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Abstract—Uncertainties in Deep Neural Network (DNN)-based
perception and vehicle’s motion pose challenges to the develop-
ment of safe autonomous driving vehicles. In this paper, we pro-
pose a safe motion planning framework featuring the quantifica-
tion and propagation of DNN-based perception uncertainties and
motion uncertainties. Contributions of this work are twofold: (1)
A Bayesian Deep Neural network model which detects 3D objects
and quantitatively capture the associated aleatoric and epistemic
uncertainties of DNNs; (2) An uncertainty-aware motion planning
algorithm (PU-RRT) that accounts for uncertainties in object
detection and ego-vehicle’s motion. The proposed approaches
are validated via simulated complex scenarios built in CARLA.
Experimental results show that the proposed motion planning
scheme can cope with uncertainties of DNN-based perception and
vehicle motion, and improve the operational safety of autonomous
vehicles while still achieving desirable efficiency.

I. INTRODUCTION

Safety is one of the most critical requirements among the
criteria for the design and development of Autonomous Driv-
ing Vehicles (AV). Most of state-of-the-art AV software stacks
are built following the pipeline of perception-decision making-
trajectory planning-control, where individual components sup-
port the operation of each functionality [1]. Despite significant
progress achieved in AV perception and motion planning
techniques, new challenges arise when addressing the safety
issues induced by data-driven units(e.g. DNN components),
due to the lack of effective mechanisms for the evaluation and
propagation of uncertainties when integrating various software
components.

Due to the effectiveness in extracting features and making
predictions from data-rich input [2], Deep Learning (DL)
based techniques have been widely adopted in AV systems,
especially for perception applications including semantic seg-
mentation [3] and pedestrian and vehicle detection [4]. How-
ever, the inherent errors and uncertainties in the output of DL-
based perception unit will propagate downstream to decision-
making and planning components, which rely heavily on the
output of preceding perception modules, and such uncertainties
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ultimately affect the planning results. However, existing DL
approaches typically output deterministic perception results
without explicitly measuring their uncertainty. In addition,
although the motion of ego vehicle is supposed to follow the
planned reference trajectory, the actual trajectory following
result is highly influenced by various driving conditions such
as actuator noise, tire adhesion and road surface, resulting in
uncertainty of vehicle motion. Besides, the inherent measure-
ment errors also result in uncertainty of the vehicle’s motion.
Therefore, it is still an open question how to effectively and
explicitly evaluate upstream uncertainties and propagate them
to the decision-making and planning phase, so as to guarantee
operational safety of AVs in the presence of such uncertainties.

To address these challenges, in this paper we present a co-
herent framework of uncertainty-aware perception and motion
planning for AV systems. The primary contributions of this
paper can be summarized as follows:

1) We propose an uncertainty-aware 3D LiDAR object
detector (Bayesian Point-RCNN) which is an extension
of the basic Point-RCNN backbone by following the
Bayesian Deep Learning (BDL) principal. The detector
is able to classify surrounding objects and predict their
3D bounding boxes, while explicitly quantifying both
epistemic (EU) and aleatoric uncertainties (AU).

2) We develop a chance-constrained safe motion plan-
ning approach (perception uncertainty-aware-RRT,
PU-RRT) that accounts for perception uncertainties of
DNN and motion uncertainty. The algorithm explicitly
incorporates DNN perception and motion uncertainty in
the form of spatial chance constraints, and generates
probabilistic feasible trajectories that bound the oper-
ational risk.

3) We provide implementation details and conduct ex-
perimental evaluation of the proposed algorithms in
simulated traffic scenarios. Experimental results show
an improvement of operational safety by capturing un-
certainties of DNN.

The remainder of this paper is organized as follows: Section
IT reviews the related work in related domains. Section III
presents the problem formulations. Section IV provides a
detailed description of the 3D LiDAR object detector and
the uncertainty-aware motion planning approach. Section V
provides experiment results and analysis. Section VI concludes
this paper and outlines future work.



II. RELATED WORK
A. Uncertainty Quantification for Deep Neural Networks

There are generally two sources of uncertainties in a DNN,
namely epistemic uncertainty (EU) and aleatoric uncertainty
(AU) [5], where the former captures uncertainty in the model
parameters and the latter relates to the inherent noise of obser-
vation inputs. Approaches for the quantification of those un-
certainties can be divided into two major categories: sampling-
based and non-sampling-based.

