
EPINE: Enhanced Proximity Information Network Embedding

Luoyi Zhang, Ming Xu
State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China

zhangluoyi.cs@gmail.com, xuming0830@gmail.com

Abstract
Unsupervised homogeneous network embedding
(NE) represents every vertex of networks into a
low-dimensional vector and meanwhile preserves
the network information. Adjacency matrices re-
tain most of the network information, and directly
charactrize the first-order proximity. In this work,
we devote to mining valuable information in adja-
cency matrices at a deeper level. Under the same
objective, many NE methods calculate high-order
proximity by the powers of adjacency matrices,
which is not accurate and well-designed enough.
Instead, we propose to redefine high-order prox-
imity in a more intuitive manner. Besides, we de-
sign a novel algorithm for calculation, which allevi-
ates the scalability problem in the field of accurate
calculation for high-order proximity. Comprehen-
sive experiments on real-world network datasets
demonstrate the effectiveness of our method in
downstream machine learning tasks such as net-
work reconstruction, link prediction and node clas-
sification.

1 Introduction
We live in a world where many things form network struc-
tures, including social networks, citation networks and word
cooccurrence networks. Under the circumstances, network
embedding is proposed to process and exploit the network
data, which facilitates downstream machine learning tasks
such as network reconstruction, link prediction and node clas-
sification.

Most information contained in ubiquitous networks is re-
flected by the proximity between nodes, or weights of edges,
which are stored in adjacency matrices. Hence NE is to map
every network vertex into a low-dimensional vector that pre-
serves adjacency matrix information as much as possible.
If there is some similarity between two objects, NE would
represents them by similar representations, such as vectors
that have low Euclidean distance [Luo et al., 2011], or cer-
tain dot product values [Tang et al., 2015; Ou et al., 2016;
Liu et al., 2019]. Meanwhile, to emphasize the similarity,
methods such as negative sampling are proposed to dispart
the representations of objects that seem to be different. In

a word, similar things would possess similar representations,
and vice versa [Liu et al., 2019]. In this work, network ver-
tex embeddings are learned in two steps: first defining and
calculating the similarity, then preserving it into the node em-
beddings.

The core problem we focus on is how to search and de-
fine the similarity between nodes. First-order proximity acts
as a straightforward approach that merely considers two end-
points of an edge to be similar, and was researched by previ-
ous graph embedding methods [Belkin and Niyogi, 2003]. To
supplement this, higher-order proximity was proposed. LINE
[Tang et al., 2015] has defined second-order proximity as re-
lationships that there exist common neightbors between two
unconnected nodes. Noting that common neighbors are also
the intermediate vertices of length-two shortest paths. Intu-
itively, k-order proximity could be analogously defined as
the relations that there are shortest paths of length k between
nodes, and higher-order indicates a weaker relationship.

However, many previous network embedding methods
[Cao et al., 2015; Perozzi et al., 2017; Zhang et al., 2018b]
proposed to treat the kth power of adjacency matrices or
probability transition matrices as k-order proximity matri-
ces. It’s worth noting that in unweighted networks, the values
of nonzero elements in matrices state the number of k-step
walks between vertices, which may contain repetitive edges.
As shown in Figure 1, through a two- or three-step walk, one
can return back to the start point, or reach immediate neigh-
bor. Therefore, defining k-order proximity as k-step walks
is not accurate and well-designed enough. Actually, the kth
power of adjacency matrices contains a mixture of proximity
no more than kth order.

Consequently, we propose Enhanced Proximity Informa-
tion Network Embedding (EPINE), a novel approach to rede-
fine the high-order proximity, and determine the strength of
k-order proximity by the number of length-k shortest paths
between nodes and weights along with the paths. With regard
to calculation, we develope a novel algorithm that has the
same complexity as the powers of adjacency matrices, which
alleviates the scalability problem. Due to the close relation
to edge weights in calculation, for unweighted networks, we
propose to assess every edge weight by the degrees of two
endpoints.

In addition, weight information carried by edges can be
regarded as another metric to evaluate the node similarity.

ar
X

iv
:2

00
3.

