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Abstract—Better disentanglement of speech representation is
essential to improve the quality of voice conversion. Recently
contrastive learning is applied to voice conversion successfully
based on speaker labels. However, the performance of model
will reduce in conversion between similar speakers. Hence, we
propose an augmented negative sample selection to address
the issue. Specifically, we create hard negative samples based
on the proposed speaker fusion module to improve learning
ability of speaker encoder. Furthermore, considering the fine-
grain modeling of speaker style, we employ a reference encoder to
extract fine-grained style and conduct the augmented contrastive
learning on global style. The experimental results show that the
proposed method outperforms previous work in voice conversion
tasks.

Index Terms—Voice Conversion, Speech Synthesis, Contrastive
Learning

I. INTRODUCTION

Voice conversion (VC) is the process of transferring speaker
identity and preserving linguistic information of speech. It has
a wide range of applications in real life, such as intelligent
customer service, gender anonymous, video dubbing, etc.
A useful way to realize voice conversion is to disentangle
speech representation and manipulate the voice characteristics
like timbre and prosody to change speaker identity while
preserving content.

Nowadays, not only the naturalness but also the expressive-
ness of converted result play an important role in speaker style
modeling. The speaking style modeling has been a subject
of continuous exploration and discussion [1]. Early work in
VC [2], [3] uses timbre as the symbol of specific speaker. The
timbre similarity to target speaker is an important metric for
the evaluation of voice conversion. The elimination of source
timbre becomes necessary for the success of VC. Autovc [4]
utilizes an information bottleneck to eliminate timbre while
preserving content information. Instance normalization [5] is
also used to limit the leakage of timbre. Furthermore, re-
searchers realize that timbre is not enough to fully characterize
speaker style to generate convincing converted speech [6].
Recently, some approaches of text-to-speech (TTS) propose
multi-scale style control for expressive speech synthesis [7]–
[9]. Multi-scale style control in TTS involves the alignment
between text and prosody for better sound quality [10].
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However, considering not all speech datasets for VC provide
text-transcript from forced-alignment [11], fine-grained style
modeling without text-transcript deserves further research.
SpeechFlow [12] is proposed for modeling pitch and rhythm
to represent the speech prosody. AUTOPST [13] proposes a
down-sampling method for prosody modeling without text-
transcript.

Despite these progress in expressive voice conversion, there
remains not fully explored situations where speakers have
similar voices. For example, voice conversion of the same
gender suffers from the similar voice ranges [14]. In this
instance, the learning ability of speaker encoder is constrained
by the training process only with o reconstruction loss. To
better distinct different speakers in latent space, contrastive
learning is employed during this process [15], [16]. It benefits
from the selection of appropriate positive and negative sample
pairs. Typically, based on labeled speakers dataset, positive
sample pair consists of speaker embeddings extracted from
two utterances of the same person while negative sample
pair consists of speaker embeddings extracted from those of
different persons [15]. Since the selection of positive samples
and negative samples relies on speaker labels, the boundary
of similar speakers is unclear during such training process.
Recent studies point out that the robustness of contrastive
learning can be improved by hard negative samples which
have similar attributes and is difficult to distinct with the
anchor [17]. To improve the disentangled representation learn-
ing ability, the choice of negative samples in VC remains
challenging.

To address these issues, we propose a novel Voice Con-
version method based on Contrastive Learning with Negative
samples augmentation and fine-grained style named “CLN-
VC”. Specially, we propose a speaker fusion module to
generate augmented negative samples with labeled speak-
ers. Since the local prosody of different utterances always
varies, contrastive learning is more suitable to be applied
in global features learning. Hence, we employ a reference
encoder [7] to extract global speaker embedding and local
prosody embedding respectively. A content encoder based on
vector quantization (VQ) [18] is adopted to generate content
representation closed to acoustic units without text-transcript.
And the alignment between content and prosody can be
implemented by attention mechanism [19]. In general, the
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Fig. 1. Training pipeline of proposed model. Mel1 and Mel3 indicate mel-spectrums from two utterances of speaker 1. Mel2 means mel-spectrum from
the speech of speaker 2. In sub-figure (b), the dynamic fusion scheme is shown. L1 and G1 mean Local Prosody Embedding (LPE) and Global Speaker
Embedding (GSE) from (a). G2 means GSE from the speech of speaker 2. Gn is the generated GSE from dynamic fusion. Gsync means GSE from the
synthesized mel-spectrum Msync.

contributions of this paper are summarized:
1) We propose a speaker fusion module to generate aug-

mented negative sample from real speakers for con-
trastive learning in voice conversion. With augmented
negative samples in training, the performance of similar
voice conversion can be improved.

