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Abstract—Repairing locality is an appreciated feature for
distributed storage, in which a damaged or lost data share can
be repaired by accessing a subset of other shares much smaller
than is required for decoding the complete data. However for
Secret Sharing (SS) schemes, it has been proven theoretically
that local repairing can not be achieved with perfect security for
the majority of threshold SS schemes, where all the shares are
equally regarded in both secret recovering and share repairing. In
this paper we make an attempt on decoupling the two processes
to make secure local repairing possible. Dedicated repairing
redundancies only for the repairing process are generated, which
are random numbers to the original secret. Through this manner
a threshold SS scheme with improved repairing locality is
achieved on the condition that security of repairing redundancies
is ensured, or else our scheme degenerates into a perfect access
structure that is equivalent to the best existing schemes can do.
To maximize security of the repairing redundancies, a random
placement mechanism is also proposed.

I. INTRODUCTION

A. Backgrounds

(k, n) threshold Secret Sharing (SS) scheme was first
proposed by Shamir [1] and Blakley [2] independently in
1979. With Secret Sharing, a secret can only be recovered
if threshold k number of shares from the total n is reached.
Any number of shares less than k reveals zero information
about the secret so security is well-guaranteed. The difference
between n − k can be regarded as some safeguard against
share failures, so the secret will not be jeopardized should
one or two shares fail. However in practical systems, failed
shares should be repaired or replaced in time to maintain a
comfortable n − k margin. In most cases a failed share will
be repaired with the help of other participants, preferably
those in the neighborhood so minimum network resources are
involved in the process.

The most simple way of repairing a share is to first recover
the secret and then generate a new share with it. However
this process requires accessing at least a threshold of shares
and the revealing of the secret itself. To solve these issues,
existing repairable SS schemes can be divided into two
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categories. The repairability of the first category is based on
enrollment protocols [3]–[12] while the other is based on
combining SS with regenerating codes. Enrollment protocols
are used to repair a secret share by only using coded version
of other shares, so the shares and the secret themselves are
not revealed. However, these enrollment protocols can only
be applied to specific SS schemes so the generality is lost.

Dimakis et. al. applied network coding to distributed
storage system and proposed the concept of regenerating
codes then analysed the trade-off between the cost of storage
and bandwidth [13]. In recent years, the combination of SS
and regenerating codes appears. They make any failed share
repairable via cooperation of no less than d participants,
where d is called repairing degree. In 2014, Guang et. al.
pointed out that a naive combination may lead to loss of
perfect security and proposed a GLF scheme as a solution
without loss of perfect security [14]. Rawat et. al. proposed
a centralized multi-node repairing scheme, in which MBR
and MDR codes were discussed [15]. In 2016, Stinson et.
al. proposed another solution based on ramp scheme, which
achieved the “restricted repairing” that the authors defined,
then compared it with the GLF scheme.

However, in these schemes, repairing degree d should be
no less than threshold k: according to their definitions, when
d < k, since any set of d participants can repair any number
of failed shares so effectively secret-recovery threshold k is
lowered to d. To compromise the conflict between repairing
mechanism and threshold in the context, most existing
schemes assume that d > k. Better efficiency in repairing is
achieved by requiring only a smaller amount of data from
each of the d nodes so the total amount is reduced.

In the repairing process, we may also hope repair to be
done by accessing a smaller than k number of other nodes,
because shares can be widely distributed and accessing nodes
far away can also be very costly. The notion of locally
repairable codes [16] can be extended into SS schemes.
In a code with locality r, any symbol of a codeword can
be deduced by at most r other symbols of the codeword.
Unfortunately, it was proven theoretically that a threshold
SS scheme is not locally repairable. Still, there exists perfect
access structures with small r [17]. This means under the
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threshold paradigm, introduction of erasure codes leads to
loss of locality or the threshold scheme turns out to be a
general access structure.

The main purpose of this paper is to provide new
mechanisms for repairing secret shares while satisfying
perfect security under some conditions where the repair
degree d less than SS threshold k. We make an attempt on
decoupling the two processes by setting dedicated repairing
redundancies only for repairing process. Then IDA is adopted
to make the data separated: one part is “secret recovery only”
while the other is “repairing only”. Then we get a weak
result: When security of repairing data is ensured, a threshold
SS scheme with improved repairing locality is achieved, or
else our scheme degenerates into a perfect access structure,
which is equivalent to what locally repairable codes can
do. Finally, a random placement mechanism is proposed to
maximize security of repairing data so this condition can be
better satisfied.

