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Abstract: We present a new formal approach to the implementation of embedded systems, arrived at by 
introducing self-management capabilities to the same. We use the ASSL (Autonomic System 

Specification Language) framework to approach the problem of formal specification and automatic code 

generation of embedded systems. Some features of ASSL help to specify event-driven embedded systems 

where hardware is sensed via special metrics intended to drive events and self-management policies. The 

latter can be specified to handle critical situations in an autonomous reactive manner. Moreover, we 
present a case study where we use ASSL to specify control software for the wide-angle camera carried on 

board by NASA’s Voyager II spacecraft. 
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1. INTRODUCTION 

Embedded systems have taken their fair share of the 
tremendous expansion of IT in our daily lives. A most 

important feature of these systems is that they are able to 

provide a secure and highly available environment in 

conjunction with the ability to deliver deterministic real-time 

services. In addition, they often have long-life and 24x7 

operational requirements. Being closely related to 
revolutionary innovations in computer hardware, embedded 

systems have become more and more powerful. As a result, 

today, the computational tasks we can accomplish in an 

embedded environment are much more complex than those 

just ten years ago. However, in order to build reliable 

embedded systems that cope well with the increased 

complexity, we need new, modern, development approaches. 

The latter must not only overcome the complexity problem 

but also must address the quality of service (QoS) in 

embedded critical systems where it is often the main concern.  

We present our approach to this problem, whereby the ASSL 
(Autonomic System Specification Language) (Vassev, 2008; 

Vassev and Hinchey, 2009a) is used with its appropriate 

constructs to specify (or model) the event-driven behavior of 

an embedded system and subsequently to implement the 
latter via automatic code generation. ASSL is a formal 

method dedicated to autonomic computing (AC) (Murch, 

2004). AC is recognized as a potential long-term solution to 

the problem of increasing system complexity and costs of 

maintenance. The idea is that software systems must manage 

themselves automatically by controlling complexity through 

self-management based on high-level objectives. In this 

paper, we demonstrate how ASSL can be successfully used 

as a formal approach to the development of embedded 

systems, where developers will be assisted with problem 

formation, system design and system implementation. 

The rest of this paper is organized as follows. In Section 2, 
we review related work, and in Section 3, we briefly present 

the ASSL framework, the ASSL constructs suitable for the 

specification of embedded systems, and the architecture of 

the ASSL-generated embedded systems. Section 4 presents a 

case study where ASSL is used to specify the event-driven 

behavior of the wide-angle camera used in NASA’s Voyager 

II mission. Finally, Section 5 provides brief concluding 
remarks and a summary of future research and investigation 

trends. 

2. RELATED WORK: PROGRAMMING EMBEDDED 

SYSTEMS 

In general, embedded system programming is about writing 
software that drives hardware. In the past, embedded systems 

have had to run on platforms limited by memory and 

processor speeds, which in turn limited the programming 

tasks to writing simple software that drives controllers. 

However, for over 40 years, IT has obeyed Moore’s Law and,  

today, both the constant increase in processor speeds and 

decrease in memory costs allow for the development of new 

intelligent devices where real-time embedded systems 

become extremely complex in order to exploit maximum 

advantage of the chosen platform. Nowadays embedded 
system programming is targeting at applications for handheld 

devices, industrial control, set-top boxes, gaming devices, 

phones, A/V devices, and more. A subclass of embedded 

systems is real-time systems which have timing constraints 

introduced to assure the ability to make certain calculations 

or decisions in a timely manner. 

Often embedded system programming is undertaken in the 
C/C++ programming language, combined with a variety of 

techniques developed to address particular problem domains. 

For example, many embedded systems use a real-time 

operating system (RTOS) to handle concurrent execution of 



 

 

     

 

multiple running processes, each written in a sequential 

language such as C (Labrosse, 1998).  

Another example is the SystemC language, which is 
standardized by the IEEE (cf. IEEE 1666-2005 Standard). 

This language originated from C++ as a language for system 

modeling intended to enable ―system-to-silicon‖ design flows 

(OSCI, 2009). 