2) We integrate the fine-grained style modeling into the
framework with the combination of reference encoder
and VQ-based content encoder. With extracted global
and local speaker style, we can apply the improved
contrastive learning to the global speaker style modeling
and realize expressive voice conversion with prosody
modeling.

II. RELATED WORK

A. Voice Conversion

A typical approach to VC tasks is to disentangle content
information and speaker-related information from speech and
replace the speaker representation with target. AutoVC [4]
proposes a basic framework with autoencoders. It utilizes
a bottleneck structure to encourage the learned feature to
exclude speaker information so as to receive pure content
information. To well represent the content information, Vector
Quantization (VQ) [20] uses discrete codes from codebook
which are close to acoustic units to represent content in-
formation. Text-related methods like text encoder [21], pre-
trained ASR models [22] are also introduced to constrain the
output of content encoder. However, such methods depend on
annotations of datasets while the text-free VC models are more
flexible.

B. Contrastive Learning

To learn speaker information, contrastive learning appears
in recent VC work. The goal of contrastive learning is to
encourage an encoder to encode similar data similarly and
makes the encoding results of different types of data as differ-
ent as possible. Its performance depends on the selection of

positive sample pairs and negative ones. Early models relied on
self-learning feature representations for distinguishing positive
and negative samples. Supervised contrastive learning [23]
introduces the labels from dateset as an improvement. In VC,
AVQVC [15] selects two utterances of the same speaker as
positive pair while another utterance of different speaker as
negative pair. However, some speakers in the data set have
very different timbres, such as speakers of the opposite sex, but
some have very similar timbres, such as speakers of the same
gender. The decision boundary of the model will oscillate.
Recent work has proposed multiple augmentation of original
samples or added hard negative sample pairs which are hard
to distinguish to improve the robustness of models. Inspired
by this, we propose a novel augmentation for negative samples
to improve the speaker representation ability of VC models.

C. Multi-Scale Style Modeling

Nowadays, the expressiveness of synthesized speech has
aroused more and more attention. In text-to-speech area,
previous work propose a reference encoder to model multi-
scale speaker style including the local and global. To extract
and transfer local prosody embedding, the attention-based
alignment between prosody feature and content feature is
important. For text-free VC models, speechsplit [12] and
vqmivc [24] extend the autoencoder framework adding more
encoders to learn prosody. when integrating prosody modeling,
the sound quality degrades much due to the lack of alignment.
We propose a method which introduce reference encoder as
style encoder and vq-based encoder as content encoder. Also
we conduct the attention-alignment between local prosody
embedding and content features with discrete codes close to
acoustic units.

III. METHODOLOGY

A. Disentanglement of Speech Representation

The pipeline of CLN-VC is illustrated in Fig 1. The content
encoder is based on vector quantization (VQ), which discovers



phone-like representation for mapping adjacent frames within
the same phone into the same unit ideally. Given an input
speech, a trainable codebook CB is used to transfer continuous
data into discrete codes. A commitment cost [20] encourages
each vector Z of continuous feature to commit to the discrete
codes and the loss is named as Lq .

Besides, adversarial training is used to process the output
of content encoder. It’s expected that the content encoder will
learn as less speaker-related information as possible. As shown
in Fig 1-a, a Gradient Reversal Layer (GRL) is imposed before
feeding the output into a speaker classifier. Therefore, the
gradient is reversed by GRL before backward propagated to
the content encoder. The adversarial loss is marked as Ladv

and be formulated as:

Fspk =Espk(m) (1)

F̂spk =Pspk(GRL(Econ(m))) (2)

Ladv =
∥∥∥F̂spk − Fspk

∥∥∥
1

(3)

where Econ(·) and Espk(·) represent the output of content en-
coder and the “global” output of speaker encoder respectively.
m can be any mel-spectrum. Pspk(·) means the prediction
made by the speaker classifier. The optimization of Ladv forces
content embedding to contain speaker-related information as
little as possible due to the reversal gradient imposed by GRL
layer.

To learn style representation, we employ a reference en-
coder [7] as the backbone of speaker encoder so that we can
extract global speaker embedding (GSE) and local prosody
embedding (LPE) from speech. Specially, we utilize BiGRU
to learn contextual information from both forward and back-
ward directions. All hidden-states of BiGRU form the LPE
sequence. The final state of BiGRU is considered as a vector
of GSE.