Bayesian Deep Learning (BDL) [6] has emerged as a
principled paradigm for modeling uncertainties in DNN. Un-
like conventional DNN that uses maximum likelihood re-
gression to estimate deterministic network parameters, the
BDL framework models weight parameters as stochastic vari-
ables that can be estimated by approximating their posterior
probability. Sampling-based techniques have been proposed
as approximation methods since direct inference of such
posterior distributions are normally intractable. Representative
methods include Variation inference (VI) [7], [8], [9], which
estimate uncertainty by drawing samples of weights from the
approximated distributions generated from multiple inference
of a single input. Similarly, dropout techniques have also
been adopted to approximate uncertainties through multiple
forward-passes[10], [11]. Instead of processing the input using
the same network architecture, such methods obtain samples
from the posterior distributions of weights by randomly drop-
ping out neurons for each forward pass. In contrast, deep
ensemble [12] is a non-Bayesian framework and it passes a
single input though ensembles of multiple networks to estimate
variance of predictions. In contrast to the above sampling-
based approaches, non-sampling-based techniques estimate
uncertainties via a single forward pass [13], [14], [15]. Such
approaches generally require specific design of loss attenuation
mechanism or incorporation of additional Gaussian mixture
models to the output, making it difficult to converge for
detectors with large output space [16].

Recent works attempt to make extensions to DNNs and
quantify uncertainties in 3D object detection applications.
Feng et al. [17] utilize Monte Carlo dropout technique to
quantify uncertainties of a DNN-based framework for 3D
vehicle detection tasks. Their approach is further extended in
[18] to quantify heteroscedastic AU in a two-stage detector,
including AU of region proposal network and refinement sub-
network. Similarly, Meyer et al. [19] extend the LaserNet
detector to quantify the uncertainty in vehicle bounding box
estimation. However, most existing uncertainty quantification
techniques of DNN are designed for improving robustness and
accuracy of predictions, without considering the propagation
of perception uncertainties to the downstream components to
improve overall system safety.

B. Decision-making and Planning under Uncertainties

Decision-making and planning under environment and state
uncertainties can be typically formulated as Partially Ob-
servable Markov Decision Process(POMDP) problem. Recent

research in the autonomous driving domain attempt to incor-
porate into the motion planning phase uncertainties induced
by sensing noise [20], limited perception and occlusion [21],
[22]. However, it is difficult to expand the POMDP framework
to AV problems with continuous state and action space and
solving the POMDP problem is still computationally expensive
for real-world implementations.

Sampling-based motion planning has been recognized as
effective tools for AV motion planning applications with com-
plex dynamics and constraints. Extensions have been made to
sampling-based frameworks (such as Rapidly-exploring Ran-
dom Trees, RRT) to allow for the integration of uncertainties.
For instance, the Chance-Constrained RRT (CC-RRT) [23]
(and its extension CC-RRT* [24]) models the sensing uncer-
tainties as Gaussian distributions and generate trees of risk-
bounded trajectories. Similarly, the Rapidly-exploring Random
Belief Tree (RRBT) in [25] incorporates propagation of motion
and sensing uncertainties in the RRT* framework to ensure
probabilistic feasibility.

Despite the appealing performance achieved, the aforemen-
tioned approaches are normally designed under the assumption
of simplified, idealized model of sensing uncertainty and
their effectiveness remains to be validated for systems with
uncertainties of DNN-based components.

III. PROBLEM FORMULATION
A. Quantifying Uncertainties in DNN

Following the BDL paradigm, EU of DNNs can be esti-
mated by placing prior distributions over the network’s weights
and estimate the variation of weights with respect to given
training data. Denote X = {xy..x,} and Y = {y1...yn}
as the training dataset and their corresponding ground truth,
respectively. Denote a DNN as fW(.) with L layers and
weight parameters W = {w;}X, (where w; = [w;;]T is
the weight of the jth unit of the ith layer). In the BDL frame-
work, w; distributes according to p(w). Given the training
dataset {X, Y}, the posterior distribution of W is given by
p(W]X,Y). Denoting the input and expected prediction at
testing time as x* and y*, respectively, and the model likeli-
hood as p(y*|fW (x*)). The predictive probabilistic output of
the neural network at testing time is given by:

P(y*lx*,XyY)=/P(y*|fw(x*)p(WIX,Y)dW Q)