Although not considered a very efficient language due to its 
slow execution (sometimes less than 10% as fast as a similar 

program written in C), Java has also been embraced as a 

programming language for embedded systems. Key 

characteristics that helped in this are built-in multithreading 

and synchronization, automatic memory management and 

lack of pointer arithmetic. Usually, in a Java-based embedded 

system, the software runs in the host Java VM, which 

executes on top of a RTOS. Java has become popular in the 

development of networked embedded systems (Fleischmann, 

Buchenrieder, and Kress, 1999). Note that ASSL generates 

executable Java code (cf. Section 3.3).  

Formal methods have been both successful and extremely 

useful in the development of embedded safety-critical 

systems, such as modern avionics control software and 
control software for nuclear plants. Here, the advantages of 

using formal methods come from the rigorous mathematical 

semantics and the high level of abstraction provided by the 

formal notation, and from the use of software verification 

tools that help to discover design and implementation flaws 

at early stages of the software lifecycle. For example, to 

develop the control software for the C130J Hercules II, 

Lockheed Martin used a correctness-by-construct approach 

based on formal (SPARK) and semi-formal (Consortium 

Requirements Engineering) methods (Amey, 2002). 

Special formal languages called synchronous languages are 
dedicated to the programming of reactive systems 

(Halbwachs, 1993). An example of such a language is Lustre, 

which was successfully applied in the development of 

automatic control software for critical applications, e.g., the 

control software for nuclear plants and Airbus airplanes. 
Synchronous languages were also used to develop DSP chips 

for mobile phones, to design and verify DVD chips, and to 

program the fight control software of Rafale fighters 

(Benveniste et al., 2003).  

Esterel (Berry and Gonthier, 1992) is another synchronous 
language developed for specifying control-dominated 

reactive systems. This language combines the control 

constructs of an imperative software language with 

concurrency, pre-emption, and asynchronous model of time 

like that used in synchronous digital circuits.  

SDL (Ellsberger, Hogrefe, and Sarma, 1997) is a graphical 
specification language developed for modeling 

telecommunication protocols. SDL considers embedded 

systems consisting of concurrently-running finite state 

machines (FSMs) connected via channels defining messages 

they carry. In such a system, repeatedly, each FSM receives 

messages and reacts to those by changing internal state, or 

sends messages to other FSMs. 

In our approach, we propose the use of ASSL as a 
development platform for embedded systems incorporating 

self-managing features. Here, we are targeting embedded 

systems, whose Java implementation is automatically 

generated from their ASSL specification. We believe that our 

approach will help in the realization of more reliable control 

software that maximizes the utilization of the hardware 

capacity through self-adaptation. 

3. ASSL 

Although intentionally dedicated to AC, ASSL can be used 
for the development of embedded systems with self-

management capabilities. We term such systems embedded 

autonomic systems (EASs). In this section, we present the 

ASSL specification model and special features that make the 

framework suitable for the development of EASs.    

3.1   ASSL Specification Model 

ASSL is based on a specification model exposed over 
hierarchically organized formalization tiers. The ASSL 

specification model is intended to provide both infrastructure 

elements and mechanisms needed by an autonomic system 

(AS) or in this case by an EAS. Each tier of the ASSL 

specification model is intended to describe different aspects 
of the AS under consideration, such as service-level 

objectives, policies, interaction protocols, events, actions, 

etc. This helps to specify an AS at different levels of 

abstraction imposed by the ASSL tiers (cf. Table 1). 

Table 1. ASSL Multi-Tier Specification Model 

AS 

AS Service-Level 
Objectives 

AS Self-Management Policies 

AS Architecture 

AS Actions 

AS Events 

AS Metrics 

ASIP 

AS Messages 

AS Channels 

AS Functions 

AE 

AE Service-Level Objectives 

AE Self-Management Policies 

AE Friends 

AEIP 

AE Messages 

AE Channels 

AE Functions 

AE Managed Elements 

AE Recovery Protocols 

AE Behavior Models 

AE Outcomes 

AE Actions 

AE Events 

AE Metrics 

 



 

 

     

 

The ASSL specification model considers the ASs as being 
composed of special autonomic elements (AEs) interacting 

over interaction protocols, whose specification is distributed 

among the ASSL tiers. However, a simple EAS can be 

specified with a single AE and no inter-AE interaction 

protocols. 