The alignment of content and prosody is realized by scaled
dot-product attention mechanism. First, divide LPE into two
part of the same length along the feature dimension. Set
content features as query and the parts of LPE as key and value
respectively. Then we can get the aligned sequence LPEa:

LPEa = Att.(Q,K, V )

= Att.(XC , LPE[:, : L/2], LPE[:, L/2 :])

= Softmax(
QKT

√
F

)V (4)

where Att. indicates the attention computation, XC means
content embedding, F indicates the dimension of the query
XC . The first dimension of LPE means time dimension and
the second signifies feature dimension. So L indicates the
length of feature dimension.

Since the speaker encoder can extract fine-grained speaking
style, further modification can be conducted on the global style
without affecting the local style.

B. Speaker Fusion for Contrastive Learning
It’s expected that during the training process, the model can

have a good ability to distinguish speech with similar global

features from different speakers. To improve this ability, the
training set needs to contain samples with similar characteris-
tics from different speakers called hard negative samples. In
constraint of current dataset with limited people, we propose
two fusion schemes to create such samples. We select GSE of
one utterance of one speaker S1 as the anchor sample. Take
the GSE of another utterance of S1 as the positive sample.
The augmented negative sample will be generated by fusion
with one utterance of different speaker S2.

1) Linear Fusion: Since our goal is to reduce the distance
between classes in the global feature space, it’s possible to
affect the global feature by adding perturbation locally in time
domain. Inspired by research on speaker information modeling
in UniSpeech-SAT [25], utterance mixing augmentation is
introduced. With utterance mixing, the encoder will be forced
to generate similar GSE. As shown in Fig 2-a, given a start
position and the interval k, mix the utterance of S2 with that
of S1. The mixing portion in each utterance is constrained
to be less than 50%, avoiding potential label permutation
problem [26]. Then extract the GSE from mixed utterance and
consider it as augmented negative sample for GSE of S1.

2) Dynamic Fusion: Another fusion scheme is considered
as a dynamic solution based on attention mechanism in the
feature domain. Actually it’s conducted on the feature space
as shown in Fig 1-b. The hard negative sample pair should be
similar and hard to distinct. We expect a channel-wise fusion
method to realize the goal. To avoid generating meaningless
noise, we prefer to reconstruct GSE of S2 based on attention
mechanism. Usually GSE can be seen as a combination of
a few areas with different attention weights. Transformation
matrices WQ, WK , WV are used to process the vector of each
GSE to conduct scaled dot-product attention. It’s expected
to raise the proportion of related parts and decrease that of
irrelevant parts. As illustrated as Fig 2-b, assign different
weights to attention areas according to the correlation and
establish a new GSE. New speaker embedding will be used to
generate hard negative sample in following step.

Fig. 2. Speaker fusion schemes. (a) is the linear fusion. U1 and U2

mean utterances from speaker 1 and speaker 2 respectively. (b) is dynamic
fusion.G1: GSE of S1, G2: GSE of S2, Gn: new GSE. Q, K ,V mean query,
key and value computed with GSEs respectively.

C. Training Strategy

As shown in Fig. 1-(b), dynamic fusion scheme is selected
in the proposed model. The necessary notations are given
in Fig. 1. The reconstruction task is performed on utterance



u1 of Speaker 1 S1 with corresponding content features C.
Reconstruction loss between Mrecon and ground truth is based
on Mean Square Error (MSE) and marked as Lrecon.

As said above, the improved contrastive learning is con-
ducted on global features. Then we use the augmented GSE
Gn from fusion module, LPE L1 and content feature C from
u1 to synthesize new mel-spectrum Msync. Instead of directly
computing contrastive loss between G1 and Gn, we decide
to pass Msyn through speaker encoder again and get the
global feature Gsyn as hard negative sample. Because Gsyn is
directly generated from speaker encoder and such consistent
way seems more efficient for training. We need to increase the
similarity between positive samples while decrease similarity
between augmented negative samples. Cosine similarity is
used as measurement:

D(G(Mrecon), G(Mn)) =
GT (Mrecon)G(Mn)

∥GT (Mrecon)∥2∥G(Mn)∥2
(5)

where D(·, ·) means the cosine similarity score. G(·) can
be any GSE extracted from input speech. Mn represents
any mel-spectrum of other speech to compose positive or
negative sample pairs. The total contrastive loss for speaker
representation learning can be computed as:

Lsim =

N∑
(−1)hD(G(Mrecon), G(Mn)) (6)

where h equals 1 for positive sample pairs while 0 for negative
sample pairs. N indicates the number of speakers.