B. Contributions

The contributions of this paper are summarized as below:

1) Repairing Locality. In existing scenarios, maintenance
of threshold results in loss of repairing locality. In our
mechanism the repairing process is bounded inside node
groups so locality of repairing process is achieved, which
can reduce the repairing degree d much lower than the
SS threshold k.

2) Decoupled Repairing Process. This paper proposes a
weak condition (security of repairing data) such that:
(1) When security of repairing data is ensured, the local
repairing process relies on redundancies that are decou-
pled from the original SS so a threshold SS scheme with
improved repairing locality is achieved.
(2) When the repairing data security is lost, the security
level of our scheme is no worse than the best existing
schemes (equivalent to a perfect access structure with
locally repairable codes).

3) Redundancy Distribution Protocol. For the sake of
maximizing security of repairing data (the weak condition
in last item), a random placement mechanism is proposed
to hide the redundancy shares during the distribution in
IDA process.

C. Paper outline.

The rest of the paper is organized as follows. In section II,
some preliminaries and related work will be introduced briefly.
In section III, a localized repairable grouped SS scheme based
on grouping scheme and repairing function along with 2 toy
models are constructed. In section IV, parameters in our model
will be discussed in details. In section V, properties will be
discussed and comparison with regenerating codes will be
made. Finally, the conclusion will be drawn in section VI.

II. PRELIMINARIES AND RELATED WORK

A. Secret Sharing

1) Backgrounds: (k, n) threshold SS scheme was first
proposed by Shamir [1] and Blakley [2] independently in
1979. Afterwards, various SS scheme based on different
mathematical models are proposed: SS scheme based on
Chinese Remainder Theorem(CRT) by Asmuth-Bloom [20];
SS scheme based on matrix multiplication by Karnin et. al.
[21]Among those schemes Shamir’s (k, n) threshold scheme is
the most commonly used one due to its manifest representation
and perfect security.

2) Ramp Scheme: In 1985, ramp scheme was proposed by
Blakley et. al [22]. It possesses two thresholds k1 < k2 such
that:
(1) The secret s can be recovered with the cooperation of no

less than k2 participants.
(2) No information should be revealed about the secret s under

the cooperation of less than k1 participants so perfect
security is achieved.

(3) When the number of collected secret shares is between k1
and k2, the revealed information increases linearly with
the increase of the former.

When k1 = k2−1, a ramp scheme turns out to be a threshold
scheme. In 2012, Kurihara et. al. proposed a perfect secure
parameter m to build a new regenerating code then proved
the security of that scheme is equivalent to a ramp scheme
[23].

B. Repairable Secret Sharing Schemes

In 1998, the first repairing mechanism based on enrollment
protocol was proposed by Herzberg et. al. [24] This protocol
is based on Shamir SS scheme. The spirit is: make k surviving
participants add some specific polynomials to their secret
shares so they are not revealed then send the addition to
the share-loser. The loser can recover his share via Lagrange
interpolation. Still, these schemes will cause too much cost in
bandwidth and the loss of generality is also concerned.

A type of enrollment protocols can be applied to repairing
process in SS. For instance, [3]–[6] proposed an enrollment
protocol based on Shamir scheme, which is similar to that
proposed by Herzberg et. al. [7] An enrollment protocol
based on public-verifiable SS schemes is proposed in [8],
[9], which introduced public-verifiable functionality based on
[10]. Moreover, Saxena et. al. proposed enrollment protocol
based on bivariate polynomial SS [11]. Yue et. al. proposed
enrollment protocol based on vector space SS [12].

Still, these enrollment schemes mostly depend on specific
SS schemes so they are poor in generality, and the repairing
still needs k nodes. Hence, new repairable SS schemes without
loss of generality and universality is still missing.

C. Regenerating Codes

Dimakis et. al. applied network coding to distributed storage
system and proposed the concept of regenerating codes then



analysed the trade-off between the cost of storage and band-
width [13]. The principle of (n, k, d, α, β)is: code the original
files then save them into n nodes. Each of the nodes keeps data
of size α. When any of these nodes fails, the system repairs it
via downloading data from d surviving nodes. Each of them
offers data of size β. Meanwhile, any k participants should
be able to recover the original file. In recent years, several
construction of regenerating codes were proposed [25], [26].