Since analytical inference of posterior distribution
p(W|X,Y) is intractable [10], it is feasible to use
approximation inference technique to estimate a tractable
posterior distribution G?(W) (parameterized by 6). It is
proved in [10] that applying dropout before weighted layer of
neural networks is mathematically equivalent to a Bayesian
approximation of a BDL model. Therefore, uncertainties of
DNN can be analytically evaluated via Monte Carlo (MC)
dropout approximation, which operates by sampling from the
approximate distribution (Wy, ~ ¢°(W),k € {1..N}) via
multiple stochastic forward passes of same inputs. Taking
advantage of MC dropout approximation, the predictive



variance of the DNN model for regression tasks can be
estimated by:
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and T denotes the number of stochastic forward passes,
the weights W, of each forward pass are sampled from
the approximated distribution: W; ~ G%(W). o2 represents
uncertainty caused by inherent noise in the observation data,
which corresponds with AU.

The AU can be evaluated by estimating the aforementioned
likelihood of observation p(y*|fW (x*)) via integration of loss
function in the training of the DNN, which will be described
in details in Section IV.

B. Chance-Constrained Motion Planning

For AV applications involving uncertainties, outputs of
perception module are the belief (i.e. estimated mean and
variance) of surrounding traffic participants’ states. Therefore,
instead of using deterministic feasibility constraints, one of the
major objectives of motion planning is to bound the probability
of collision, and such chance-constrained problem can be
formulated as:

Problem 1. (chance-constrained motion planning) Given
an agent described by:

X1 = f(x,w), xp € X,up €U (5

(where x; and u; denote the state and control vectors at time
t, respectively.) and given an initial state x;,;;, the goal state
Xgoal» the set of belief of detected obstacles in the environment
B: = {B;},(i = 1...Nops), generate a sequence of states and
control inputs 7 = {x;,u;}, (¢ € [0, At]) in At that traverse
from X;n4¢ 10 Xgoa1, and minimize the cost of operation:

t+At
7% = argmin Z J (7, By) (6)
4 t

while satisfying the following chance-constraint:

t+At
P(collision|r*,B) =1—- P —collision|7*, B
oo =1\ oot 5)
<A

where P(collision) indicates the probability of collision with
any of the obstacles in the environment. A is a predefined
upper-bound on probability of collision(risk) during operation.

C. Overall System Framework

In this work, we consider the typical configuration of an
AV system, in which on-board sensing devices provide mea-
surements of surrounding environments for the AV software
stack, and its perception function uses such sensor readings
to build an abstract model of the environment for the motion
planning module to generate reference trajectories. The pro-
posed framework mainly consists of an environment percep-
tion module and a motion planning module. The environment
perception module takes as input the 3D point clouds of
the surrounding environment captured by the vehicle-mounted
LiDAR device, and it detects vehicles from point clouds and
makes predictions of their 3D bounding boxes, along with
the associated quantified uncertainties, using the proposed
Probabilistic PointRCNN model. These classification and
regression results as well as their uncertainties are then fed
to the chance-constrained motion planning module based on
the proposed PU-RRT algorithm. To explicitly incorporate the
quantified perception uncertainties, a spatial representation of
the detected object with multidimensional additive uncertainty
is established to formulate the chance constraint. Based on the
chance constraint, the PU-RRT checks probabilistic feasibility
when expanding the tree of trajectories, and selects best and
safe trajectories for execution at the same time. In this manner,
the overall system generates trajectories that bound the risk
under uncertainties. Details of the two primary components of
the proposed framework are presented in the following section.

IV. PROPOSED METHODS
A. Probabilistic PointRCNN

1) Network Architecture: The architecture of the proposed
Probabilistic PointRCNN is depicted in Fig. 1. The two-stage
PointRCNN is adopted as the backbone network, which con-
sists of a 3D region proposal sub-network (RPN, stage 1) and
a bounding box refinement sub-network (stage 2).Taking the
3D LiDAR point cloud as the input, the RPN generates region
proposals of 3D bounding boxes of vehicles via point cloud
segmentation. Point-wise feature vectors are also learned in
this stage. In the stage 2 sub-network, the 3D points and their
learned features from RPN are pooled and points within region
proposals are selected, yielding the local point-wise features
of each region proposal: p = [Zp, Yp, 2p; Tps Mp, ] (Tp, Yp, Zp:
3D coordinates, r,: LIDAR intensity, m,: segmentation mask,
f,,: feature vector from RPN). Such local features are concate-
nated with global semantic features f;, from RPN to generate
rich features containing local and global information through
another encoder. Outputs of the proposed network consist of
classification of detected object {c;}, along with their refined
3D bounding boxes: {b;}(b; = (xl-,yz-,zi,hi,wi,li,Gi)T), as
well as the quantified AU, EU and spatial representations of
combined uncertainty.