02
68

9v
1

 [
cs

.S
I]

 4
 M

ar
 2

02
0

(a) Samples of 2-step walks (b) Samples of 3-step walks

Figure 1: A simplified illustration of k-step walks starting from node va.

However, due to the lack of weight information stored in net-
work datasets, we might have to treat every edge equally,
which is out of line with the reality. Take social networks
as an example, friends may fall into five categories: bosom
friends, good friends, ordinary friends, acquaintances and
prequaintances. The strength of friendships among them de-
crease progressively, but edges are of equal importance in
most social network datasets.

Eventually, the similarity measurement in EPINE is
distance-based (and structure-based for unweighted net-
works, where node degrees as structural information), and we
name it as EPINE similarity.

In summary, our contributions are as follows:

• We redefine the high-order proximity in a more accurate
and intuitive manner, and propose a novel approach for
calculation that alleviates the scalability problem.

• We conduct comprehensive experiments on real-world
network datasets. Experimental results demonstrate the
effectiveness of the proposed EPINE.

The rest of the paper is arranged as follows. In Section
2, we introduce some preliminaries and discuss related work.
In Section 3, we depict our proposed method in detail. We
outline experimental results and analyses in Section 4, and
close with conclusions and future work in Section 5.

2 Preliminaries and Related Work
2.1 Notations and Definitions
A network is denoted as G = (V, E), where V = {vi|i =
1, 2, · · · , |V|} is the node set and E is the edge set. eij in E
has a binary value that indicates the existence of an edge from
node i to node j. The weightwij is equal to eij in unweighted
networks and a non-negative value in weighted ones.

The adjacency matrix A ∈ R|V|×|V| is defined as Ai,j =
wij . di =

∑
j Ai,j is the degree of node i, and the diagonal

degree matrix D ∈ R|V|×|V| has the element Di,i = di. The
(one-step) probability transition matrix, also called normal-
ized adjacency matrix, is obtained by Â = D−1A.

In graph theory, a walk consists of an alternating sequence
of vertices and edges that begins and ends with a vertex. A
path is a walk without repeated vertices.

We differentiate the general k-order (k ∈ N+) proximity
formally defined in [Zhang et al., 2018a] and our redefined
one in the following.

Definition 1. (Vanilla k-order Proximity). It would be a
vanilla k-order proximity relationship between two nodes if
and only if there exists at least one walk of length k between
them.

We depict an unweighted and undirected ego network in
Figure 1, and denote the kth power of adjacency matrix as
Ak. Note that node c1,2,3 are all immediate neighbors of node
va, butA2

a,a = 3, A2
a,c1 = A2

a,c2 = 1, A3
a,a = 2, andA3

a,c1 =

A3
a,c2 = A3

a,c3 = 3. Actually, each nonzero element of Ak
denotes a vanilla k-order proximity, which is shown to be not
intuitive and accurate enough. Consequently, we proposed to
redefine it as follow:
Definition 2. (Rectified k-order Proximity). Two nodes have
a rectified k-order proximity relationship if and only if there
exists at least one shortest path of length k between them.

Accordingly, we denote the rectified k-order proximity ma-
trix as Ak−order ∈ R|V|×|V|, where positive elements repre-
sent rectified k-order proximity between nodes.

In a sense, vanilla proximity is an approximate form of rec-
tified proximity, because every shortest path of length k is
also a k-step walk, which also consists in Ak.

2.2 Related Work
Preserving High-order Proximity
Almost every network embedding method would preserve
first-order proximity, while higher-order proximity acts as
complementary and global information of networks, and is
explored by a bunch of methods.

DeepWalk [Perozzi et al., 2014] implicitly preserved prox-
imity no more than tth order, where t is the window size, and
lower orders have higher weights. It can also be interpreted
as factorizing a matrix M [Yang et al., 2015], where

M = log
Â+ Â2 + · · ·+ Ât

t
. (1)

There are extensions and improvements of DeepWalk.
Node2vec [Grover and Leskovec, 2016] substituted random
walks by breadth-first and depth-first walks. WALKLETS
[Perozzi et al., 2017] replaced the adjacency matrix A used
in DeepWalk by one or more different powers of A. GraRep
[Cao et al., 2015] obtained vertex embeddings by separately
factorizing {Â, Â2, · · · , Ât} and concatenating the results
at last. HOPE [Ou et al., 2016] constructed a framework
that built node embeddings according to high-order proxim-
ity measurements, including Katz Index, Rooted PageRank,

Common Neighbors and Adamic-Adar, which are all deter-
mined by matrix-chain multiplications of A or Â. AROPE
[Zhang et al., 2018b] proposed to exploit arbitrary-order
proximity by factorizing a matrix S, where

S = w1A+ w2A
2 + · · ·+ wkA

k, (2)
and allow k = +∞ if the summation converges.