D. Locally Repairable Codes

Locally repairable code is proposed to trade more storage
space for lower repairing bandwidth. The number of nodes
to be accessed during repairing process is lower than
the case of other erasure codes. Rawat et. al. proposed a
specific locally repairable code scheme in 2014 [27]. In their
paper, they deeply discussed repairing locality and grouping
schemes. Shahabinejad et. al. discussed a binary locally
repairable code to realize fast repairing functionality for
several nodes in failure [28], [29]. [30]optimized LRC based
on maximum rank distance Gabidulin codes. [31]considered
locally repairable codes over small fields and proposed new
constructions of optimal binary and q-ary cyclic (and linear)
codes with locality and availability.

III. A LOCALIZED REPAIRABLE GROUPED SS SCHEME
BASED ON GROUPING SCHEME AND REPAIRING FUNCTION

Our scheme is based on grouping the secret shares. For the
sake of locality, the participants of the original SS are divided
into disjoint groups, preferably in a compatible way to the
access structure or some multilevel SS property.

In practice, the grouping may need to consider multiple
factors such as physical location of the servers or different
ranks in the multilevel cases. Sometimes these factors may
conflict with each other and if that occurs, we should treat
the problem thoughtfully to achieve the best overall grouping
result. For example, in multilevel SS schemes, the grouping
should comply more with the level of participants than the
distance among them.

Moreover, the grouping should have no affect on their role
and functionality in the SS scheme. Or in other words, the
original SS won’t see this grouping and treat all shares as
they originally should be. This means that the shares in each
group should keep as they are and cannot be re-encoded for
the repairing capability.

A. Construction

Now, we will build our model on the base of these SS
groups and repairing functions. Firstly, a repairing function is
introduced inside each group to make the repairing local and
secure without modifying the secret shares. The participants
of the group constitute a repairing function and a repairing
redundancy to keep information of that function is generated.
The function should contain all information to repair the secret
shares within the group. The local repairing information are
stored through the generated repairing function of each group.

It can be defined as: given a set of points (xi, yi), a repairing
function of these point is a function y = f(x) such that
yi = f(xi).

Furthermore, saving all the coefficients of that polynomial
or saving only a determining point for the polynomial is also a
consideration. So we introduce the notion of strong repairing
redundancy and weak repairing redundancy to measure the
significance of the repairing redundancy:

Strong repairing redundancy. A redundancy is called
strong repairing redundancy if it can determine the whole
repairing function independently. For example in the following
toy model, the combination of all the coefficients of the
polynomial is a strong repairing redundancy.

Weak repairing redundancy. A redundancy is called weak
repairing redundancy if it can determine the repairing function
with the cooperation from others. For example in the following
toy model, the redundant point of the polynomial at Pλ is a
weak repairing redundancy.

For the convenience of understanding, a toy model based
on polynomial repairing function is given in the following
context.

1) Difference between trivial Shamir SS scheme and the one
used in our model: In Shamir scheme, secret shares are in the
form of (xi, yi). We can either save the pair as the secret share
or only yi and make xi public. Making xi public will not affect
the secrecy because it is the polynomial who determines the
secret, and without the corresponding yi, the knowledge of xi
reveals zero information about the secret. However, to make
local repair possible inside a group we cannot save the (xi, yi)
pair together, because in that case when the share fails we lose
both xi and yi. For Shamir SS there are still enough shares
to recover the polynomial and the secret, so it can choose a
new random x′i and the corresponding y′i to replace the failed
one. However the shares from one group are not sufficient
to recover the polynomial for the secret, so the local repair
has to find the exact (xi, yi) of the failed share back, or the
global SS will fall apart. In our repairing function, xi can be
the identification of the storage server or some other common
information. The publicity can be carried out in two ways: one
is to publish every xi to every participants while the other is
to put xis to some common place.

Publication of xi. As discussed before, in our model we
don’t want xis to be part of the secret shares so we should
publish xi. In practical applications, the storage servers are
sometimes equipped with well-defined identity numbers due to
some design or operational considerations, and these numbers
can be used as xi for the i-th server. If such easy solution is
not possible, we need to have our own publishing mechanism.