Two major extensions are made to the original network:
intermediate layers with MC dropout are introduced in stage
2 for the quantification pf EU, and AU uncertainty layers are
added for modeling AU.
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2) Intermediate Dropout Layers: Following the principle
specified in Section III A, we utilize MC dropout technique
as a Bayesian approximation for EU quantification. 3 fully-
connected (FC) layers are introduced downstream the pooling
and encoder of stage 2, where the first and second hidden
layer contain 512 and 1024 neurons, respectively. The number
of neurons of the last layer equals to the dimension of input
of subsequent proposal refinement network. Each FC layer
is followed by a dropout layer to perform the stochastic
forward pass. For each input, the network perform 7' times
of forward passes, each with stochastic dropout. In this man-
ner, the network draws samples from the weights’ posterior
distribution and the EU of regression task (i.e. 3D bounding
boxes estimation) can be quantified following Eq. (3) and (4).

As for the classification EU, we use Predictive Entropy (PE)
and Mutual Information (MI) [6] as metrics for quantification
of the network’s confidence in its classification results.

The Predictive Entropy is given by:

H(y*[x") = = Y _ p(elx", D) log p(cjx”, D)
c

L A 8
plc|x*, D) = T ZP(C|X*aWt)
t

where W, ~ ¢,,(8) denotes the weight parameters of the fth
forward pass, p(c|x*,@;) is the probability of an object being
classified as c at ¢, which is given by the softmax score in
the proposed network (i.e. p(c|x*,w;) =~ Softmax(c,t)). PE
indicates the network’s confidence in its predictions, and it

reaches its maximum when the network is highly uncertain
with its predictions (i.e. p(c) is close to 0.5). The Mutual
Information is given by:

I(y*, w|x*, D) = H(y"*|x") — Epw|p)(H(y"[x))
Epwip)H(y"[x")) =

®

— L3S el W) logplelx”, W)
t c

MI measures the network’s confidence in its predictions in

repetitive trials, and it reaches its peak when the predictions

from multiple forward passes deviate from each other. There-

fore, PE and MI can be used to filter out mis-detections in the

decision-making and planning process.

3) Aleatoric Uncertainty Layers: The aleatoric uncertainty
corresponds to the inherent noise in the observations. To
capture the AU in the regression task, the network needs to
estimate the observation likelihood p (y* |fV(x*)) as in Eq.(1).
As the elements of the 3D bounding box vector are mutually
independent, one can model the likelihood as multi-variate
Gaussian distribution with diagonal covariance matrix [14]:

Py X w) ~ N (W B ()
Var®®®(x*) = diag(o2.)
In the regression task, the variance parameters are encoded as
62. = lo2,00.02,07.00,07,03]", of which each element
corresponds to the uncertainty of an element in the predicted
bounding box vector.
To estimate the AU, we introduce AU quantification layers
to the network (Fig. 2). As the refined bounding boxes in

(10)



stage 2 are generated from the candidate RPs from the stage
1 sub-network, the uncertainties come from the two stages
and we use both the feature vectors of bounding boxes and
corresponding RPs as the input of FC AU layers to obtain
Aroi and Aprcq. These processed two sources of features are
then merged and fed to final fully-connected layers to obtain
the estimated observation variance Ax~. During the training
phase, we use the following loss function for learning the AU
of regression [14]:

D

L(W) = ;g;exp(—kd)A2+ %Ad (11)
Agq represents individual element in the A of each sample in
the training dataset. A represents the residual loss of each
element in the predicted vector. For numerical stability, we
use logarithmic term (A.- := loga?2.) to avoid possible
division by zero. In this manner the observation noise-related
uncertainty can be learned from the input data.
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Fig. 2. Aleatoric uncertainty quantification layers.