Algorithms mentioned above derive high-order proximity
more or less from the power of A or Â, which is actually the
vanilla high-order proximity.

Besides, SDNE [Wang et al., 2016] preserved rectified
second-order proximity by reconstructing adjacency matri-
ces, and retained first-order proximity by a regularization
term derived from laplacian eigenmaps [Belkin and Niyogi,
2003]. LINE [Tang et al., 2015] proposed to represent and
restore first-order and second-order proximity in content and
context representations respectively. Compared with our pro-
posed method, they can only calculate fixed-order proximity,
rather than arbitrary-order proximity.

Capturing Edge Information
Existing NE methods that consider edge information [Tu et
al., 2017; Goyal et al., 2018; Chen et al., 2018] generally rely
on the intrinsic edge information stored in network datasets.
Instead, we derive edge weights from node degrees, which is
independent of intrinsic edge information, and applicable to
multifarious networks.

3 Enhanced Proximity Information Network
Embedding

In this section, we describe how to calculate accurate k-order
proximity matrix Ak−order in detail.

Suppose γkij = (vi0 , ei0,i1 , vi1 , · · · , vik) where i0 =
i, ik = j is a length-k walk between vi and vj , then

Aki,j =
∑
γk
ij

fcost(γ
k
ij), (3)

where

fcost(γ
k
ij) = wi0,i1 · wi1,i2 · · ·wik−1,ik (4)

is the chain multiplication of edge weights along the walk γkij .
In unweighted networks, every edge weight is set to 1, that

is, fcost(γkij) = 1 and Aki,j states the number of k-step walks
between vi and vj .

We discover that k-step walks contain all k-length shortest
paths, hence we can extract the latter through a second-order
deterministic process.

3.1 Calculating the Rectified Proximity
For the convenience of statement, we first define the k-
reachable relationship.
Definition 3. (k − reachable). Node vj is k-reachable from
vi if and only if there exists a shortest path of length k from
vi to vj .

In the i-th row of Ak−order, each positive element stands
for a k-reachable node of vi. Then we can calculate the recti-
fied k-order proximity based on the following theorem:

(a) One-step walk (b) Masking

Figure 2: A simplified illustration.

Theorem 1. The matrix product Ak−order · A contains and
only contains rectified proximity of order (k-1), k and (k+1).
Such (k+1)-order proximity composes the A(k+1)−order.
Proof. Post-multiplying Ak−order by A actually performs
one-step walks starting from every node. As illustrated in
Figure 2(a), the grey, blue and yellow circle denote the reach-
ability of (k − 1), k and (k + 1), respectively. Suppose node
vc is k-reachable from node va. Moving one step from node
vc would only result in three categories of situations: moving
backwards to the grey circle, staying in the blue, or walking
farther to the yellow, which all generate (k+1)-length walks
and are actually rectified proximity of order (k − 1), k and
(k + 1) respectively.

On the other hand, any (k + 1)-length shortest path con-
sists of a k-length shortest path and another one edge, hence
walking farther from the blue circle to the yellow forms all
(k + 1)-length shortest paths that compose A(k+1)−order. �

Consequently, we can extract (k + 1)-order proximity by
removing rectified proximity of order (k − 1) and k from
Ak−order ·A.