Table 1 presents the multi-tier specification model of ASSL. 
As shown, it decomposes an AS in two directions:  

1) into levels of functional abstraction; 

2) into functionally related tiers (sub-tiers).  

With the first decomposition (cf. first column in Table 1), an 

AS is presented from three different perspectives, these 

depicted as three main tiers:  

The AS Tier forms a general and global AS perspective 
exposing the architecture topology, general system behavior 

rules, and global actions, events, and metrics applied to these 

rules. 

The ASIP Tier (AS interaction protocol) forms a 
communication perspective exposing a means of 

communication for the AS under consideration.  

The AE Tier forms a unit-level perspective, where an 
interacting set of the AS’s individual components is 

specified. These components are specified as AEs with their 

own behavior, which must be synchronized with the behavior 

rules from the global AS perspective. 

Here, it is important to mention that the ASSL tiers are 

intended to specify different aspects of the AS in question but 

it is not necessary to employ all of them in order to model an 

EAS. Thus, to specify a simple EAS, we need to specify a 
single AE incorporating the embedded system software 

controlling the embedded system hardware. Moreover, self-

management policies must be specified to provide self-

management behavior at the level of AS (the AS tier) and at 

the level of AE (AE tier). Note that this rule is implied by the 

fact that all the ASSL specification must be AC-driven, i.e., 

based on self-management (Murch, 2004). 

In ASSL, self-management policies are specified with special 

constructs termed fluents and mappings.  

1) A fluent is a state where an AS enters with fluent-
activating events and exits with fluent-terminating 

events. 

2) A mapping connects fluents with particular actions 
to be undertaken. 

Here, self-management policies are driven by events and 
actions determined in a deterministic manner, similar to finite 

state machines. For the purpose of EAS development, self-

management policies can be specified to control the EAS 

hardware. Moreover, real-time systems are bounded with 

deadline, where the deadline may be a particular time or time 

interval, or may be the arrival of some event. Thus, we can 

use ASSL to specify real-time EASs where different events 

can be used to trigger different policies intended to solve 
problems when the deadline cannot be met. 

In the following section, we emphasize the ASSL constructs 
suitable for the specification of EASs. A complete description 

of the ASSL specification model is beyond the scope of this 

paper. For more information, we refer the interested reader to 

(Vassev, 2008).  

3.2   ASSL Features for Embedded Systems 

ASSL implies a number of important specification constructs 
and techniques, which allow for a valuable formal approach 

to the development of embedded systems.    

3.2.1   Events 

In general, embedded systems are considered event-driven. 
ASSL exposes a rich set of techniques and constructs for 

specifying events, which makes the framework suitable for 

the specification and code generation of event-driven 

embedded systems. From the EAS development perspective, 
ASSL events are one of the most important aspects in ASSL. 

By its nature, an ASSL event is a means for high-priority 

system messaging. ASSL uses events to specify many of the 

ASSL tiers and sub-tiers, such as fluents, self-management 

policies, actions, etc. To specify ASSL events, one may use 

logical expressions over service-level objectives (SLO), 

metrics, other events, messages, etc. Here, in order to specify 

events, ASSL introduces the following clauses: 

 DEGRADED/NORMALIZED – to prompt an event when 
specified SLOs transit from normal to degraded state 

and from degraded to normal state, respectively; 

 RECEIVED/SENT – to prompt an event when an 
ASSL message has been received or sent,  

respectively; 

 CHANGED – to prompt an event when the value of a 
specific ASSL metric has been changed; 

 OCCURRED – to prompt an event when another 
ASSL event has occurred; 

 ACTIV_TIME – to prompt an event when a specific 
time has occurred; 

 PERIOD – to prompt an event regularly on period 

basis; 

 DURATION – to specify the event duration once it has 

been prompted. 

In addition, ASSL introduces a GUARDS clause to event 
specification to define conditions that must be stated before 

an event can be prompted. 