B. Spatial formulation of Combined Perception Uncertainties

In order to propagate and explicitly incorporate DNN per-
ception uncertainties in the subsequent motion planning phase,
we combine the AU and EU and derive a spatial formulation
of the uncertainty in the planning space. Following the BDL
principle as in Eq. (2), the combined uncertainty for each
predicted bounding box can be approximated by:

1 & 1\
varst) - 39t + (7309 ) (309
t t
rye

where the first two terms relate to the EU and the last term
is the AU. To incorporate the modeled uncertainty into the
motion planning space, we extracted the elements related to
position, scale and orientation [0 ;, 02 ;, 07, ;,07,, 05 ;]" from
the predicted variance vector (Eq. (12)). As elements in
the predicted bounding box vector are mutually-independent

(12)

variables with Gaussian distribution, the variances of elements
related to a certain dimension (e.g. lateral and longitudinal) are
additive. Therefore, we formulate the quantified uncertainties
in the lateral and longitudinal dimensions (i.e. X and Y
of the vehicle body-fixed frame) of the estimated bounding
box. For the fist step, the variance of estimation width and
length (02, 07) are added to those of x-position and y-position
(Uz70—5) to derive the total uncertainty in the lateral and
longitudinal dimension, respectively:

Olat = \/ 02 + 0%,
— 2
Olon = \/02 + 0;

For simplicity, we further incorporate the uncertainty in the es-
timated orientation (og) by projecting the estimated width and
length based on oy and deriving orientation-related additive
variances (A,, Ap):

(e

Therefore, by incorporating the lateral and longitudinal
uncertainties into the predicted bounding boxes, we derive
a ellipse-like formulation of the detected object, with the
ultimate scale of the two dimensions given by:

13)

(1 + tan? (og))

A, = w? + 12 tan? (0y)) ) (14)

~|g NI~

Ay

Lo =1/24 01on + A,

15
Ly =w/2+ 014t + A (15

Examples of detected objects with additive perceptions uncer-
tainties are depicted in Fig. 3.

. Wﬁ I

Fig. 3. Examples of representation of bounding boxes of detected vehicles
with additive quantified perception uncertainties.

C. Uncertainty-aware Motion Planning

To bound the operational risk by considering perception
uncertainties of DNN, we propose an extension of the real time
Closed-loop RRT (CL-RRT) [27], namely PU-RRT, which
explicitly incorporates perception and motion uncertainties
by checking the probability of collision based on chance
constraints. We firstly formulate the chance constraint based on
the quantified uncertainty and adopt a computational-efficient
risk evaluation approach [23].



1) Chance-Constraint formulation and risk evaluation:
The vehicle system can be modeled as a linear time-invariant
system with additive Gaussian process noise [23]:

X1 = Axy + Buy +
xo ~ N (%0, Zp)
Yt ~ N(07 2’7)

where x; is the vehicle’s state at time ¢, u; is the control
input vector and -, is the noise vector which models the
external disturbance and inherent system noise. N(0,X.)
denotes Gaussian distribution with zero-mean and variance
3. N(%0.X0) denotes the belief of the initial state of vehicle.

To formulate the system uncertainty as chance constraint
formulation for probabilistic feasibility evaluation, we prop-
agate the system uncertainty over time based on the system
model (Eq. (16)). Given the control sequence of time step
t € {0,1,...,ty}, the distribution of the state x;, the mean X,
and covariance X; can be propagated based on the estimation
of the previous time step:

)A(H_] = A.)A(t + Bl].t
S =ASAT + 3,
vt € {0,1, v by — 1}

As stated in Eq. (7), the chance constraint requires that the
probability of collision with any of surrounding obstacles is
bounded within safe threshold (A = 1 — pyay.). Denote the
number of obstacles detected by the perception module as K,
and z; represents the coordinates of the geometric center of the
Jth obstacle’s bounding box. We model the ego vehicle as a
convex polygon defined by conjunction four linear constraints
(Niz12.34 0 T < bi, Fig. 4). the probability of the ego
vehicle colliding with jth obstacle is given by:

(16)

a7

/\ a?zj < b;
i=1,2,3,4

Pcollision,j =P (18)

Therefore, the probability that any of the linear constraints in
eq. (18) being satisfied is an upper bound on the probability
of collision:
Pcollisi011,j =P n a?Zj < b;
i=1,2,3,4
< P(afz; <b)
Vied{l,.. K}