By Definition 2, any two rectified proximity matrices are
mutually disjoint, which means if A(k−1)−order

i,j or Ak−orderi,j

is nonzero, then A
(k+1)−order
i,j = 0. That is, if we have

A(k−1)−order and Ak−order, we could accurately calculate
A(k+1)−order via applying masking to Ak−order · A, which
can be calculated by

Maskk+1
i,j =

{
0, if (A(k−1)−order +Ak−order)i,j > 0;

1, otherwise.
(5)

Such a calculating method could be regarded as a second-
order deterministic process, which is described in Algorithm
1. As stated in line 1, we extend the Definition 2 and define
A0−order as I|V|, which treats self-loops as rectified 0-order
proximity. Then we can obtain Ak−order through

A0−order = I|V|, A
1−order = A,

Ak−order = fmm(A(k−1)−order, A) �
fmask(A

(k−2)−order, A(k−1)−order),

(6)

where fmm(·, ·) represents matrix multiplication (discussed
later in Section 3.2), � means Hadamard product, and

Algorithm 1 Calculating Rectified k-order Proximity

Input: Weighted Adjacency MatrixA, Order Number k(k ≥
2), Matrix Multiplication Function fmm(·, ·), Mask Cal-
culation Function fmask(·, ·)

Output: Rectified l-order proximity matrixAl−order(l ≤ k)

1: Initialize: Alast ← I|V|
2: Initialize: Acurrent ← A
3: Initialize: Anew ← None
4: for l = 2→ k do
5: Anew ← fmm(Acurrent, A)
6: Maskl ← fmask(A

last, Acurrent)
7: Anew ← Anew �Maskl

8: if Anew = 0 then
9: break

10: end if
11: Alast ← Acurrent

12: Acurrent ← Anew

13: end for
14: return Acurrent

fmask(·, ·) calculates the mask based on Equation (5). It’s
worth noting that in practice, the above-mentioned k always
has a finite value, which depends on the longest shortest paths
in networks. Consequently, the algorithm should early stop if
and only if Anew in line 8 is a zero matrix.

3.2 Rethinking the Matrix Multiplication
If we apply normal matrix multiplication as the implementa-
tion of the function fmm(·, ·), similar to Equation (3) and (4),
the weight (or cost) of a path pkij would be

fcost(p
k
ij) = wi0,i1 · wi1,i2 · · ·wik−1,ik , (7)

then

Ak−orderi,j =
∑
pkij

fcost(p
k
ij). (8)

Note that the cost is obtained by the chain multiplication
of edge weights along the path. By definition, edge weights
are always larger than 1, which would cause very large path
costs. Such large path costs might not be discriminative and
effective enough in practice.

Among the sum, mean and max aggregators, sum has the
best discriminative power [Xu et al., 2019]. Hence we resort
to additive operation, that is, we could calculate path costs
through

fcost(p
k
ij) = wi0,i1 + wi1,i2 + · · ·+ wik−1,ik , (9)

which also alleviates the explosion of path costs. For the sake
of calculating Equation (9), we propose to adopt additive ma-
trix multiplication to f(·, ·), which could be formalized as
(suppose f(X,Y) = Z):

Zi,j =

r∑
t=1

I(Xi,t · Yt,j) · (Xi,t + Yt,j), (10)

where r is the column and row number of the matrix X and
Y respectively. I(·) is a indicator function that

I(x) =
{
1, x 6= 0;

0, otherwise.
(11)

3.3 Calculating Edge Weights
Due to the close relation to edge weights in Equation (9),
we calculate edge weights as inputs to Algorithm 1 for un-
weighted networks. Intuitively, edges connected to low-
degree nodes would be more decisive, which is in accordance
with the degree penalty principle [Feng et al., 2018]. Hence
we could evaluate edge weights simply by

wij =
1

di · dj
. (12)

3.4 The Proposed EPINE Similarity
Eventually, we define the EPINE similarity matrix
SEPINE ∈ R|V|×|V| as

SEPINE = A1−order + α2A
2−order + · · ·+ αkA

k−order

(13)
As discussed in Section 1, higher-order proximity indicates

a weaker relationship, which is in line with the exponentially
decaying weights of Katz similarity [Katz, 1953]. Hence we
propose to decay weights of rectified high-order proximity by

αi =
λi

fmax(Ai−order)
(2 ≤ i ≤ k), (14)

where λi is the decay coefficient and fmax(·) returns the max-
imum element of the input matrix.

