
Developing self-managing embedded systems with ASSLDeveloping self-managing embedded systems with ASSL

Emil Vassev, Mike Hinchey

Publication datePublication date

01-01-2009

Published inPublished in

Proceedings of the IMCSIT;2009

LicenceLicence

This work is made available under the CC BY-NC-SA 1.0 licence and should only be used in accordance with
that licence. For more information on the specific terms, consult the repository record for this item.

Document VersionDocument Version
1

Citation for this work (HarvardUL)Citation for this work (HarvardUL)

Vassev, E. and Hinchey, M. (2009) ‘Developing self-managing embedded systems with ASSL’, available:
https://hdl.handle.net/10344/1797 [accessed 25 Jul 2022].

This work was downloaded from the University of Limerick research repository.

For more information on this work, the University of Limerick research repository or to report an issue, you can
contact the repository administrators at ir@ul.ie. If you feel that this work breaches copyright, please provide
details and we will remove access to the work immediately while we investigate your claim.

https://creativecommons.org/licenses/by-nc-sa/1.0/
mailto:ir@ul.ie

Developing Self-Managing Embedded Systems with ASSL

Emil Vassev*, Mike Hinchey**

*Lero— the Irish Software Engineering Research Centre, University College Dublin

Ireland (e-mail: emil.vassev@lero.ie)

** Lero—the Irish Software Engineering Research Centre, University of Limerick

Ireland (e-mail: mike.hinchey@lero.ie)

Abstract: We present a new formal approach to the implementation of embedded systems, arrived at by
introducing self-management capabilities to the same. We use the ASSL (Autonomic System

Specification Language) framework to approach the problem of formal specification and automatic code

generation of embedded systems. Some features of ASSL help to specify event-driven embedded systems

where hardware is sensed via special metrics intended to drive events and self-management policies. The

latter can be specified to handle critical situations in an autonomous reactive manner. Moreover, we
present a case study where we use ASSL to specify control software for the wide-angle camera carried on

board by NASA’s Voyager II spacecraft.

Keywords: embedded systems, real-time systems, reactive systems, self-management, ASSL

1. INTRODUCTION

Embedded systems have taken their fair share of the
tremendous expansion of IT in our daily lives. A most

important feature of these systems is that they are able to

provide a secure and highly available environment in

conjunction with the ability to deliver deterministic real-time

services. In addition, they often have long-life and 24x7

operational requirements. Being closely related to
revolutionary innovations in computer hardware, embedded

systems have become more and more powerful. As a result,

today, the computational tasks we can accomplish in an

embedded environment are much more complex than those

just ten years ago. However, in order to build reliable

embedded systems that cope well with the increased

complexity, we need new, modern, development approaches.

The latter must not only overcome the complexity problem

but also must address the quality of service (QoS) in

embedded critical systems where it is often the main concern.

We present our approach to this problem, whereby the ASSL
(Autonomic System Specification Language) (Vassev, 2008;

Vassev and Hinchey, 2009a) is used with its appropriate

constructs to specify (or model) the event-driven behavior of

an embedded system and subsequently to implement the
latter via automatic code generation. ASSL is a formal

method dedicated to autonomic computing (AC) (Murch,

2004). AC is recognized as a potential long-term solution to

the problem of increasing system complexity and costs of

maintenance. The idea is that software systems must manage

themselves automatically by controlling complexity through

self-management based on high-level objectives. In this

paper, we demonstrate how ASSL can be successfully used

as a formal approach to the development of embedded

systems, where developers will be assisted with problem

formation, system design and system implementation.

The rest of this paper is organized as follows. In Section 2,
we review related work, and in Section 3, we briefly present

the ASSL framework, the ASSL constructs suitable for the

specification of embedded systems, and the architecture of

the ASSL-generated embedded systems. Section 4 presents a

case study where ASSL is used to specify the event-driven

behavior of the wide-angle camera used in NASA’s Voyager

II mission. Finally, Section 5 provides brief concluding
remarks and a summary of future research and investigation

trends.

2. RELATED WORK: PROGRAMMING EMBEDDED

SYSTEMS

In general, embedded system programming is about writing
software that drives hardware. In the past, embedded systems

have had to run on platforms limited by memory and

processor speeds, which in turn limited the programming

tasks to writing simple software that drives controllers.