A trivial consideration is setting a dedicated server to offer
services about renewing and maintaining these numbers for the
servers. When any server is down or replaced, the dedicated
server should give the replacement server the correct sequence
number xi. Of course when the number of storage servers
becomes huge, keeping all xi at one server may become an
issue. In that case we may want to store the xis of the group
members inside the group.
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Fig. 1. A repairing function for ((x1, y1), (x2, y2), (x3, y3), (x4, y4)) is a
polynomial passes through these points with degree 3. (xλ, yλ) is a random
point on that curve.

Furthermore, that dedicated server becomes a single-point-
of-failure of the whole repairing mechanism. To relief that
problem we can put the xis of the group members together
with the repairing function as the repairing redundancies and
distribute it to group members.

The publication of xis is the first step of our model.
2) A toy model of grouped SS with repairing function:

Firstly, we build a normal (k, n) SS, let’s say (8, 12),
and divide the 12 shares into 3 groups with 4 shares
each. In each group, a local repairing function is gener-
ated that is only available to that group, which helps re-
pair failed shares of the group. Let’s consider group 1
whose participants are (P1, P2, P3, P4) with secret shares
((x1, y1), (x2, y2), (x3, y3), (x4, y4)). The process is summa-
rized in the following steps.

Step 1: Generate a 3-degree polynomial with coefficients
(b1, b2, b3, b4). Determine their values with the points at
((x1, y1), (x2, y2), (x3, y3), (x4, y4)).

Step 2: Choose a random xλ distinct to existing xis. Get
the corresponding yλ from the polynomial. Note here the
generated yλ is just a random point to the global secret S.
As shown in Fig. 1.

Step 3: Treat (b1, b2, b3, b4) or yλ as the sub-secret of the
group and save it to a reliable server inside group 1 that we
call Pλ.

Analysis: When any of the shares at (P1, P2, P3, P4) is
missing, we can access Pλ to recover the missing share.
However, this will cause extra cost in hardware dedicated just
for repair. On the other hand, Pλ can play a largely different
role with regard to the original shares of the group. If we store
(b1, b2, b3, b4) in it, anyone with the public xi(i ∈ {1, 2, 3, 4})
can get yi from Pλ, which means Pλ effectively possesses
all shares of the group. In this case, Pλ is a strong repairing
redundancy that needs careful treatment. If we just store yλ in
it, group 1 simply becomes a local (4, 5) threshold scheme for
the sub-secret. In this case, yλ is a weak redundancy. When the
repairing redundancy is too abundant, it may be a clear target
for attack and weak point for security. Still, saving too much
data outside the group leads to loss of locality in repairing
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Fig. 2. Process of grouped SS along with repairing function

process.
We suggest Information Distribution Algorithms (IDA) to

get rid of the dedicated servers and hide the repairing redun-
dancies deeper inside the system. It should be carefully chosen
according to the specific repairing redundancy. For example,
Shamir’s scheme maybe too much of a overkill for weak
redundancy, for which we can use other more cost-efficient
SS schemes to reduce the cost to match with its significance,
for example with the SS-made-short scheme proposed by H.
Krawczyk [18].

In the following part we will show Second Secret Sharing
(SSS) as a toy model of IDA for weak redundancy.

3) Grouped SS with Second Secret Sharing: We propose
our final model as a localized repairable grouped SS model
armed with SSS method. In this model, weak repairing redun-
dancies are chosen to be the sub-secrets in order to recover
the repairing function. SS is used a second time as IDA to
distribute weak redundancy. It is organized in the following
steps:

1) Consider a (k, n) threshold SS, divide the n participants
(P1, P2, ..., Pn) into m disjoint groups (G1, G2, ..., Gm)
to form a (m,n) grouped SS scheme. Each Pi keeps a
share of (xi, yi).

2) Suppose the number of members in group Gi to be Ni.
Generate a (Ni − 1)-degree polynomial based on the
points determined by the secret shares of the group. As
shown in Fig.2.

3) Choose another random point on that polynomial. Treat
this random point as the sub-secret.

4) Perform a SSS to share the sub-secret to group members.
As shown in Fig.3.

B. Further Design about SSS

1) Security/locality trade-off in SSS process:
Example. As an example, we use the same (8, 12) toy model
from last subsection, which is grouped into (G1, G2, G3) with
4 shares each. For G1 with participants (P1, P2, P3, P4), a yλ
is generated with the steps just mentioned. Next, the yλ is
treated as the sub-secret s1 of the group and another Shamir
SS scheme is used to distribute s1 to G1 members.
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The threshold of this sub-secret distribution can not be
lower than 4, or otherwise it will affect the threshold of the
original SS: for example with a (3,4) scheme, when any 3
out of 4 group members are revealed to an attacker, y1 and
consequently the repairing function can be recovered, with
which the attacker can figure out the 4th share by himself.