As researched by previous work [Perozzi et al., 2014;
Feng et al., 2018], the degree distribution of networks prob-
ably follows the power law. It suggests there might be only
a few elements of Ak−order have overlarge values, and di-
vided by them in Equation (14) would degenerate the infor-
mation carried by Ak−order. Consequently, before calculat-
ing Equation (13), we truncate the largest η×|V|2 elements of
Ak−order to the value of the element right smaller than them.

3.5 Learning the Network Embedding
As SEPINE could be regarded as a weighted adjacency ma-
trix, we apply LINE [Tang et al., 2015] — a scalable method
suitable for undirected, directed, and/or weighted networks
— to preserving this similarity information into vertex em-
beddings. To be specific, we input the EPINE similarity ma-
trix into the LINE(1st) and LINE(2nd) so as to learn node
embeddings.

3.6 Discussions
Complexity. In consideration of efficiency problems, we
adopt sparse implementation for EPINE. In Algorithm 1, ma-
trix multiplication has a time complexity of O(|V|d2), where
d is the average node degree of networks. Masking step (line
6-7) takes O(|E|) time. The time cost for edge weight calcu-
lation and LINE are both O(|E|). Eventually, the overall time

Table 1: Dataset statistics

Name #Nodes #Edges Avg.
Deg. #Labels

Wikipedia 4,777 184,812 38.69 40
BlogCatalog 10,312 333,983 64.78 39

Flickr 80,513 5,899,882 146.56 195
YouTube 1,138,499 2,990,443 5.25 47

complexity of EPINE is max(O(k|V|d2), O(|E|)), where k
is usually set to 2 in practice.

Online learning. For any specific network, we only have
to calculate Ak−order once. When a new node vn arrives, we
can calculate its similarity with existing nodes in O(d2) time,
and obtain its embedding through LINE in O(d) time, with
embeddings of existing nodes unchanged.

4 Experiments
In this section, we demonstrate the effectiveness of our
method in three downstream machine learning tasks: network
reconstruction, link prediction and node classification.

4.1 Datasets
We conduct experiments on four networks. The statistics of
them are listed in Table 1. Wikipedia is weighted, others are
unweighted.

• Wikipedia [Mahoney, 2011]: A language network ex-
tracted from Wikipedia. The weight of each edge repre-
sents the number of co-occurrences between two words.
Labels represent the Part-of-Speech (POS) tags inferred
using the Stanford POS-Tagger.

• BlogCatalog, Flickr [Tang and Liu, 2009a], YouTube
[Tang and Liu, 2009b]: Social networks that edges indi-
cate friendships between users, labels represent blogger
interests, user groups and user groups respectively.

4.2 Baselines and Parameter Settings
In experiments, we compare our method with several base-
lines that are competitive or preserve high-order proximity.

• DeepWalk [Perozzi et al., 2014] implicitly preserves
high-order proximity and is a competitive method ap-
plicable to diverse networks.

• LINE [Tang et al., 2015] contains two methods that pre-
serves first-order and second-order proximity, which are
called LINE(1st) and LINE(2nd) respectively. Besides,
LINE(1st+2nd) concatenates the result embeddings of
them, and LINE(rc) reconstructs networks by adding
vanilla second-order neighbors to nodes’ neighbors. In
experiments, we report the best results of them.

• GraRep [Cao et al., 2015] accurately calculate the
vanilla high-order proximity.

• node2vec [Grover and Leskovec, 2016] extends Deep-
Walk by breadth-first and depth-first walk strategies.

Table 2: The AUC sores of network reconstruction and link predic-
tion on BlogCatalog

Method Network
Reconstruction

Link
Prediction

DeepWalk 0.9513 0.9434
LINE 0.9511 0.9491

GraRep 0.9555 0.9556
node2vec 0.9467 0.9420

SDNE 0.9510 0.9484
AROPE 0.9488 0.9437

EPINE(1st) 0.7743 0.7745
EPINE(2nd) 0.9605 0.9547

EPINE(1st+2nd) 0.9609 0.9556

• SDNE [Wang et al., 2016] simultaneously preserve rec-
tified first-order and second-order proximity with the
help of deep learning.
• AROPE [Zhang et al., 2018b] preserves vanilla

arbitrary-order proximity via efficient matrix factoriza-
tion.