 
EVENTS {  
 EVENT lunchTime {  
  ACTIVATION { ACTIV_TIME { 12:00 AM } }  
  DURATION { 1 hour } 

 } 
 
 EVENT haveLunch {  
  GUARDS { METRICS.restaurantOpen.VALUE = true } 
  ACTIVATION { OCCURRED { EVENTS.lunchTime  } }  
  DURATION { 1 hour } 

 } 
} // EVENTS 

 



 

 

     

 

The ASSL code above shows a specification sample 
specifying two events. The first one (named lunchTime) is a 

timed event that will be prompted at 12:00 AM to notify the 

system that it is lunchtime. The second one (named 

haveLunch) will be prompted by the first event, but only if the 

restaurantOpen metric holds true (for more on metrics see 

Section 3.2.2). 

3.2.2   Metrics 

For an embedded system, perhaps the most important success 
factor is the ability to sense the hardware and to react to 

sensed events. Together with the rich set of events, ASSL 

imposes metrics to gather information about external and 

internal points of interest, e.g., hardware in the case of an 

EAS.   

In ASSL, metrics are control parameters and observables that 
an embedded AS can control and/or monitor (Vassev, 2008). 

Four different types of metrics are allowed: 

 resource metrics – measure managed resource 
quantities; 

 quality metrics – measure system qualities like 
performance, response time etc; 

 scalar metrics – monitor predefined dynamic AS 
variables;  

 composite metrics –  a function of other metrics. 

For the needs of embedded system development the most 
important are resource metrics. Note that the managed 

resource (cf. Section 3.2.3) in this case is the hardware 

controlled by the embedded system. In such a case, metrics 

are specified with a metric source that links the embedded 

AS with a hardware parameter that the metric in question is 
going to measure. 

 
METRICS {     
 // increments when a failed node has been discovered 
 METRIC numberOfFailedNodes {  
  METRIC_TYPE { RESOURCE }   

METRIC_SOURCE {   
 AEIP.MANAGED_ELEMENTS.STAGE_ME.countFailedNodes  } 

  DESCRIPTION { "counts failed nodes" }  
  VALUE { 0 } 
  THRESHOLD_CLASS { integer [0] } // valid only when holds 0 

 } 
} 

 

In the sample above, the metric numberOfFailedNodes gets 
updated via a special interface function called countFailedNodes 

and embedded in the specification of a STAGE_ME managed 

element. The latter represent the controlled managed 

resource, which in an EAS is the hardware. 

Moreover, metrics are specified with special range of 
acceptable values expressed with a special ASSL construct 

called threshold class. In general, a threshold class 

determines rules for valid and invalid metric values. Note that 

metrics are evaluated by ASSL as valid and invalid based on 

their metric value and can prompt events when a new value 

has been detected. Thus, if a measured value does not fit into 

the metric threshold class, it is counted as undesirable 

behavior that should be carried by the EAS in question. This 

mechanism is very useful, because we can specify metrics 

prompting events when a real-time system’s deadline cannot 

be met and the EAS in question must switch to an alternative 

execution path.  For example, the sample above specifies a 

metric, which is valid only when zero (0) holds. 

3.2.3   Managed Resource 

An AE typically controls a managed resource specified in 
ASSL in the form of managed elements (Vassev, 2008). A 

managed element is generally a functional unit, a hardware or 

software system that provides certain services. In an EAS, a 

managed element represents the controlled piece of hardware. 

An AE monitors and interacts with its managed elements. In 
ASSL, a managed element is specified with a set of special 

interface functions intended to provide control functionality 

over the same. ASSL provides an abstraction of a managed 

element through specified interface functions. Here, ASSL 

can specify and generate the interface controlling a managed 

element, but not the implementation of this interface in that 

controlled managed element. Here, when developing an EAS, 

the generated interface must be implemented by the piece of 

controlled hardware.   

Interface functions help to form a simple communication 

model for interacting with the managed elements. This model 

forms an extra layer at the AEIP (AE interaction protocol) 

(cf. Table 1). The AEIP tier is normally used to specify a 
private communication protocol used by an AE to 

communicate with:  

1) trusted AEs; 

2) controlled managed elements. 

For the EAS case, at this tier we should emphasize the 
specification of the managed element representing the 

controlled hardware.    