Here in this paper a (4,5) scheme is recommended, therefore
we need a server outside the group to put the extra sub-share
on. However the location of that extra sub-share should be
hidden in some way to avoid abuse of repairing mechanism
from attackers who own intact data from a subset of nodes.
As shown in Fig. 4, here we are proposing a redundancy
distribution protocol of random placement to maximize the
security:

1) Assume that each node owns a unique sign, perfectly
comes from hardware to verify its identity, for example a
MAC address. When any data fails, it propose a repairing
request and recover the lost data. Repairing request of
any node must be proposed by the server who loses its
data, cooperating with the 3 other nodes. This means a
repairing request should be authorized by every member
of that group.

2) Choose a random server outside the group and store the
sub-share there, and give a hash identity calculated with
combination of MAC addresses form all 4 nodes in the
group.

3) The group doesn’t remember the chosen server, and the
latter doesn’t know which group the sub-share belongs
to, so true randomness is achieved.

4) During a repairing process the node who claims a repair-
ing service requests for the sub-share by broadcasting the
hash identity, and the server who passes the identity check
sends the extra sub-share back to the group.

5) The missing secret share is repaired through repairing
function and only revealed to the proposer.

This design is a trade-off between locality and security. With
the protocol proposed, extra shares should be stored out of the
group, so improvement of security leads to tiny loss of locality.
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Repairing request

Hash  1

…
…

…

Fig. 4. Redundancy Distribution Protocol

IV. FURTHER DISCUSSION ABOUT OUR MODEL

A. Repairing Function

As we see, a repairing function is a map from published
xi’s to the value of secret shares. Then the “secret” to be
shared turns out to be a function rather than a value so it is
essentially a function sharing process. In our model, currently
a polynomial function is used which is completely determined
by its coefficients. Thus, the repairing redundancy turns out to
be a multi-SS process.

The polynomial repairing function is somehow similar to
the repairing process of SS as discussed by Hayashi et. al.
[19], which repairs or regenerates a broken share by first
recovering the original secret along with the secret-distributing
polynomial from enough surviving shares. With the knowledge
of that polynomial any amount of shares can be repaired
or regenerated. However, our repairing function is actually
very different from this SS repairing mechanism because the
purpose is quite the opposite to each other. The goal of SS is
to generate a set of secret shares for a known secret s in hand
while the goal of the repairing function (polynomial in this
case) is to generate repairing information from existing shares
that are already known and then create repairing redundancies
based on this function. Thus, in repairing function, what is
important is not the new “secret” (a0 in the new polynomial)
but the polynomial, which can be regarded essentially as a
multi-SS process.

B. Repairing Redundancies

The concept of repairing redundancy is introduced to de-
scribe the significance of a redundancy. In the polynomial
case, the coefficient bi’s and the share yi’s are elements of the
same finite field so they are of the same size. In this sense, a
share or a redundancy is equivalent to a coefficient. Thus, the
significance of the generated redundancy can be measured by
either how few cooperators it relies on to recover the sub-secret
or how many coefficients it can independently determine.

For example in the toy model of repairing function, the
weak redundancy is as significant as 1 share while the strong
redundancy is as significant as all 4 shares. Clearly, using a
strong redundancy is not wise now because it is strictly worse



than a simple replication scenario: the size is the same but
more computation is involved. This is one reason why we
choose weak redundancy in our model.

C. Decoupled Properties

Our repairing scheme is also different from existing re-
pairable SS schemes that make use of erasure codes such
as Reed-Solomon codes and regenerating codes, where the
redundancies are simply liner combination of the original
shares and therefore of the same global significance. These
redundancies should be handled carefully because they may
affect the properties of the original SS process.

In our scheme the secret recovery process and the share
repairing process are decoupled in the sense that the repairing
functions are local with no global significance to the original
SS process. The repairing functions are the “secret” of grouped
shares that works in the repairing process while the secret
shares of the original SS work in the secret recovery process.
The data repairing process is independent from secret shares so
secret-recovering and share repairing process are decoupled.

V. MODEL ANALYSIS

A. Attack/Threat Scenarios

1) Repairing Function Generation: In this process, under
the weak redundancy case, the generated local redundancy is
kept in an additional server in each group. We will first discuss
its resistance under attacks.