However, for over 40 years, IT has obeyed Moore’s Law and,

today, both the constant increase in processor speeds and

decrease in memory costs allow for the development of new

intelligent devices where real-time embedded systems

become extremely complex in order to exploit maximum

advantage of the chosen platform. Nowadays embedded
system programming is targeting at applications for handheld

devices, industrial control, set-top boxes, gaming devices,

phones, A/V devices, and more. A subclass of embedded

systems is real-time systems which have timing constraints

introduced to assure the ability to make certain calculations

or decisions in a timely manner.

Often embedded system programming is undertaken in the
C/C++ programming language, combined with a variety of

techniques developed to address particular problem domains.

For example, many embedded systems use a real-time

operating system (RTOS) to handle concurrent execution of

multiple running processes, each written in a sequential

language such as C (Labrosse, 1998).

Another example is the SystemC language, which is
standardized by the IEEE (cf. IEEE 1666-2005 Standard).

This language originated from C++ as a language for system

modeling intended to enable ―system-to-silicon‖ design flows

(OSCI, 2009).

Although not considered a very efficient language due to its
slow execution (sometimes less than 10% as fast as a similar

program written in C), Java has also been embraced as a

programming language for embedded systems. Key

characteristics that helped in this are built-in multithreading

and synchronization, automatic memory management and

lack of pointer arithmetic. Usually, in a Java-based embedded

system, the software runs in the host Java VM, which

executes on top of a RTOS. Java has become popular in the

development of networked embedded systems (Fleischmann,

Buchenrieder, and Kress, 1999). Note that ASSL generates

executable Java code (cf. Section 3.3).

Formal methods have been both successful and extremely

useful in the development of embedded safety-critical

systems, such as modern avionics control software and
control software for nuclear plants. Here, the advantages of

using formal methods come from the rigorous mathematical

semantics and the high level of abstraction provided by the

formal notation, and from the use of software verification

tools that help to discover design and implementation flaws

at early stages of the software lifecycle. For example, to

develop the control software for the C130J Hercules II,

Lockheed Martin used a correctness-by-construct approach

based on formal (SPARK) and semi-formal (Consortium

Requirements Engineering) methods (Amey, 2002).

Special formal languages called synchronous languages are
dedicated to the programming of reactive systems

(Halbwachs, 1993). An example of such a language is Lustre,

which was successfully applied in the development of

automatic control software for critical applications, e.g., the

control software for nuclear plants and Airbus airplanes.
Synchronous languages were also used to develop DSP chips

for mobile phones, to design and verify DVD chips, and to

program the fight control software of Rafale fighters

(Benveniste et al., 2003).

Esterel (Berry and Gonthier, 1992) is another synchronous
language developed for specifying control-dominated

reactive systems. This language combines the control

constructs of an imperative software language with

concurrency, pre-emption, and asynchronous model of time

like that used in synchronous digital circuits.

SDL (Ellsberger, Hogrefe, and Sarma, 1997) is a graphical
specification language developed for modeling

telecommunication protocols. SDL considers embedded

systems consisting of concurrently-running finite state

machines (FSMs) connected via channels defining messages

they carry. In such a system, repeatedly, each FSM receives

messages and reacts to those by changing internal state, or

sends messages to other FSMs.

In our approach, we propose the use of ASSL as a
development platform for embedded systems incorporating

self-managing features. Here, we are targeting embedded

systems, whose Java implementation is automatically

generated from their ASSL specification. We believe that our

approach will help in the realization of more reliable control

software that maximizes the utilization of the hardware

capacity through self-adaptation.

3. ASSL

Although intentionally dedicated to AC, ASSL can be used
for the development of embedded systems with self-

management capabilities. We term such systems embedded

autonomic systems (EASs). In this section, we present the

ASSL specification model and special features that make the

framework suitable for the development of EASs.

3.1 ASSL Specification Model

ASSL is based on a specification model exposed over
hierarchically organized formalization tiers. The ASSL

specification model is intended to provide both infrastructure

elements and mechanisms needed by an autonomic system

(AS) or in this case by an EAS. Each tier of the ASSL

specification model is intended to describe different aspects
of the AS under consideration, such as service-level

objectives, policies, interaction protocols, events, actions,

etc. This helps to specify an AS at different levels of

abstraction imposed by the ASSL tiers (cf. Table 1).

Table 1. ASSL Multi-Tier Specification Model

AS

AS Service-Level
Objectives

AS Self-Management Policies

AS Architecture

AS Actions

AS Events

AS Metrics

ASIP

AS Messages

AS Channels

AS Functions

AE

AE Service-Level Objectives

AE Self-Management Policies

AE Friends

AEIP

AE Messages

AE Channels

AE Functions

AE Managed Elements

AE Recovery Protocols

AE Behavior Models

AE Outcomes

AE Actions

AE Events

AE Metrics

The ASSL specification model considers the ASs as being
composed of special autonomic elements (AEs) interacting

over interaction protocols, whose specification is distributed

among the ASSL tiers. However, a simple EAS can be

specified with a single AE and no inter-AE interaction

protocols.