 
AEIP { 
 MANAGED_ELEMENTS { 
  MANAGED_ELEMENT STAGE_ME {  
          INTERFACE_FUNCTION countFailedNodes  { 
    RETURNS { integer }  
   } 
   // runs the replica of a failed node 
   INTERFACE_FUNCTION runNodeReplica {  
    PARAMETERS { NetNode node  }  
    ONERR_TRIGGERS { EVENTS.nodeReplicaFailed  } 
   } 
  } 
 }  
} // AEIP 

 

As shown by the sample above, with ASSL we specify a 

managed element as a Java-like interface, i.e., as a named 
collection of functions without implementation. The 

parameter types and the return type of those functions are 

ASSL-predefined or custom-defined types. The managed 

element interface functions can be called by the ASSL 

actions to control the managed elements. In addition, these 

can be associated with ASSL metrics (cf. Section 3.2.2) to 

retrieve information from the hardware.  



 

 

     

 

ASSL specifies managed element interface functions with 
four non-mandatory clauses: PARAMETERS, RETURNS, 

TRIGGERS, and ONERR_TRIGGERS (Vassev, 2008). Here, the 

TRIGGERS and ONERR_TRIGGERS clauses are used to specify 

events triggered by an interface function. For example, in the 

sample above the runNodeReplica interface function is 

specified to trigger a nodeReplicaFailed event in case of 

erroneous execution. Recall that events drive self-

management policies, which allows for handling hardware-

related events, and thus, incorporating an event-driven 

behavior into an EAS. 

3.3   ASSL Super Loop Architecture for Embedded Systems  

ASSL automatically generates an executable multithreaded 
Java application from a valid ASSL specification. Note that 

ASSL performs formal verification of the ASSL-specified 

ASs before and after generating the Java code (Vassev, 

Hinchey, and Quigley, 2009a, 2009b). Here, a valid 

specification is considered one that has passed through the 

formal verification process. 

ASSL automatically generates an executable multithreaded 

Java application from a valid ASSL specification. Note that 

ASSL performs formal verification of the ASSL-specified 
ASs before and after generating the Java code (Vassev, 

Hinchey, and Quigley, 2009a, 2009b). The basic ASSL 

verification mechanism performs exhaustive traversal to 

check for syntax and consistency errors such as type 

consistency, ambiguous definitions, etc. The same 

mechanism checks whether a specification conforms to 

special correctness properties, defined as ASSL semantic 

definitions. In addition, logical errors, such specification and 

implementation flaws, are a subject of special ASSL model 

checking mechanisms, which are still under development. 

Here, a valid specification is considered one that has passed 

through the formal verification process. 

Although considered efficient, the ASSL consistency 

checking mechanism cannot handle logical errors 

(specification flaws) and thus, it is not able to assert safety 

(e.g., freedom from deadlock) or liveness properties. Thus, a 
model checking1 validation mechanism able to handle such 

errors is under development. 

In addition to the suitable constructs allowing for the 
specification of embedded systems, ASSL also provides a 

suitable architecture for the automatically generated EASs. In 

this section, we present the architecture of the ASSL-

generated EASs.  

ASSL generates ASs with special control loops (one per 
generated AE and one global for the entire AS) intended to 

control the system’s behavior (IBM, 2006; Vassev, 2008). A 

control loop is generated to apply control rules specified and 

implemented as self-management policies, SLO (service-

                                                
1
 Model checking is a formal verification approach to automated verification 

of finite state systems by employing efficient graph-search algorithms and 

correctness properties. 

level objectives) and metrics. The following Java code 

fragment presents an ASSL-generated control loop.  

 
protected void controlLoop() { 

  try { 

//monitor-analyzer-simulator-executor 

    oMonitor.perform(); 

    oAnalyzer.perform(); 

    oSimulator.perform(); 

    oExecutor.perform(); 

 

//applies self-management policies 

    applyPolicies(); 

 

    Thread.sleep(tDelay); 

  } 

  catch ( InterruptedException ex )  

  {....} 

} 

 

As shown, a special controlLoop() method is generated to 

handle special control loop calls, and the tDelay variable is 
used to control the time  allocated per control loop execution. 

The control loop calls are as following:   

1) a perform() method is called on four distinct  

components: oMonitor, oAnalyzer, oSimulator, 

and oExecutor, to handle invalid metrics and 
degraded SLO;  

2) an applyPolicies() method is called to apply the 
self-management policies of an AE in a 

deterministic manner.    