Let’s consider a (8,12) threshold scheme divided into 3
groups with 4 shares each. From each group an attacker can
collect 4 shares at most (direct or calculated through repairing)
even when he compromise all 5 servers. Hence, we consider
how difficult it is for an attacker to get all 4 shares of one
group measured by the probability p.

Suppose all servers behave equally under attack and let us
say the probability the attacker gets all data on one server is
q. Hence, when there is no redundancy at all, the probability
p1 turns out to be:

p1 = q4 (1)

In a (4,5) scheme, any 4 out 5 servers can provide all 4
shares of this group, the probability p2 turns out to be:

p2 = C4
5q

4(1− q) + q5 = q4(5− 4q) (2)

p2 − p1 = 4q4(1− q) (3)

Since 0 ≤ q ≤ 1, p2 − p1 ≥ 0.
Hence inside one group, we’ve proven that the introduction

of new server increases the successful rate for attacks, because
the additional server increases the number of targets. SSS is
proposed to solve these problems.

2) SSS Process: We’ve discussed the decoupled property
about SSS process in the last section. In this part we will
analyze the impact on the secret recovery data when repairing
data is under attack.

Let’s quote the (8, 12) scheme as an example again and
consider secret recovery data. When data from compromised
servers are not sufficient to carry out any local repair in

repairing data, the secret recovery threshold 8 is well-retained;
otherwise additional shares can be obtained via the repairing
process, which effectively lower the threshold. In the worst
case minimally 6 compromised servers can reveal the original
secret.

In the worst case, the attacker gets 6 shares from only
two groups with 3 from each, and unfortunately for each of
the two groups the repair redundancy is stored among the
compromised servers of the other group. It is easy to see that
a fourth share can be “repaired” from each group, so in total
the attacker has 8 shares at hand which is sufficient to recover
the original secret.

Similarly, if the data on the compromised servers are
sufficient only for just one repairing, then the attacker needs
to break minimally 7 servers. Actually we can increase the
number of required servers from 6 to 7 for the worst case
scenario, if we never store the redundancy to each other
between any 2 groups, which is at the cost of less randomness
in the redundancy distribution protocol.

All in all, the threshold scheme can be retained when data
from compromised servers can not support any repair. The
security of the redundancies in repairing data is protected by
the randomness protocol. When repairing data is no longer
secure, the secret recovery threshold breaks up and it turns out
to be an access structure with perfect security. In any case, our
model provides support to repairing locality so the condition
that repairing degree d < threshold k is no longer required.

B. Comparison with Regenerating Code

In this part, the performance of our model is compared with
repairing mechanism based on regenerating codes.

1) Storage: In our model, repairing redundancies are
generated and distributed by IDA. We’ve shown SSS as an
example. In the following discussion, we are calculating the
storage overhead in repairing redundancy generation and SSS
process.

Repairing Redundancy Generation. Assume that the
capacity of original secret s to be 1. During the SSS process,
we have m groups with m sub-secrets si in total. In this
process, the additional capacity turns out to be m.

SSS Process. In this process, each sub-secret inside each
group is distributed to group members. The final result is
that each server stores both an original secret share of secret
s and a sub-share of generated sub-secret si, which means
the capacity will be doubled to 2n. Hence, the additional
capacity turns out to be n.

2) Threshold: As shown in the context, in our model the
maintenance of threshold is conditional, depending on the
security of repairing data. When this condition is not met,
the scenario turns out to be a perfect access structure rather
than a threshold scheme.

3) Perfect Security: Both of them achieve perfect security.
4) Repairing Locality: Regenerating codes can not achieve

repairing locality. In our model, the redundancy distribution
protocol considers a trade-off between repairing locality and



security. Only 1 extra share is banished with a little impact on
locality.

5) Computational Complexity.: We have pointed out in
the previous discussion that one advantage of the grouping
scenario is that it has lower computational complexity in the
coding and decoding process. For example in the repairing
function generation process, what we need is nothing but
solving liner equations, which can be solved with a complexity
between O(n2) and O(n3), where n is the total number of
shares in a (k, n) SS scheme.

Consider the n participants who are divided into m groups.
Suppose there are γ members in each group such that

n = mγ (4)

Assume that:
1) In each group, at most 1 failure happens at any given

moment.
2) In each group, the probability of server failure is q.
Then, the computational complexity turns out to be

O(qmγ3) = O(qnγ2) = O(γ2n) (5)

When γ is determined and small, the complexity turns out
to be O(n). As we can see, from this aspect, γ should be made
as low as possible to achieve lower computational complexity.