Table 1 presents the multi-tier specification model of ASSL.
As shown, it decomposes an AS in two directions:

1) into levels of functional abstraction;

2) into functionally related tiers (sub-tiers).

With the first decomposition (cf. first column in Table 1), an

AS is presented from three different perspectives, these

depicted as three main tiers:

The AS Tier forms a general and global AS perspective
exposing the architecture topology, general system behavior

rules, and global actions, events, and metrics applied to these

rules.

The ASIP Tier (AS interaction protocol) forms a
communication perspective exposing a means of

communication for the AS under consideration.

The AE Tier forms a unit-level perspective, where an
interacting set of the AS’s individual components is

specified. These components are specified as AEs with their

own behavior, which must be synchronized with the behavior

rules from the global AS perspective.

Here, it is important to mention that the ASSL tiers are

intended to specify different aspects of the AS in question but

it is not necessary to employ all of them in order to model an

EAS. Thus, to specify a simple EAS, we need to specify a
single AE incorporating the embedded system software

controlling the embedded system hardware. Moreover, self-

management policies must be specified to provide self-

management behavior at the level of AS (the AS tier) and at

the level of AE (AE tier). Note that this rule is implied by the

fact that all the ASSL specification must be AC-driven, i.e.,

based on self-management (Murch, 2004).

In ASSL, self-management policies are specified with special

constructs termed fluents and mappings.

1) A fluent is a state where an AS enters with fluent-
activating events and exits with fluent-terminating

events.

2) A mapping connects fluents with particular actions
to be undertaken.

Here, self-management policies are driven by events and
actions determined in a deterministic manner, similar to finite

state machines. For the purpose of EAS development, self-

management policies can be specified to control the EAS

hardware. Moreover, real-time systems are bounded with

deadline, where the deadline may be a particular time or time

interval, or may be the arrival of some event. Thus, we can

use ASSL to specify real-time EASs where different events

can be used to trigger different policies intended to solve
problems when the deadline cannot be met.

In the following section, we emphasize the ASSL constructs
suitable for the specification of EASs. A complete description

of the ASSL specification model is beyond the scope of this

paper. For more information, we refer the interested reader to

(Vassev, 2008).

3.2 ASSL Features for Embedded Systems

ASSL implies a number of important specification constructs
and techniques, which allow for a valuable formal approach

to the development of embedded systems.

3.2.1 Events

In general, embedded systems are considered event-driven.
ASSL exposes a rich set of techniques and constructs for

specifying events, which makes the framework suitable for

the specification and code generation of event-driven

embedded systems. From the EAS development perspective,
ASSL events are one of the most important aspects in ASSL.

By its nature, an ASSL event is a means for high-priority

system messaging. ASSL uses events to specify many of the

ASSL tiers and sub-tiers, such as fluents, self-management

policies, actions, etc. To specify ASSL events, one may use

logical expressions over service-level objectives (SLO),

metrics, other events, messages, etc. Here, in order to specify

events, ASSL introduces the following clauses:

 DEGRADED/NORMALIZED – to prompt an event when
specified SLOs transit from normal to degraded state

and from degraded to normal state, respectively;

 RECEIVED/SENT – to prompt an event when an
ASSL message has been received or sent,

respectively;

 CHANGED – to prompt an event when the value of a
specific ASSL metric has been changed;

 OCCURRED – to prompt an event when another
ASSL event has occurred;

 ACTIV_TIME – to prompt an event when a specific
time has occurred;

 PERIOD – to prompt an event regularly on period

basis;

 DURATION – to specify the event duration once it has

been prompted.

In addition, ASSL introduces a GUARDS clause to event
specification to define conditions that must be stated before

an event can be prompted.

EVENTS {
 EVENT lunchTime {
 ACTIVATION { ACTIV_TIME { 12:00 AM } }
 DURATION { 1 hour }

 }

 EVENT haveLunch {
 GUARDS { METRICS.restaurantOpen.VALUE = true }
 ACTIVATION { OCCURRED { EVENTS.lunchTime } }
 DURATION { 1 hour }

 }
} // EVENTS

The ASSL code above shows a specification sample
specifying two events. The first one (named lunchTime) is a

timed event that will be prompted at 12:00 AM to notify the

system that it is lunchtime. The second one (named

haveLunch) will be prompted by the first event, but only if the

restaurantOpen metric holds true (for more on metrics see

Section 3.2.2).