In the first part, the control loop uses the four components to 

discover problems with both SLO and metrics, and uses 
actions to fix such problems. If there is no action set to fix a 

discovered problem, the control loop executes a generic 

action notifying about the discovered problem. The algorithm 

implemented here follows the behavior exposed by a finite 

state machine. Thus, we have a finite number of states 

(monitoring, analyzing, simulating, and executing), 

transitions between those states, and actions. The following 

elements describe the steps of the control loop algorithm 

implemented as a finite state machine. 

1) The finite state machine starts with monitoring by 
checking whether all the SLO are satisfied and all 

the metrics are valid.   

2) In case there are problematic SLO and/or metrics, 
the machine transits to the analyzing state. In this 

state, the problems are analyzed and eventually 

mapped to actions that can fix them. 

3) Next, the machine transits to the simulating state. In 
this state, for all problems still not mapped to 

actions, the system simulates problem-solving 

actions in an attempt to find needed ones. 

4) Finally, the machine transits to the executing state, 
where all the actions determined in both analyzing 

and simulating states are executed. 

In the second part of the control loop, as shown, an 

applyPolicies() method is called. The following code 



 

 

     

 

fragment presents the generated implementation of that 

method.       

 
protected void applayPolicies() { 

  Enumeration<ASSLPOLICY> ePolicies = 

    vPolicies.elements(); 

  ASSLPOLICY currPolicy = null; 

   

  while ( ePolicies.hasMoreElements() ) { 

    currPolicy = ePolicies.nextElement(); 

   

    //applies only "switched-on" policies 

    if ( currPolicy.isSwitchedOn() ) { 

      currPolicy.doAllMappings(); 

    } 

  } 

} 

 

Here, for each policy a doAllMappings() method is called 
where actions are called if a policy is activated by one or 

more fluents (cf. Section 3.1). 

Based on the control loop technique described above, ASSL 
generates EASs with the so-called super loop architecture 

(Kurian and Pont, 2007). The latter is a design pattern usually 

implemented as a program structure (e.g., a function) 

comprising an infinite loop that performs all the tasks of the 

embedded system in question.  

The following pseudocode presents the generic 
implementation of the super loop architecture for embedded 

systems. Note that this sample is applicable to many of the 

implementations of the super loop architecture for embedded 

systems. 

 
while (true) { 

 Task1(); 

 Delay_After_Task1(); 

 Task2(); 

 Delay_After_Task2(); 

 .... 

 TaskN(); 

 Delay_After_TaskN(); 

} 

 

As shown, the tasks are performed in a deterministic order 
with some delays between them. These delays are optional 

and are intended to keep the execution of tasks within a time 

frame allocated for each task. Here, the delays should be 

computed dynamically at runtime by considering the last 
execution time of each task for each loop pass. Note that task 

timing is important to meet the time deadlines (if such exist) 

of the system. Thus, this architecture targets at performing all 

the tasks in a correct deterministic sequential order and 

possibly in a reasonable amount of time. 

ASSL generates a control loop that executes indirectly all the 
tasks that must be performed by an ASSL-generated EAS. 

This control loop is called on a regular basis by the run() 

method of the AE specified to control the embedded system 
in question. Note that ASSL generates AEs as Java threads, 

and overrides the Java Thread class’s run() method. The 

latter is generated as following.  

 
public void run() { 

.... 

//**** runs the control loop 

 while ( !bStopAE ) {  

  controlLoop(); 

  try { 

   Thread.sleep( tControlLoopDelay ); 

  }  

  catch ( InterruptedException ex ) 

 { .... } 

 } 

} 

         

Here, the controlLoop()method is called on a regular 

basis in an endless loop and the tControlLoopDelay 

variable is used to control the overall time allocated for the 

entire AE thread.  

4. CASE STUDY: VOYAGER’S CAMERAS 

In this section, we demonstrate how the ASSL framework 
can be used to specify an EAS. Our example is an ASSL 

specification model for the NASA Voyager Mission (Vassev 

and Hinchey, 2009b). The NASA Voyager Mission (The 

Planetary Society, 2009) was designed for exploration of the 

Solar System. The original mission objectives were to 

explore the outer planets of the Solar System and as the 

Voyager I and Voyager II flew across the Solar System, they 

took pictures of planets and their satellites. The pictures taken 

by the Voyagers were transmitted to Earth via radio signals 

caring image pixels. To take pictures, Voyager II, in 

particular, carried two television cameras on board—one for 

wide-angle images and one for narrow-angle images. 