For all methods except GraRep, the dimension of learned
embeddings is set to 128. The remaining unspecified param-
eters are set to the values recommended by paper authors or
manually finetuned to the best.

Similar to LINE, we have EPINE(1st), EPINE(2nd) and
EPINE(1st+2nd). For all experiments, we set λi = 0.1i−2

and k = 3 for BlogCatalog, k = 2 for others. It is not easy
to select the best η automatically, but η ∈ {17, 11, 5} × 10−4

always yields best performance.1 η and number of training
samples are positively related to the density and edge number
of networks respectively. Most of the rest of parameters are
the same as LINE.

4.3 Network Topological Information Preserving
Tasks of network reconstruction and link prediction evaluate
if node embeddings preserve the network topological struc-
ture information, which is the most basic goal of NE. As in
[Shi et al., 2019], we represent each edge by concatenating
the embeddings of two endpoints.

For network reconstruction, we randomly sample 80%
connected edges and the same number of unconnected edges
to train the LIBLINEAR classifiers. The rest of connected
edges and the same number of unconnected edges are utilized
as test samples.

For link prediction, we randomly remove 40% of the edges
without breaking the connectivity of the network. After net-
work representation learning, we use the existing edges and
the same number of originally unconnected edges as training
samples, the removed links and the same number of originally
unconnected links as test samples.

The results on BlogCatalog are reported in Table 2. EPINE
outperforms others in network reconstruction and reaches
comparable performance with GraRep in link prediction.
Compared with GraRep, EPINE is more scalable.

1We use η = 17 × 10−4 for BlogCatalog and Flickr, {11, 5} ×
10−4 for Wikipedia and YouTube respectively.

Table 3: The results of node classification on various datasets

Method Wikipedia BlogCatalog Flickr YouTube
Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

DeepWalk 0.5030 0.1030 0.4274 0.2865 0.4216 0.3035 0.3028 0.2115
LINE 0.5831 0.1731 0.4327 0.2919 0.4273 0.3162 0.3086 0.2285

GraRep 0.5422 0.1244 0.4265 0.2875 — — — —
node2vec 0.5488 0.1243 0.4133 0.2769 0.4119 0.2872 0.3083 0.2209

SDNE 0.4351 0.0649 0.3047 0.1319 0.3480 0.2054 — —
AROPE 0.5439 0.1488 0.3391 0.1723 0.3136 0.1587 — —

EPINE(1st) 0.5465 0.1224 0.4467 0.3068 0.4162 0.2914 0.3021 0.2016
EPINE(2nd) 0.5971 0.1863 0.4396 0.3087 0.4273 0.3071 0.3106 0.2223

EPINE(1st+2nd) 0.5950 0.1773 0.4450 0.3143 0.4350 0.3237 0.3089 0.2262

1 2 3 4 5
Orders of the Proximity

0.30

0.35

0.40

0.45

0.50

0.55

0.60

M
icr

o-
F1
 S
co
re
s

Wikipedia
BlogCatalog
Flickr
YouTube

Figure 3: Effects of different order proximity.

4.4 Network Semantic Information Preserving
The task node classification is to predict the node categories
based on node representations. It evaluates to what extent
node representations preserve the high-level semantic infor-
mation of networks. In experiments, node embeddings are
fed directly into the LIBLINEAR classifiers. We use 90% la-
beled nodes as training samples, and 10% as test ones. The
results are reported in table 4.2 All the values are the aver-
age of several runs for the sake of result stability.3 EPINE
achieves comparable performance on YouTube and outper-
forms all baselines on others.

4.5 Different Orders of Rectified Proximity
We set different k for node classification and record the re-
sults in Figure 3. The A4−order and A6−order for Wikipedia
and BlogCatalog are both all zeros. The A3−orders for Flickr
and YouTube are too dense to efficiently learn node embed-
dings. In spite of this, we can see that only second order rec-
tified proximity brings significant improvements, hence we
could simply set k = 2 in practice.

4.6 Ablilation Studies
Take LINE as base, we construct EPINE step by step, and re-
port Micro-F1 results of the node classification at each step

2We exclude some of the baseline results due to efficiency prob-
lems or memory errors. The server we use has two Intel(R) Xeon(R)
CPU E5-2630 v4 @ 2.20GHz and 320G memory.