Recall that the covariance of the location of the obstacle’s
geometric center is given by X; (3; = (10t + Db, Olon +
A,]T, as in Eq. (13) and (14)) and the covariance of the
ego vehicle’s location is X, (propagated as in Eq. (17)).
By integrating these uncertainties, the probability that the

ith linear constraint is satisfied by the jth obstacle can be
calculated as:

N 1 1— (:"I'f a;TFZ]' — bz (20)
2 V2al (Z; +5,,) a

19)

'L llax=b : .
A Jun Object
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Fig. 4. Spatial representation of DNN perception uncertainties and evaluation
of risk of collision.

where A;;; denote the probability that the jth obstacle satisfies
tth linear constraint of the ego-vehicle at time step ¢, and
erf(-) is the Gauss error function which can be solved quickly
using pre-calculated look-up tables.

To simplify the calculation, as Eq. (19) specifies the upper
bound of the probability of collision, the actual probability
of vehicle colliding with jth obstacle does not exceed the
minimum probability of satisfying any of the four linear
constraints:

Pnollision,j <

min P (af'z; < b;) (1)

i=1,2,3,
Then for all obstacles, the overall probability of collision at
time ¢ can be approximated as:
K
Peottision (t) < min P (a] z; < b;)

— i=1,2,3,4
J

K
~ min A,
Z i=1,2,3,4
J

Denote psqre as the pre-defined safety threshold during
operation, the overall probability of collision (Eq. (22)) should
satisfy the following constraint:

(22)

Peottision (t) =A<A=1- Psafe (23)

2) PU-RRT: Similar to the real-time CL-RRT [27], the PU-
RRT algorithm mainly consists of two operations: the Tree
Expansion (Algorithm 1) and the Execution (Algorithm 2).
The former operates by growing a tree of dynamically and
probabilistic feasible trajectories via random sampling, while
the latter simultaneously selects the current best trajectory for
execution by the controller. Given the quantified perception
uncertainty and chance constraint formulated by Eq. (20 -23),
we make extensions to both operations to enable the algorithm
to explicitly check if the collision of probability of nodes and
trajectories satisfies chance constraints.

Details of the Tree Expansion phase is presented in Algo-
rithm 1. The algorithm takes the initial and goal state, as well
as the current tree as the initial input. At the beginning of each



Algorithm 1: PU-RRT, Tree Expansion

Algorithm 2: PU-RRT, Trajectory Execution

Input: vehicle state (x¢, Xg), goal Xg0q:, detected
obstacles with uncertainty b;, (Q;, configuration
space C, safety threshold pyq ., search tree T’
Output: Tree T
1 Update the environment model using b;, Q;;
2 Sampling Xy4mpie from the configuration space C',
filter out mis-detections based on MI and PE;
3 Sort the nodes in the tree using heuristics;
4 Choose M nodes according to step ;
5 for each node n;,i € {1,..., M} do

6 Get the position x; and uncertainty matrix 3;;
7 Calculate chance-constrained risk
8 Ay + getCCRisk(x¢, Xy, Q);
9 k=0;
10 while x, 1, has not reached Xsqmpie do
1 Steering X; 4 1)t < steer (X4 k)¢s Xsample)s
12 Uncertainty propagation
13 34 kr1)e < probPropagation (s x|es Xiq ()
14 Apskyie ¢
get CCRIsk (X y gy 1)t Bitrt1)e, Q)3
15 if isFeasible(x;yx41)¢) and Apppq1p <
1-— Psafe then
16 Generate new tree node 144 p41)¢ <
generateNode(X i k1116, Dotk r1)e)s
17 Add node ny g4y to tree T}
18 k+—k+1,
19 else
20 | Exit while;
21 end
22 end
23 for generated node n by step do
24 Get the position of node n;
25 Try connecting n to Xg0q; (lines 10-22);
26 if connection 10 X404 then
27 Store the path;
28 Add generated nodes to Tree T';
29 Update Cyp value of all nodes in path;
30 end
31 end
32 end

cycle, the algorithm updates environment model based on the
detected bounding boxes with quantified uncertainty from the
perception module (line 1), and mis-detections are filtered out
based on the classification uncertainty (MI and PE). Algorithm
1 expands the search tree continuously via randomly sampling
nodes from the configuration space until the time for expansion
reaches maximum. We incorporate the quantified uncertainties
into the nearest node selection step (line 4) and the feasibility
checking step (line 15).