In this case study, we specified the Voyager II spacecraft and 

the antennas on Earth as AEs, which follow their encoded 

autonomic behavior to process space pictures, and 
communicate those via predefined ASSL messages. In this 

paper, we emphasize the specification of the Voyager’s wide-

angle camera, which could be considered as an EAS. For 

more information on the ASSL specification model for the 

NASA Voyager Mission, we advise the interested reader to 

refer to (Vassev and Hinchey, 2009b). 

4.1   ASSL Specification  

We specified an AE for the Voyager II spacecraft with a self-
management policy to handle the image processing behavior 

of the on-board wide-angle camera. The following ASSL 

code presents the specification of the IMAGE_PROCESSING 

policy. 

 
AESELF_MANAGEMENT { 
 OTHER_POLICIES {     
  POLICY IMAGE_PROCESSING { 
   FLUENT inTakingPicture  {  
    INITIATED_BY {  EVENTS.timeToTakePicture } 

    TERMINATED_BY { EVENTS.pictureTaken } 

   } 
   FLUENT inProcessingPicturePixels  {  



 

 

     

 

    INITIATED_BY { EVENTS.pictureTaken  } 
    TERMINATED_BY { EVENTS.pictureProcessed  } 
   } 
   MAPPING { 
    CONDITIONS { inTakingPicture } 
    DO_ACTIONS { ACTIONS.takePicture } 

   } 
   MAPPING { 

    CONDITIONS  {  inProcessingPicturePixels  } 
    DO_ACTIONS  {  ACTIONS.processPicture  } 

   } 
  } 
 } 
} // AESELF_MANAGEMENT 

 

As shown, we specified two fluents: inTakingPicture and 
inProcessingPicturePixels. The inTakingPicture fluent is initiated by a 

timeToTakePicture event and terminated by a pictureTaken event. 

This event also initiates the inProcessingPicturePixels fluent, which 

is terminated by the pictureProcessed event. Both fluents are 

mapped to the actions takePicture and processPicture respectively. 

This part of the specification is typical for any AS specified 

with ASSL, i.e., an ASSL specification is built around one or 

more self-management policies (Vassev and Hinchey, 
2009a). Therefore, in order to specify an EAS (embedded 

AS) we must specify one or more managed elements intended 

to provide the means of control over the hardware in that 

embedded system (cf. Section 3.2.3). 

 
AEIP { 

…. 
 MANAGED_ELEMENTS {  
  MANAGED_ELEMENT wideAngleCamera  {  
   INTERFACE_FUNCTION takePicture { } 
   INTERFACE_FUNCTION applyFilterBlue { } 
   INTERFACE_FUNCTION applyFilterRed { } 
   INTERFACE_FUNCTION applyFilterGreen { } 
   INTERFACE_FUNCTION getPixel { } 
   INTERFACE_FUNCTION countInterestingObjects {  
    RETURNS { integer }  

   } 
  } // ME wideAngleCamera   
  …. 
 } 
} // AEIP  

 

Here, the wideAngleCamera managed element is specified to 
control the on-board wide-angle camera via a set of interface 

functions. Through these interface functions, the 

wideAngleCamera managed element is used by the actions 

mapped to the fluents inTakingPicture and inProcessingPicturePixels to 
take pictures, apply filters, and detect interesting space 

objects. The following partial specification presents the 

doTakePicture action mapped to the inTakingPicture fluent and 

calling the takePicture interface function to ask the hardware to 

take a picture. Note that the pictureTaken event is prompted if 

the doTakePicture action is performed with no errors.  

 
ACTION  doTakePicture { // takes a picture of an interesting spot/object 
 …. 
 DOES {  
  IF AES.Voyager.isWideAngleImage THEN 
   call  AEIP.MANAGED_ELEMENTS.wideAngleCamera.takePicture; 

   …. 
  END  

 } 
 TRIGGERS { EVENTS.pictureTaken } 

} 

    

Moreover, an interestingObjects metric is specified to count all 
detected objects of interest, which the Voyager AE takes 

pictures of. The source of this metric is specified as one of 

the managed element interface functions (cf. 

countInterestingObjects); i.e., the metric gets updated by that 

interface function. The following ASSL code presents the 

specification of this metric. 

