]. Available: http://hal.inria.fr/inria-00384077/en/

[10] “OpenEmbeDD,” http://www.openembedd.org, 2009.
[11] P. Amagbegnon, L. Besnard, and P. Le Guernic, “Implementation of the

Data-flow Synchronous Language Signal,” in Proceedings of the ACM
Symposium on Programming Languages Design and Implementation
(PLDI’95). ACM, 1995, pp. 163–173.

[12] F. Mallet and C. André, “On the Semantics of UML/MARTE Clock
Constraints,” in 12th IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing (ISORC 2009). Tokyo, Japan: IEEE
Computer Society, March 2009, pp. 305–312.

[13] “IEEE Standard for Verilog Hardware Description Language,” 2006,
IEEE Std 1364 -2005.

[14] F. Mallet and C. André, “UML/MARTE CCSL, Signal and Petri nets,”
INRIA, Research Report RR-6545, May 2008, 23 pages.

[15] N. Lopez, M. Simonot, and V. V. Donzeau-Gouge, “A Methodological
Process for the Design of a Large System: Two Industrial Case-studies,”
FMICS’02, Electronic Notes in Theoretical Computer Science, vol. 66,
no. 2, pp. 84–103, 2002.

[16] A. Gamatié and T. Gautier, “The Signal Synchronous Multi-Clock
Approach to the Design of Distributed Embedded Systems,” IEEE
Transactions on Parallel and Distributed Systems, vol. 99, no. 1, pp.
1045–9219, 2009.

[17] I. Smarandache, T. Gautier, and P. Le Guernic, “Validation of Mixed
Signal-Alpha Real-Time Systems through Affine Calculus on Clock
Synchronisation Constraints,” in World Congress on Formal Methods
(FM’99), ser. LNCS, vol. 1709. Springer, 1999, pp. 1364–1383.

[18] A. Benveniste, B. Caillaud, and P. L. Guernic, “Compositionality in
dataflow synchronous languages: Specification and distributed code
generation,” vol. 163, pp. 125–171, 2000.

[19] D. Potop-Butucaru, B. Caillaud, and A. Benveniste, “Concurrency in
synchronous systems,” in Formal Methods in System Design, vol. 28,
March 2006, pp. 111–130.

[20] H. Marchand, P. Bournai, M. Le Borgne, and P. Le Guernic, “Synthesis
of Discrete-Event Controllers based on the Signal Environment,” Dis-
crete Event Dynamic System: Theory and Applications, vol. 10, no. 4,
pp. 325–346, October 2000.