3.2.2 Metrics

For an embedded system, perhaps the most important success
factor is the ability to sense the hardware and to react to

sensed events. Together with the rich set of events, ASSL

imposes metrics to gather information about external and

internal points of interest, e.g., hardware in the case of an

EAS.

In ASSL, metrics are control parameters and observables that
an embedded AS can control and/or monitor (Vassev, 2008).

Four different types of metrics are allowed:

 resource metrics – measure managed resource
quantities;

 quality metrics – measure system qualities like
performance, response time etc;

 scalar metrics – monitor predefined dynamic AS
variables;

 composite metrics – a function of other metrics.

For the needs of embedded system development the most
important are resource metrics. Note that the managed

resource (cf. Section 3.2.3) in this case is the hardware

controlled by the embedded system. In such a case, metrics

are specified with a metric source that links the embedded

AS with a hardware parameter that the metric in question is
going to measure.

METRICS {
 // increments when a failed node has been discovered
 METRIC numberOfFailedNodes {
 METRIC_TYPE { RESOURCE }

METRIC_SOURCE {
 AEIP.MANAGED_ELEMENTS.STAGE_ME.countFailedNodes }

 DESCRIPTION { "counts failed nodes" }
 VALUE { 0 }
 THRESHOLD_CLASS { integer [0] } // valid only when holds 0

 }
}

In the sample above, the metric numberOfFailedNodes gets
updated via a special interface function called countFailedNodes

and embedded in the specification of a STAGE_ME managed

element. The latter represent the controlled managed

resource, which in an EAS is the hardware.

Moreover, metrics are specified with special range of
acceptable values expressed with a special ASSL construct

called threshold class. In general, a threshold class

determines rules for valid and invalid metric values. Note that

metrics are evaluated by ASSL as valid and invalid based on

their metric value and can prompt events when a new value

has been detected. Thus, if a measured value does not fit into

the metric threshold class, it is counted as undesirable

behavior that should be carried by the EAS in question. This

mechanism is very useful, because we can specify metrics

prompting events when a real-time system’s deadline cannot

be met and the EAS in question must switch to an alternative

execution path. For example, the sample above specifies a

metric, which is valid only when zero (0) holds.

3.2.3 Managed Resource

An AE typically controls a managed resource specified in
ASSL in the form of managed elements (Vassev, 2008). A

managed element is generally a functional unit, a hardware or

software system that provides certain services. In an EAS, a

managed element represents the controlled piece of hardware.

An AE monitors and interacts with its managed elements. In
ASSL, a managed element is specified with a set of special

interface functions intended to provide control functionality

over the same. ASSL provides an abstraction of a managed

element through specified interface functions. Here, ASSL

can specify and generate the interface controlling a managed

element, but not the implementation of this interface in that

controlled managed element. Here, when developing an EAS,

the generated interface must be implemented by the piece of

controlled hardware.

Interface functions help to form a simple communication

model for interacting with the managed elements. This model

forms an extra layer at the AEIP (AE interaction protocol)

(cf. Table 1). The AEIP tier is normally used to specify a
private communication protocol used by an AE to

communicate with:

1) trusted AEs;

2) controlled managed elements.

For the EAS case, at this tier we should emphasize the
specification of the managed element representing the

controlled hardware.

AEIP {
 MANAGED_ELEMENTS {
 MANAGED_ELEMENT STAGE_ME {
 INTERFACE_FUNCTION countFailedNodes {
 RETURNS { integer }
 }
 // runs the replica of a failed node
 INTERFACE_FUNCTION runNodeReplica {
 PARAMETERS { NetNode node }
 ONERR_TRIGGERS { EVENTS.nodeReplicaFailed }
 }
 }
 }
} // AEIP

As shown by the sample above, with ASSL we specify a

managed element as a Java-like interface, i.e., as a named
collection of functions without implementation. The

parameter types and the return type of those functions are

ASSL-predefined or custom-defined types. The managed

element interface functions can be called by the ASSL

actions to control the managed elements. In addition, these

can be associated with ASSL metrics (cf. Section 3.2.2) to

retrieve information from the hardware.

ASSL specifies managed element interface functions with
four non-mandatory clauses: PARAMETERS, RETURNS,

TRIGGERS, and ONERR_TRIGGERS (Vassev, 2008). Here, the

TRIGGERS and ONERR_TRIGGERS clauses are used to specify

events triggered by an interface function. For example, in the

sample above the runNodeReplica interface function is

specified to trigger a nodeReplicaFailed event in case of

erroneous execution. Recall that events drive self-

management policies, which allows for handling hardware-

related events, and thus, incorporating an event-driven

behavior into an EAS.