3500, 250, 20, 50 runs for Wikipedia, BlogCatalog, Flickr and
YouTube respectively.

Table 4: Effects of certain EPINE calculation steps.

Calculation Step Wikipedia BlogCatalog
LINE 0.5831 0.4327

1 + reweighting — 0.3861
2 + rectified second-order 0.5852 0.4358
2a w/o reweighting — 0.4200
3 + add-dot 0.5942 0.4359
3a rectified→ vanilla 0.5827 0.4416
4 + truncating (EPINE) 0.5950 0.4453

in Table 4. Row 2a and 3a does not belong to the construc-
tion. Reweighting (row 1) or rectified second-order prox-
imity alone (row 2a) would degenerate the performance, but
once we combine them (row 2), the Micro-F1 would slightly
exceed LINE. Then we substitute normal matrix multipli-
cation by the additive one, evident improvement occurs on
Wikipedia (comparing row 2 and 3). At this step, if we
remove masking, that is, substitute rectified proximity by
the vanilla one (row 3a), performance will get worse on
Wikipedia, but become better on BlogCatalog. This is be-
cause BlogCatalog is a social network and vanilla second-
order proximity strengthen the importance of edges that form
triangular structures (see Figure 1(a)), which is a special case.

5 Conclusions
In this work, we propose EPINE, a novel approach that fur-
ther exploits the information carried by adjacency matrices.
To be specific, EPINE provides a feasible way for preserv-
ing edge weight information into node embeddings, and a
scalable way to accurately calculate the high-order proximity,
which allows studying the effect of specific k-order proxim-
ity. Comprehensive experiments demonstrate the effective-
ness of our method. Enhanced proximity information makes
improvements.

In the future, we will focus on searching better methods for
edge reweighting and EPINE similarity preserving.

Acknowledgments
We are grateful to Chongjun Wang for his fruitful comments
and advice.

References
[Belkin and Niyogi, 2003] Mikhail Belkin and Partha

Niyogi. Laplacian eigenmaps for dimensionality re-
duction and data representation. Neural computation,
15(6):1373–1396, 2003.

[Cao et al., 2015] Shaosheng Cao, Wei Lu, and Qiongkai
Xu. Grarep: Learning graph representations with global
structural information. In Proceedings of the 24th ACM in-
ternational on conference on information and knowledge
management, pages 891–900. ACM, 2015.

[Chen et al., 2018] Haochen Chen, Xiaofei Sun, Yingtao
Tian, Bryan Perozzi, Muhao Chen, and Steven Skiena.
Enhanced network embeddings via exploiting edge labels.
In Proceedings of the 27th ACM International Conference
on Information and Knowledge Management, pages 1579–
1582. ACM, 2018.

[Feng et al., 2018] Rui Feng, Yang Yang, Wenjie Hu, Fei
Wu, and Yueting Zhang. Representation learning for scale-
free networks. In Thirty-Second AAAI Conference on Ar-
tificial Intelligence, 2018.

[Goyal et al., 2018] Palash Goyal, Homa Hosseinmardi,
Emilio Ferrara, and Aram Galstyan. Capturing edge at-
tributes via network embedding. IEEE Transactions on
Computational Social Systems, 5(4):907–917, 2018.

[Grover and Leskovec, 2016] Aditya Grover and Jure
Leskovec. node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 855–864. ACM, 2016.

[Katz, 1953] Leo Katz. A new status index derived from so-
ciometric analysis. Psychometrika, 18(1):39–43, 1953.

[Liu et al., 2019] Xin Liu, Tsuyoshi Murata, Kyoung-Sook
Kim, Chatchawan Kotarasu, and Chenyi Zhuang. A gen-
eral view for network embedding as matrix factorization.
In Proceedings of the Twelfth ACM International Confer-
ence on Web Search and Data Mining, pages 375–383.
ACM, 2019.

[Luo et al., 2011] Dijun Luo, Feiping Nie, Heng Huang, and
Chris H Ding. Cauchy graph embedding. In Proceedings
of the 28th International Conference on Machine Learning
(ICML-11), pages 553–560, 2011.