To find the nearest nodes to be connected to the newly-
sampled node X qmpie, the cost for connection is evaluated
based on two metrics: the distance for steering to Xqmple

Input: vehicle xg, goal x4, safety threshold p, fe
Output: Reference path to controller
1 while vehicle not reaches goal do
Initialize the uncertainty matrix 3, of ego-vehicle;
Initialize tree T' < treelnitialize(xq, Xo);
Update configuration space C'
Update detection results @Q;
while time limit A; is not reached do
‘ Expand the tree (Algorithm 1);
end
Select best path (Algorithm 3);
10 Apply the best path;
11 end

R -JE- NN B Y N

(dist), and the probability of collision (i.e. the risk, Aj).
Therefore, the overall cost of node is given by:

C(ni) = keeAit + kaistdist(ni, Nstart) (24)

where k.. and kg are the weights for adjusting the im-
portance of two metrics. In addition, before connecting new
nodes to the existing tree, the algorithm generates closed-loop
trajectory that steers the vehicle to Xsqmpie, and checks the risk
of the simulated trajectory (line 15). Only the probabilistic
feasible portion of the trajectory is kept and new nodes are
generated and connected to the existing tree (line 16 and
17). In this manner, the algorithm attempts to connect newly-
sampled nodes to the tree nodes with low risk and operation
cost.

The trajectory execution phase is described in Algorithm 2.
To select the current optimal path, nodes are evaluated based
on their costs. Each generated node keeps a lower bound Cp,p
and an upper bound cost-to-go value Cy g, which serve as
metrics for the evaluation the cost from the specified node to
the goal. C,p is determined by the direct Euclidean distance
between the node and the goal. When a feasible trajectory
from the node to the goal is available, Cyp is updated by
propagating the cost metrics from goal backwards to the
specified node [27] to check if there exists a path with lower
upper bound cost-to-go. Therefore, Cyy is given by:

400 no trajectory to the goal
Cup = min.(e. + Cyp,) trajectory to the goal exists
CLe node inside goal region

(25
where c represents the index of child nodes, e.. is the cost from
the node to the child node ¢, and Cy g, represents the upper
bound cost at node c. e, is calculated in a similar manner as in
(24) to incorporate the risk of trajectories in the path selection:

ec(ni) = kccAit + kdisdis(ni7 TZC) (26)

These cost-to-go values are used in trajectory selection in
the Algorithm 3. In this manner, the probabilistic feasibility-
related cost metric allows for the selection of optimal path that
bounds the risk while lowering the operation cost.



Algorithm 3: PU-RRT, Path Selection
Input: Feasible paths, Searching Tree T’
Output: Reference path
1 if the number of feasible path # 0 then
for each feasible path p; do
Get Cyp of each node;
Record max Cpp; of the node in path p;;
end
Choose the path with lowest Cygi;

else

@ N A N AW N

No feasible path;
9 | path« findCloseToGoal(T', X goa1);
10 end

V. EXPERIMENTAL EVALUATION
A. Experiment Setup

1) Network Training and Validation: Our proposed Proba-
bilistic PointRCNN is trained using a platform with 2 TESLA
V100 GPUs. The KITTI dataset [28] combined with simulated
LiDAR data collected from CARLA simulator are used as the
training and validation dataset. During training phase, We fix
the dropout rate of intermediate layer to 0.5 and the times
of MC Dropout sampling is set to 25. In the training phase.
The RPN is trained with 200 epochs, while the RCNN is
trained firstly with regular loss function by 40 epochs and then
trained with AU-related loss function (11) by 120 epochs. The
adopted optimization method is adam-onecycle with weight
decay 0.001 and momentum value 0.9. The initial learning rate
is 0.002 and decays by 0.5 every 40 epochs. The times of MC
Dropout sampling during inference is set to 6 in simulation.
The simulation test is performed using one GTX 1070 GPU.

2) Parameters of PU-RRT: For PU-RRT, we set max itera-
tion time to 200 for tree expansion. For nearest node selection,
the number of candidate nodes M is set to 15, and the time
interval for tree expansion is 3s.

3) Scenario Setup: We implement the proposed Probabilis-
tic PointRCNN and PU-RRT as ROS (Robotics Operation
System) nodes interacting with other function modules. The
proposed approaches are validated in simulated scenarios built
using CARLA simulator (Fig 5). The designed scenario is a
multi-lane road with dense traffic where the ego vehicle must
perceive the surrounding obstacles and plan safe trajectories
to perform lane-changing and reach the goal position. The
scenario involves factors that may induce uncertainty in DNN:
variation of observation distance and angle, as well as occlu-
sion. The simulated LiDAR measurements from CARLA are
fed to the Probabilistic PointRCNN node for detection, and
the PU-RRT node takes as input the detected bounding boxes
and quantified uncertainty to generate trajectories.