However, the upper boundary of the SS threshold turns out
to be γ so it is better not to be too small or the security level
will be low. In this paper the suggested value for γ is 4.

The results are listed in TABLE I.

TABLE I
PERFORMANCE COMPARISON WITH REGENERATING CODES

Regenerating Codes Our Model
Storage - additional

Perfect Security yes yes
Threshold yes conditional

Repairing Locality no feasible
Computational Complexity high low

VI. CONCLUSION

This paper aims at share repairing issues in a SS scheme.
The studies in the literature will either lose threshold property
of the original SS scheme or their repairing degrees are
high. In this paper a grouped repairing mechanism based
on repairing function is proposed, which splits secret shares
into disjoint groups to achieve repairing locality. Repairing
redundancies are generated to keep repairing informations.
Furthermore, IDA is proposed to make the repairing process
almost restricted inside groups so locality is achieved. Finally,
we indicate in our scheme the maintenance of threshold
property is conditional. In the worst case, with the loss of
security of repairing data, the original threshold SS scheme
turns out to be an access structure. Still, the secure level is
equivalent to existing scenarios. In any case, both locality and
perfect security are still remained.

REFERENCES

[1] Adi Shamir, How to share a secret, Communications of the ACM,
22(11):612-613, Nov 1979.

[2] Blakley G R. Safeguarding cryptographic keys[C]// afips. IEEE Computer
Society, 1979:313.

[3] Pan D, Kuang X H, Xi-Cheng L U. A Non-Interactive Protocol for
Member Expansion in a Secret Sharing Scheme[J]. Journal of Software,
2005, 16(1):116-120.

[4] Xu J F, Cui G H, Cheng Q, et al. Cryptanalysis of a non-interactive
protocol for member expansion in a secret sharing scheme[J]. Journal on
Communications, 2009, 30(10):118-123.

[5] Nojoumian M, Stinson D R, Grainger M. Unconditionally secure social
secret sharing scheme[J]. Iet Information Security, 2010, 4(4):202-211.

[6] Wu Y, Li D, Wang F. Secret Sharing Member Expansion Protocol Based
on ECC[J]. Open Cybernetics & Systemics Journal, 2015, 8(1):248-253.

[7] Herzberg A, Jarecki A. Proactive Secret Sharing Or: How to Cope With
Perpetual Leakage[J]. Advances in Cryptology-Crypto’95, 1998, 963:339-
352.

[8] Yu J, Kong F, Hao R. Publicly Verifiable Secret Sharing with En-
rollment Ability[C]// Eighth Acis International Conference on Software
Engineering, Artificial Intelligence, Networking, and Parallel/distributed
Computing. IEEE Xplore, 2007:194-199.

[9] Chun-Gen X U, Yang Y J. Protocol for Member Expansion in Publicly
Verifiable Secret Sharing Scheme[J]. Journal of Nanjing University of
Science & Technology, 2009.

[10] Schoenmakers B. A Simple Publicly Verifiable Secret Sharing Scheme
and Its Application to Electronic Voting[M]// Advances in Cryptology ł
CRYPTO 99. Springer Berlin Heidelberg, 1999:148–164.

[11] Saxena N, Tsudik G, Yi J H. Efficient node admission for short-lived
mobile ad hoc networks[C]// IEEE International Conference on Network
Protocols. IEEE Xplore, 2005:10 pp.

[12] Yue B I. Protocol for member expansion in vector space secret shar-
ing[J]. Computer Engineering & Applications, 2011, 47(16):74-76.

[13] AG Dimakis, K Ramchandran, Y Wu, C Suh, Network Coding for Dis-
tributed Storage Systems, IEEE TRANSACTIONS ON INFORMATION
THEORY, VOL. 56, NO. 9, 2010

[14] Xuan Guang, Jiyong Lu and Fang-Wei Fu, Repairable Threshold Secret
Sharing Schemes, arXiv:1410.7190v2, 2015.

[15] Ankit Singh Rawat, O. Ozan Koyluoglu and Sriram Vishwanath,
Centralized repair of multiple node failures, 2016 IEEE International
Symposium on Information Theory (ISIT), Pages: 1003 - 1007, DOI:
10.1109/ISIT.2016.7541450, 2016.