[Mahoney, 2011] Matt Mahoney. Large text compression
benchmark. URL: http://www. mattmahoney. net/text/text.
html, 2011.

[Ou et al., 2016] Mingdong Ou, Peng Cui, Jian Pei, Ziwei
Zhang, and Wenwu Zhu. Asymmetric transitivity preserv-
ing graph embedding. In Proceedings of the 22nd ACM
SIGKDD international conference on Knowledge discov-
ery and data mining, pages 1105–1114. ACM, 2016.

[Perozzi et al., 2014] Bryan Perozzi, Rami Al-Rfou, and
Steven Skiena. Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD in-
ternational conference on Knowledge discovery and data
mining, pages 701–710. ACM, 2014.

[Perozzi et al., 2017] Bryan Perozzi, Vivek Kulkarni,
Haochen Chen, and Steven Skiena. Don’t walk, skip!:
online learning of multi-scale network embeddings.
In Proceedings of the 2017 IEEE/ACM International
Conference on Advances in Social Networks Analysis and
Mining 2017, pages 258–265. ACM, 2017.

[Shi et al., 2019] Wei Shi, Ling Huang, Chang-Dong Wang,
Juan-Hui Li, Yong Tang, and Chengzhou Fu. Network
embedding via community based variational autoencoder.
IEEE Access, 7:25323–25333, 2019.

[Tang and Liu, 2009a] Lei Tang and Huan Liu. Relational
learning via latent social dimensions. In Proceedings of the
15th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 817–826. ACM,
2009.

[Tang and Liu, 2009b] Lei Tang and Huan Liu. Scalable
learning of collective behavior based on sparse social di-
mensions. In Proceedings of the 18th ACM conference
on Information and knowledge management, pages 1107–
1116. ACM, 2009.

[Tang et al., 2015] Jian Tang, Meng Qu, Mingzhe Wang,
Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-
scale information network embedding. In Proceedings
of the 24th international conference on world wide web,
pages 1067–1077. International World Wide Web Confer-
ences Steering Committee, 2015.

[Tu et al., 2017] Cunchao Tu, Zhengyan Zhang, Zhiyuan
Liu, and Maosong Sun. Transnet: Translation-based net-
work representation learning for social relation extraction.
In IJCAI, pages 2864–2870, 2017.

[Wang et al., 2016] Daixin Wang, Peng Cui, and Wenwu
Zhu. Structural deep network embedding. In Proceed-
ings of the 22nd ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 1225–
1234. ACM, 2016.

[Xu et al., 2019] Keyulu Xu, Weihua Hu, Jure Leskovec, and
Stefanie Jegelka. How powerful are graph neural net-
works? In 7th International Conference on Learning Rep-
resentations, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019, 2019.

[Yang et al., 2015] Cheng Yang, Zhiyuan Liu, Deli Zhao,
Maosong Sun, and Edward Chang. Network representa-
tion learning with rich text information. In Twenty-Fourth
International Joint Conference on Artificial Intelligence,
2015.

[Zhang et al., 2018a] Daokun Zhang, Jie Yin, Xingquan
Zhu, and Chengqi Zhang. Network representation learn-
ing: A survey. IEEE transactions on Big Data, 2018.

[Zhang et al., 2018b] Ziwei Zhang, Peng Cui, Xiao Wang,
Jian Pei, Xuanrong Yao, and Wenwu Zhu. Arbitrary-order
proximity preserved network embedding. In Proceedings
of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 2778–
2786. ACM, 2018.

	1 Introduction
	2 Preliminaries and Related Work
	2.1 Notations and Definitions
	2.2 Related Work
	Preserving High-order Proximity
	Capturing Edge Information

	3 Enhanced Proximity Information Network Embedding
	3.1 Calculating the Rectified Proximity
	3.2 Rethinking the Matrix Multiplication
	3.3 Calculating Edge Weights
	3.4 The Proposed EPINE Similarity
	3.5 Learning the Network Embedding
	3.6 Discussions

	4 Experiments
	4.1 Datasets
	4.2 Baselines and Parameter Settings
	4.3 Network Topological Information Preserving
	4.4 Network Semantic Information Preserving
	4.5 Different Orders of Rectified Proximity
	4.6 Ablilation Studies

	5 Conclusions