3.3 ASSL Super Loop Architecture for Embedded Systems

ASSL automatically generates an executable multithreaded
Java application from a valid ASSL specification. Note that

ASSL performs formal verification of the ASSL-specified

ASs before and after generating the Java code (Vassev,

Hinchey, and Quigley, 2009a, 2009b). Here, a valid

specification is considered one that has passed through the

formal verification process.

ASSL automatically generates an executable multithreaded

Java application from a valid ASSL specification. Note that

ASSL performs formal verification of the ASSL-specified
ASs before and after generating the Java code (Vassev,

Hinchey, and Quigley, 2009a, 2009b). The basic ASSL

verification mechanism performs exhaustive traversal to

check for syntax and consistency errors such as type

consistency, ambiguous definitions, etc. The same

mechanism checks whether a specification conforms to

special correctness properties, defined as ASSL semantic

definitions. In addition, logical errors, such specification and

implementation flaws, are a subject of special ASSL model

checking mechanisms, which are still under development.

Here, a valid specification is considered one that has passed

through the formal verification process.

Although considered efficient, the ASSL consistency

checking mechanism cannot handle logical errors

(specification flaws) and thus, it is not able to assert safety

(e.g., freedom from deadlock) or liveness properties. Thus, a
model checking1 validation mechanism able to handle such

errors is under development.

In addition to the suitable constructs allowing for the
specification of embedded systems, ASSL also provides a

suitable architecture for the automatically generated EASs. In

this section, we present the architecture of the ASSL-

generated EASs.

ASSL generates ASs with special control loops (one per
generated AE and one global for the entire AS) intended to

control the system’s behavior (IBM, 2006; Vassev, 2008). A

control loop is generated to apply control rules specified and

implemented as self-management policies, SLO (service-

1
 Model checking is a formal verification approach to automated verification

of finite state systems by employing efficient graph-search algorithms and

correctness properties.

level objectives) and metrics. The following Java code

fragment presents an ASSL-generated control loop.

protected void controlLoop() {

 try {

//monitor-analyzer-simulator-executor

 oMonitor.perform();

 oAnalyzer.perform();

 oSimulator.perform();

 oExecutor.perform();

//applies self-management policies

 applyPolicies();

 Thread.sleep(tDelay);

 }

 catch (InterruptedException ex)

 {....}

}

As shown, a special controlLoop() method is generated to

handle special control loop calls, and the tDelay variable is
used to control the time allocated per control loop execution.

The control loop calls are as following:

1) a perform() method is called on four distinct

components: oMonitor, oAnalyzer, oSimulator,

and oExecutor, to handle invalid metrics and
degraded SLO;

2) an applyPolicies() method is called to apply the
self-management policies of an AE in a

deterministic manner.

In the first part, the control loop uses the four components to

discover problems with both SLO and metrics, and uses
actions to fix such problems. If there is no action set to fix a

discovered problem, the control loop executes a generic

action notifying about the discovered problem. The algorithm

implemented here follows the behavior exposed by a finite

state machine. Thus, we have a finite number of states

(monitoring, analyzing, simulating, and executing),

transitions between those states, and actions. The following

elements describe the steps of the control loop algorithm

implemented as a finite state machine.

1) The finite state machine starts with monitoring by
checking whether all the SLO are satisfied and all

the metrics are valid.

2) In case there are problematic SLO and/or metrics,
the machine transits to the analyzing state. In this

state, the problems are analyzed and eventually

mapped to actions that can fix them.

3) Next, the machine transits to the simulating state. In
this state, for all problems still not mapped to

actions, the system simulates problem-solving

actions in an attempt to find needed ones.

4) Finally, the machine transits to the executing state,
where all the actions determined in both analyzing

and simulating states are executed.

In the second part of the control loop, as shown, an

applyPolicies() method is called. The following code

fragment presents the generated implementation of that

method.

protected void applayPolicies() {

 Enumeration<ASSLPOLICY> ePolicies =

 vPolicies.elements();

 ASSLPOLICY currPolicy = null;

 while (ePolicies.hasMoreElements()) {

 currPolicy = ePolicies.nextElement();

 //applies only "switched-on" policies

 if (currPolicy.isSwitchedOn()) {

 currPolicy.doAllMappings();

 }

 }

}

Here, for each policy a doAllMappings() method is called
where actions are called if a policy is activated by one or

more fluents (cf. Section 3.1).