 
METRIC interestingObjects  {  
 METRIC_TYPE {  RESOURCE }   
 METRIC_SOURCE {   
  AEIP.MANAGED_ELEMENTS.wideAngleCamera.countInterestingObjects} 
 THRESHOLD_CLASS  {  integer [ 0~ )  } 

} 

 

Further, following the event-driven behavior specified for the 
EAS, we see that the timeToTakePicture event (recall that it 

activates the inTakingPicture fluent) is prompted by a change in 

this metric’s value. Here, in order to simulate this condition, 

we also activate this event every 60 seconds on a periodic 

basis. The following ASSL code sample presents the 

timeToTakePicture event specification. 

 
EVENT timeToTakePicture  { 
 ACTIVATION  {  
  CHANGED  {  METRICS.interestingObjects  } 
    OR   
  PERIOD {  60 SEC } 
  } 
} 

4.2   Test Results  

In this case study, we did not generate a separate EAS to test 
the behavior of the IMAGE_PROCESSING policy. Instead, we 

experimented with the prototype generated from the entire 

ASSL specification of the Voyager II Mission (Vassev and 

Hinchey, 2009b). Our goal was to demonstrate that the image 

processing behavior of the generated Voyager AE is capable 
of self-managing in respect of the specified with ASSL 

IMAGE_PROCESSING policy. It is important to mention, that the 

generated Voyager prototype was a pure software solution, 

and thus we could not perform real embedded-system tests, 

but simulated ones. Here, we specified metric-related events 

also as timed events, just to simulate sensing reactions from 

the wide-angle camera. For example, although the 

timeToTakePicture event was originally specified as a metric-

related one, we also specified time activation to simulate 

changes in the metric intended to receive signals from the 

camera.  

The test results demonstrated that, under simulated conditions 
(the prototype is triggered to take pictures every 60 sec), the 
run-time behavior of the controlled wide-angle camera 
strictly followed the ASSL-specified IMAGE_PROCESSING self-
management policy. Thus, the Voyager prototype took virtual 
pictures and transmitted blended images to virtual antennas 
on Earth, where these images were redirected to the virtual 
mission base for further processing (Vassev and Hinchey, 
2009b). 

5. CONCLUSIONS 

In this paper, we have demonstrated how ASSL – a formal 

tool dedicated to AC, can be used to develop embedded 

systems with self-management capabilities. ASSL 



 

 

     

 

emphasizes self-management policies provided by special 

AEs intended to control special managed elements. In our 

approach, to develop embedded systems termed EAS 

(embedded autonomic systems), we use suitable ASSL 

specification structures and techniques to specify AE-level 

self-management policies that control a piece of hardware. 

This control is provided via: 

 ASSL events related to ASSL metrics, specified to 
react to changes in that hardware; 

 special managed element interface functions 
intended to get these metrics fed with data from the 

controlled hardware or to trigger events related to 

the same.   

Real-time tasks can be specified as self-management policies, 
where we can use timed ASSL events to bound tasks with 

time. Alternatively, ASSL metrics related to hardware 

activity can raise events to notify for the accomplishment of a 

particular task. Due to the fact that ASSL provides automatic 

code generation, we can generate the Java implementation of 

successfully specified EASs. An ASSL-developed EAS is 

generated as a multithreaded Java application implementing a 

special design pattern for embedded systems termed as super 
loop architecture. Here, as a proof of concept, we have 

successfully used ASSL to specify and generate an EAS that 

controls the wild-angle camera carried on board by NASA’s 

Voyager II spacecraft.  

Future work is concerned with further EAS development by 
including real pieces of hardware attached to the control 

software generated by the ASSL framework. Moreover, we 

intend to build EAS prototypes incorporating self-managing 

policies such as self-healing, self-protecting, and self-

adapting. This will help us to investigate and develop 

embedded systems able to automatically detect and fix 

performance problems, e.g., by switching to alternative 

modes of execution.  
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