Besides from GSE loss, a consistent content loss Lcc

between the reconstructed speech and the synthesized speech
is also employed to exclude content from speaker-related
information extracted by speaker encoder:

Lcc = MSE(Mrecon,Msyn) (7)

Total loss of training process is as follows:

L(θec , θes , θd) = Lrecon + αLsim + βLq + λLadv + γLcc

(8)

where α , β, λ and γ refers to the weight of Lsim, Lq, Ladv and
Lcc respectively. θec , θes and θd are regularization parameters
of the content encoder, speaker encoder, and decoder.

IV. EXPERIMENT

In this section, we will evaluate the performance of pro-
posed model on traditional many-to-many VC and zero-shot
VC tasks. Detaily, many-to-many VC task means that in
inference stage, both the selected source speaker and the target
speaker are seen in training. In contrast, in zero-shot VC, both
of them never appear in the training process.

A. Datasets and Configurations

All the objective and subjective experiments are conducted
on VCTK Corpus [29], a high-fidelity multi-speaker English
speech corpus. It contains speech data recorded by 108 native
English speakers with diverse accents for 46 hours. The entire
dataset is randomly divided into 3 sets: 17262 recordings

from 50 speakers for training, and other recordings from these
speakers for testing. Besides, the voice of some other speakers
that do not appear in training sets are used to conduct zero-shot
VC experiments.

The strides of convolution blocks of speaker encoder are
set as (2,1,2,1,2,2) to extract GSE and LPE. 128 was chosen
as the codebook size in the content encoder. As for linear
speaker fusion module, the mixing interval is set as 5. We will
compare the performance of both the proposed method with
linear fusion and the one with dynamic fusion with the baseline
models. We also conduct another test to prove the efficiency of
both linear fusion and dynamic fusion schemes. The weights
in Eq.(8) are set to α = 0.01, β = 0.1, λ = 0.5, γ = 0.5.

AVQVC [15], ClsVC [27], SpeechSplit2 [28] models are
chosen as the baseline models. AVQVC combines contrastive
learning and VQ but without prosody modeling. ClsVC applies
adversarial training while SpeechSplit2 involves fine-grained
style modeling. A pre-trained Wavenet [30] vocoder is used
to convert all the output mel-spectrum back to the waveform.

B. Comparison of VC Tasks

1) Subjective Experiment: As an important perceptual met-
ric, Mean Opinion Score (MOS) test is used to evaluate
the performance of parallel converted speech from different
models. Natural MOS (NMOS) describes the naturalness of
results from different models. Similarity MOS (SMOS) is
used to measure the similarity between the converted voice
and the ground truth which needs to concern timbre and
prosody information. Both of them are higher for better. 12
volunteers (6 males and 6 females) are asked to rate a score
from 1-5 points respectively.

As seen in Table I, CLN-VC improves the speaker simi-
larity to target speakers and achieve a considerable degree of
naturalness under different fusion schemes in many-to-many
VC. In zero-shot condition, the performance of CLN-VC with
linear fusion degrades evidently in similarity of voice. We
attribute this to the fact that static linear transformations on
limited-scale data sets are insufficient to simulate the variety
of real-life timbres. While CLN-VC with dynamic fusion still
performs better due to less decay of performance than other
models.

2) Objective Experiment: Mel-Cepstral Distortion (MCD)
is used as objective metrics to measure the difference between
the acoustic features of the transformed speech and the ground
truth. The lower means the better. As shown in Table I, CLN-
VC achieves lower MCD score for less distortion than baseline
models.

Besides, a fake speech detection test using an open-source
speech detection toolkit, Resemblyzer (https://github.com/
resemble-ai/Resemblyzer) is conducted as additional evalua-
tion in zero-shot VC condition. We prepare 10 real voices,
and this toolkit automatically selects 6 of them as ”ground
truth reference audios”. The rest 4 real voices and the synthetic
voices from different models will be used for testing and scor-
ing for timbre similarity. We repeat this experiment 20 times.
Specially, we select the CLN-VC with dynamic fusion to take

https://github.com/resemble-ai/Resemblyzer
https://github.com/resemble-ai/Resemblyzer


TABLE I
COMPARISON OF DIFFERENT MODELS IN MANY-TO-MANY VC AND ZERO-SHOT VC

Methods Many-to-Many VC Zero-Shot VC
MCD ↓ SMOS ↑ NMOS ↑ MCD ↓ SMOS ↑ NMOS ↑

AVQVC [15] 5.31 ± 0.032 3.18 ± 0.041 3.31 ± 0.046 5.42 ± 0.018 3.12 ± 0.016 3.21 ± 0.035
ClsVC [27] 5.24 ± 0.025 3.66 ± 0.022 3.29 ± 0.048 5.36 ± 0.028 3.54 ± 0.041 3.26 ± 0.033