Based on the control loop technique described above, ASSL
generates EASs with the so-called super loop architecture

(Kurian and Pont, 2007). The latter is a design pattern usually

implemented as a program structure (e.g., a function)

comprising an infinite loop that performs all the tasks of the

embedded system in question.

The following pseudocode presents the generic
implementation of the super loop architecture for embedded

systems. Note that this sample is applicable to many of the

implementations of the super loop architecture for embedded

systems.

while (true) {

 Task1();

 Delay_After_Task1();

 Task2();

 Delay_After_Task2();

 TaskN();

 Delay_After_TaskN();

}

As shown, the tasks are performed in a deterministic order
with some delays between them. These delays are optional

and are intended to keep the execution of tasks within a time

frame allocated for each task. Here, the delays should be

computed dynamically at runtime by considering the last
execution time of each task for each loop pass. Note that task

timing is important to meet the time deadlines (if such exist)

of the system. Thus, this architecture targets at performing all

the tasks in a correct deterministic sequential order and

possibly in a reasonable amount of time.

ASSL generates a control loop that executes indirectly all the
tasks that must be performed by an ASSL-generated EAS.

This control loop is called on a regular basis by the run()

method of the AE specified to control the embedded system
in question. Note that ASSL generates AEs as Java threads,

and overrides the Java Thread class’s run() method. The

latter is generated as following.

public void run() {

....

//**** runs the control loop

 while (!bStopAE) {

 controlLoop();

 try {

 Thread.sleep(tControlLoopDelay);

 }

 catch (InterruptedException ex)

 { }

 }

}

Here, the controlLoop()method is called on a regular

basis in an endless loop and the tControlLoopDelay

variable is used to control the overall time allocated for the

entire AE thread.

4. CASE STUDY: VOYAGER’S CAMERAS

In this section, we demonstrate how the ASSL framework
can be used to specify an EAS. Our example is an ASSL

specification model for the NASA Voyager Mission (Vassev

and Hinchey, 2009b). The NASA Voyager Mission (The

Planetary Society, 2009) was designed for exploration of the

Solar System. The original mission objectives were to

explore the outer planets of the Solar System and as the

Voyager I and Voyager II flew across the Solar System, they

took pictures of planets and their satellites. The pictures taken

by the Voyagers were transmitted to Earth via radio signals

caring image pixels. To take pictures, Voyager II, in

particular, carried two television cameras on board—one for

wide-angle images and one for narrow-angle images.

In this case study, we specified the Voyager II spacecraft and

the antennas on Earth as AEs, which follow their encoded

autonomic behavior to process space pictures, and
communicate those via predefined ASSL messages. In this

paper, we emphasize the specification of the Voyager’s wide-

angle camera, which could be considered as an EAS. For

more information on the ASSL specification model for the

NASA Voyager Mission, we advise the interested reader to

refer to (Vassev and Hinchey, 2009b).

4.1 ASSL Specification

We specified an AE for the Voyager II spacecraft with a self-
management policy to handle the image processing behavior

of the on-board wide-angle camera. The following ASSL

code presents the specification of the IMAGE_PROCESSING

policy.

AESELF_MANAGEMENT {
 OTHER_POLICIES {
 POLICY IMAGE_PROCESSING {
 FLUENT inTakingPicture {
 INITIATED_BY { EVENTS.timeToTakePicture }

 TERMINATED_BY { EVENTS.pictureTaken }

 }
 FLUENT inProcessingPicturePixels {

 INITIATED_BY { EVENTS.pictureTaken }
 TERMINATED_BY { EVENTS.pictureProcessed }
 }
 MAPPING {
 CONDITIONS { inTakingPicture }
 DO_ACTIONS { ACTIONS.takePicture }

 }
 MAPPING {

 CONDITIONS { inProcessingPicturePixels }
 DO_ACTIONS { ACTIONS.processPicture }

 }
 }
 }
} // AESELF_MANAGEMENT

As shown, we specified two fluents: inTakingPicture and
inProcessingPicturePixels. The inTakingPicture fluent is initiated by a

timeToTakePicture event and terminated by a pictureTaken event.

This event also initiates the inProcessingPicturePixels fluent, which

is terminated by the pictureProcessed event. Both fluents are

mapped to the actions takePicture and processPicture respectively.