B. Experiment Results

1) Object Detection and Uncertainty Quantification Re-
sults: To analyze how different factors affect the uncertainty
of DNN, we evaluate the proposed Probabilistic PointRCNN

3

Fig. 5. Simulated multi-lane changing scenario

by detecting objects at varying distances and azimuth of
observation. Object detection results are depicted in Fig. 6
along with plotted quantified uncertainty. Uncertainties in the
estimated location, lateral and longitudinal scale increase as
the detected vehicle moves away from the ego vehicle (Fig.
6(a)). In addition, undesirable azimuth of observation also
result in increased uncertainties. These results indicate that
the proposed approach can effectively quantify uncertainty of
DNN and capture the effects of various factors.

2) Motion Planning Results: To compare the performance
of the proposed motion planner with that of existing ap-
proaches. We test the performance of the following three
motion planners:

PU-RRT: the proposed motion planning algorithm;

CC-RRT: conventional chance-constrained RRT planner
which assumes a fixed scale of uncertainty in the detected
obstacles instead of explicitly estimating the uncertainties of
DNN.

CL-RRT: closed-loop RRT that does not account for any
uncertainty.

Examples of planned trajectories generated the three plan-
ners in the simulated scenario are depicted in Fig 7. Com-
parisons of performance of three planners are shown in Table
I. As can be seen from the results, the proposed PU-RRT
outperforms CL-RRT and in terms of trip success rate (ratio of
trips that do not violate chance constraint) and risk (Risk-max,
Risk-avg) due to the integration of perception uncertainties. In
addition, compared with conservative CC-RRT, the PU-RRT
can generate shorter trajectories (length of traj).

VI. CONCLUSION

This paper presents a safe motion planning framework that
allow for the integration of perception and motion uncer-
tainties. A Bayesian DNN-based object detector is proposed
to quantify the uncertainty of perception. By explicitly in-
corporating the quantified perception uncertainty and motion
uncertainty, the prpoposed PU-RRT can bound the operation
risk while achieving desirable efficiency.

Our future work will focus on more comprehensive valida-
tion of the proposed framework in more scenarios. In addition,
the real-time performance of the proposed approaches will also
be evaluated.
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Fig. 6. Object detection and uncertainty quantification: (a) object detection at varying distances; (b) object detection at varying azimuth of observation

TABLE I
PERFORMANCE COMPARISON OF MOTION PLANNING ALGORITHMS

t1 Ratesyce,1 Ratesuce,2  Ratesyce,3  Risk-max  Risk-avg  nwaypoints  Length of traj(m)
PU-RRT 100% 82% 82% 0.0061 0.0016 35.73 45.36
CC-RRT 100% 67% 67% 0.0014 0.00022 40.14 49.75
CL-RRT 72% 72% 12% 0.0390 0.014 28.94 39.70

to Ratesuce,n  Ratesuce,2  Ratesuce,3  Risk-max  Risk-avg  Nwaypoints  Length of traj(m)
PU-RRT 100% 100% 100% 0.0080 0.0027 25.57 35.56
CC-RRT 100% 56% 56% 0.0055 0.00069 30.33 38.00
CL-RRT 81% 81% 33% 0.016 0.0046 24.70 35.34

t3 Ratesuce,n  Ratesuce,2  Ratesuce,3  Risk-max  Risk-avg  Nwaypoints  Length of traj(m)
PU-RRT 100% 100% 100% 0.0053 0.0012 26.49 36.88
CC-RRT 100% 91% 91% 0.0034 0.00052 28.24 37.67
CL-RRT 90% 90% 38% 0.010 0.0024 26.25 36.31

ta Ratesuce,n  Ratesuce,2  Ratesuce,s  Risk-max — Risk-avg  Nwaypoints  Length of traj(m)
PU-RRT 100% 99% 99% 0.0052 0.0011 24.85 33.74
CC-RRT 100% 76% 76% 0.0010 0.00018 25.42 34.04
CL-RRT 93% 93% 55% 0.016 0.0037 24.35 33.71
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