[16] Papailiopoulos, Dimitris S., A. G. Dimakis. ”Locally Repairable Codes.”
IEEE Transactions on Information Theory 60.10(2012):5843-5855.

[17] Agarwal, A, and A. Mazumdar. Security in locally repairable storage.
Information Theory Workshop IEEE, 2015:1-5.

[18] H. Krawczyk , Secret Sharing Made Short, Advances in Cryptology ł
Crypto 773(1988):136-146, 1988.

[19] Hayashi D., et al, Design and implementation of autonomous distributed
secret sharing storage system Communications, Apcc 2003. the, Asia-
Pacific Conference on 2003:57-60 Vol.1, 2003.

[20] Asmuth C, Bloom J. A modular approach to key safeguarding[J].
Information Theory IEEE Transactions on, 1983, 29(2):208-210.

[21] Karnin E, Greene J, Hellman M. On secret sharing systems[J]. IEEE
Transactions on Information Theory, 1983, IT-29(1):35-41.

[22] Blakley, G. R, and C. Meadows, Security of ramp schemes. Advances
in Cryptology, Proceedings of CRYPTO ’84, Santa Barbara, California,
USA, August 19-22, 1984, Proceedings DBLP, 1984:242-268.

[23] Kurihara, M, and H. Kuwakado. Secret sharing schemes based on
minimum bandwidth regenerating codes. International Symposium on
Information Theory and ITS Applications 2012:255-259.

[24] Herzberg A, Jarecki A. Proactive Secret Sharing Or: How to Cope With
Perpetual Leakage[J]. Advances in Cryptology-Crypto’95, 1998, 963:339-
352.

[25] K.V. Rashmi, N.B. Shah, P.V. Kumar, Optimal Exact-Regenerating
Codes for Distributed Storage at the MSR and MBR Points via a
Product-Matrix Construction, IEEE Transactions on Information Theory
57(57):5227-5239, 2011

[26] S. Pawar, S. El Rouayheb, K. Ramchandran, Securing Dynamic Dis-
tributed Storage Systems Against Eavesdropping and Adversarial Attacks,
IEEE Trans. Information Theory, pp.6734C6753, 2011.

[27] Papailiopoulos D S, Dimakis A G. Locally Repairable Codes[J]. IEEE
Transactions on Information Theory, 2012, 60(10):5843-5855.

http://arxiv.org/abs/1410.7190


[28] Shahabinejad M, Khabbazian M, Ardakani M. An Efficient Binary
Locally Repairable Code for Hadoop Distributed File System[J]. IEEE
Communications Letters, 2014, 18(8):1287-1290.

[29] Goparaju S, Calderbank R. Binary cyclic codes that are locally re-
pairable[M], 2014.

[30] Silberstein N, Rawat A S, Koyluoglu O O, et al. Optimal locally re-
pairable codes via rank-metric codes[J]. Mathematics, 2013, 31(6):1819-
1823.

[31] Zeh A, Yaakobi E. Optimal linear and cyclic locally repairable codes
over small fields[C]// Information Theory Workshop. IEEE, 2015:1-5.


	I Introduction
	I-A Backgrounds
	I-B Contributions
	I-C Paper outline.

	II Preliminaries and Related Work
	II-A Secret Sharing
	II-A1 Backgrounds
	II-A2 Ramp Scheme

	II-B Repairable Secret Sharing Schemes
	II-C Regenerating Codes
	II-D Locally Repairable Codes

	III A Localized Repairable Grouped SS Scheme based on Grouping Scheme and Repairing Function
	III-A Construction
	III-A1 Difference between trivial Shamir SS scheme and the one used in our model
	III-A2 A toy model of grouped SS with repairing function
	III-A3 Grouped SS with Second Secret Sharing

	III-B Further Design about SSS
	III-B1 Security/locality trade-off in SSS process


	IV Further Discussion about our model
	IV-A Repairing Function
	IV-B Repairing Redundancies
	IV-C Decoupled Properties

	V Model Analysis
	V-A Attack/Threat Scenarios
	V-A1 Repairing Function Generation
	V-A2 SSS Process

	V-B Comparison with Regenerating Code
	V-B1 Storage
	V-B2 Threshold
	V-B3 Perfect Security
	V-B4 Repairing Locality
	V-B5 Computational Complexity.


	VI Conclusion
	References