This part of the specification is typical for any AS specified

with ASSL, i.e., an ASSL specification is built around one or

more self-management policies (Vassev and Hinchey,
2009a). Therefore, in order to specify an EAS (embedded

AS) we must specify one or more managed elements intended

to provide the means of control over the hardware in that

embedded system (cf. Section 3.2.3).

AEIP {

….
 MANAGED_ELEMENTS {
 MANAGED_ELEMENT wideAngleCamera {
 INTERFACE_FUNCTION takePicture { }
 INTERFACE_FUNCTION applyFilterBlue { }
 INTERFACE_FUNCTION applyFilterRed { }
 INTERFACE_FUNCTION applyFilterGreen { }
 INTERFACE_FUNCTION getPixel { }
 INTERFACE_FUNCTION countInterestingObjects {
 RETURNS { integer }

 }
 } // ME wideAngleCamera
 ….
 }
} // AEIP

Here, the wideAngleCamera managed element is specified to
control the on-board wide-angle camera via a set of interface

functions. Through these interface functions, the

wideAngleCamera managed element is used by the actions

mapped to the fluents inTakingPicture and inProcessingPicturePixels to
take pictures, apply filters, and detect interesting space

objects. The following partial specification presents the

doTakePicture action mapped to the inTakingPicture fluent and

calling the takePicture interface function to ask the hardware to

take a picture. Note that the pictureTaken event is prompted if

the doTakePicture action is performed with no errors.

ACTION doTakePicture { // takes a picture of an interesting spot/object
 ….
 DOES {
 IF AES.Voyager.isWideAngleImage THEN
 call AEIP.MANAGED_ELEMENTS.wideAngleCamera.takePicture;

 ….
 END

 }
 TRIGGERS { EVENTS.pictureTaken }

}

Moreover, an interestingObjects metric is specified to count all
detected objects of interest, which the Voyager AE takes

pictures of. The source of this metric is specified as one of

the managed element interface functions (cf.

countInterestingObjects); i.e., the metric gets updated by that

interface function. The following ASSL code presents the

specification of this metric.

METRIC interestingObjects {
 METRIC_TYPE { RESOURCE }
 METRIC_SOURCE {
 AEIP.MANAGED_ELEMENTS.wideAngleCamera.countInterestingObjects}
 THRESHOLD_CLASS { integer [0~) }

}

Further, following the event-driven behavior specified for the
EAS, we see that the timeToTakePicture event (recall that it

activates the inTakingPicture fluent) is prompted by a change in

this metric’s value. Here, in order to simulate this condition,

we also activate this event every 60 seconds on a periodic

basis. The following ASSL code sample presents the

timeToTakePicture event specification.

EVENT timeToTakePicture {
 ACTIVATION {
 CHANGED { METRICS.interestingObjects }
 OR
 PERIOD { 60 SEC }
 }
}

4.2 Test Results

In this case study, we did not generate a separate EAS to test
the behavior of the IMAGE_PROCESSING policy. Instead, we

experimented with the prototype generated from the entire

ASSL specification of the Voyager II Mission (Vassev and

Hinchey, 2009b). Our goal was to demonstrate that the image

processing behavior of the generated Voyager AE is capable
of self-managing in respect of the specified with ASSL

IMAGE_PROCESSING policy. It is important to mention, that the

generated Voyager prototype was a pure software solution,

and thus we could not perform real embedded-system tests,

but simulated ones. Here, we specified metric-related events

also as timed events, just to simulate sensing reactions from

the wide-angle camera. For example, although the

timeToTakePicture event was originally specified as a metric-

related one, we also specified time activation to simulate

changes in the metric intended to receive signals from the

camera.

The test results demonstrated that, under simulated conditions
(the prototype is triggered to take pictures every 60 sec), the
run-time behavior of the controlled wide-angle camera
strictly followed the ASSL-specified IMAGE_PROCESSING self-
management policy. Thus, the Voyager prototype took virtual
pictures and transmitted blended images to virtual antennas
on Earth, where these images were redirected to the virtual
mission base for further processing (Vassev and Hinchey,
2009b).

5. CONCLUSIONS

In this paper, we have demonstrated how ASSL – a formal

tool dedicated to AC, can be used to develop embedded

systems with self-management capabilities. ASSL

emphasizes self-management policies provided by special

AEs intended to control special managed elements. In our

approach, to develop embedded systems termed EAS

(embedded autonomic systems), we use suitable ASSL

specification structures and techniques to specify AE-level

self-management policies that control a piece of hardware.

This control is provided via:

 ASSL events related to ASSL metrics, specified to
react to changes in that hardware;

 special managed element interface functions
intended to get these metrics fed with data from the

controlled hardware or to trigger events related to

the same.

Real-time tasks can be specified as self-management policies,
where we can use timed ASSL events to bound tasks with

time. Alternatively, ASSL metrics related to hardware

activity can raise events to notify for the accomplishment of a

particular task. Due to the fact that ASSL provides automatic

code generation, we can generate the Java implementation of

successfully specified EASs. An ASSL-developed EAS is

generated as a multithreaded Java application implementing a

special design pattern for embedded systems termed as super
loop architecture. Here, as a proof of concept, we have

successfully used ASSL to specify and generate an EAS that

controls the wild-angle camera carried on board by NASA’s

Voyager II spacecraft.

Future work is concerned with further EAS development by
including real pieces of hardware attached to the control

software generated by the ASSL framework. Moreover, we

intend to build EAS prototypes incorporating self-managing

policies such as self-healing, self-protecting, and self-

adapting. This will help us to investigate and develop

embedded systems able to automatically detect and fix

performance problems, e.g., by switching to alternative

modes of execution.

REFERENCES

Amey, P. (2002). Correctness By Construction: Better Can
Also Be Cheaper. CrossTalk Magazine. The Journal of

Defense Software Engineering.

Benveniste, A., Caspi, P., Edwards, S., Halbwachs, N.,

Le Guernic, P., and De Simone, R. (2003). The

Synchronous Languages Twelve Years Later.

Proceedings of the IEEE, Vol. 91(1), pp. 64–83. IEEE

Computer Society Press.

Berry, G. and Gonthier, G. (1992). The Esterel Synchronous

Programming Language: Design, Semantics,

Implementation. Science of Computer Programming,

Vol. 19(2), pp. 87–152.

Kurian, S. and Pont, M.J. (2007). Maintenance and Evolution
of Resource-Constrained Embedded Systems Created

Using Design Patterns. Journal of Systems and Software.

Vol. 80(1), pp. 32-41.

Ellsberger, J., Hogrefe, D., and Sarma, A. (1997). SDL:

Formal Object-Oriented Language for Communicating

Systems. 2 ed. Prentice Hall. New Jersey, USA.

Fleischmann, J., Buchenrieder, K., and Kress, R. (1999). Java

Driven Codesign and Prototyping of Networked

Embedded Systems. Proceedings of the 36th ACM/IEEE

conference on Design automation, p.794-797. New

Orleans, Louisiana, USA.

Halbwachs, N. (1993). Synchronous Programming of

Reactive Systems. Kluwer Academic Publishers, Boston.

IBM Corporation (2006). An Architectural Blueprint for

Autonomic Computing. White Paper, 4th ed. IBM

Corporation.

Labrosse, J. (1998). MicroC/OS-II. CMP Books. Kansas,
USA.

Murch, R. (2004). Autonomic Computing: On Demand

Series. IBM Press, Prentice Hall.

OSCI: Open SystemC Initiative (2009). SystemC.

http://www.systemc.org/ (last visited on July 7, 2009).

The Planetary Society (2009). Space topics: Voyager – the

story of the mission. http://planetary.org/explore/topics/

space _missions/voyager/objectives.html (last visited on

July 10, 2009).

Vassev, E. (2008). Towards a Framework for Specification

and Code Generation of Autonomic Systems. PhD
Thesis. Department of Computer Science and Software

Engineering, Concordia University, Montreal, Canada.

Vassev, E. and Hinchey, M. (2009a). ASSL: A Software

Engineering Approach to Autonomic Computing. IEEE

Computer, Vol. 42(6), pp. 90–93. IEEE Computer

Society.

Vassev, E. and Hinchey, M. (2009b). Modeling the Image-

Processing Behavior of the NASA Voyager Mission with

ASSL. Proceedings of the 3rd IEEE International

Conference on Space Mission Challenges for

Information Technology (SMC-IT’09). IEEE Computer

Society (to appear).
Vassev, E., Hinchey, M., and Quigley, A. (2009a). Towards

Model Checking with Java PathFinder for Autonomic

Systems Specified and Generated with ASSL.

Proceedings of the 4th International Conference on

Software and Data Technologies (ICSOFT 2009).

INSTICC, Sofia, Bulgaria (to appear).

Vassev, E., Hinchey, M., and Quigley, A. (2009b). Model

Checking for Autonomic Systems Specified with ASSL.

Proceedings of the First NASA Formal Methods

Symposium (NFM 2009). pp.16-25. NASA.

http://planetary.org/explore/topics/
http://planetary.org/explore/topics/

	Developing self-managing embedded systems with ASSL