SpeechSplit2 [28] 5.53 ± 0.027 3.35 ± 0.034 3.01 ± 0.025 5.89 ± 0.038 3.05 ± 0.032 3.05 ± 0.057

CLN-VC (Linear) 5.11 ± 0.033 3.77 ± 0.018 3.60 ± 0.033 5.33 ± 0.012 3.22 ± 0.016 3.28 ± 0.027
CLN-VC (Dynamic) 5.08 ± 0.012 3.79 ± 0.024 3.58 ± 0.017 5.28 ± 0.015 3.62 ± 0.026 3.32 ± 0.017

this test. As illustrated in Fig 3, the green groups represent
the scores of real voices and the red groups represent the
scores of the synthesized voice. The dash-line is the prediction
threshold. Scores above the dashed line are predicted as real.
With speaker fusion module, the proposed model outperforms
in the same-gender VC by reaching highest scores above the
dash line among fake ones.

(a) F-F (b) F-M

(c) M-M (d) M-F

Fig. 3. Detection scores for voice conversion. F: Female; M: Male. The x-
axis represents different models (Proposed: our model with dynamic fusion.
SS2: SpeechSplit2) and y-axis represents the prediction score.

C. Ablation Study

In our model, several components play an important role.
The evaluation of these components will be discussed as
follows. The first one is the VQ technique. VQ-based content
extraction is applied to mitigate the degree of quality loss.
So we retrain our model with a content encoder removing
VQ named “M1“. The second one is the negative sample
augmentation by speaker fusion module. To evaluate the
significance of this module, we retrain the model named
“M2“ in which negative samples consists of two GSEs of
utterances from different speakers after the fusion is removed.

Besides, the content consistent loss Lcc is used to ensure the
fidelity of content. To evaluate the importance of Lcc between
reconstructed speech and another one with synthesized style,
we retrain our model without Lcc. We conduct the objective
and subjective tests in VC of the same gender with seen
speakers.

(a) linear-based fusion (b) attention-based fusion

Fig. 4. The visualization of global speaker features extracted by the models
with different fusion schemes from utterances. The colors indicates different
speakers.

TABLE II
RESULTS OF THE ABLATION EXPERIMENTS.

Method MCD SMOS NMOS
CLN-VC 3.08 ± 0.023 3.67 ± 0.027 3.45 ± 0.042
w/o VQ 5.87 ± 0.036 2.58 ± 0.032 1.62 ± 0.029
w/o fusion 3.63 ± 0.039 1.52 ± 0.036 2.89 ± 0.035
w/o Lcc 4.71 ± 0.045 2.52 ± 0.026 2.09 ± 0.033

As illustrated in Table II, when removing the VQ from
content encoder, the sound quality and the naturalness of con-
verted speech degrades evidently with lower MCD and NMOS.
When removing speaker fusion scheme, the performance of
the retrained model degrades in the voice similarity to target
with lower SMOS. As we assume above, the augmented
negative samples generated from speaker fusion can improve
the performance of the model in the VC task between the same
gender. Besides, without Lcc, the sound quality is influenced
evidently, which indicates a consistent loss is a good constraint
of content preservation during the training process.

D. Different Fusion Schemes for Speaker Representation

As mentioned above, we have proposed two schemes for
speaker fusion to generate augmented negative samples. To
further evaluate the efficiency of them for feature learning, a
test is conducted to with utterances from seen speakers. Select
some utterances of them (150 utterances per speaker) as input



and extract the estimated GSE Gx from speaker encoder. Then
plot each hidden feature Gx in 2-D space with t-SNE as a data
visualization.

As shown in Fig 4, both of two fusion schemes can reach
clear cluster patterns for speakers. However, the distance
between classes is more evident in dynamic fusion scheme
than that in linear fusion. Compared to linear fusion on current
dataset, the VC model with dynamic fusion can distinct similar
speakers and fully capture speaker-related features both in
many-to-many VC and zero-shot VC. Based on these fusion
schemes, more complex and effective transformation schemes
on original utterances deserve further research to improve the
performance of zero-shot VC model in the future.

V. CONCLUSION

In this paper, we propose a novel voice conversion frame-
work with contrastive learning and fine-grained style mod-
eling. We use fine-grained style modeling to extract global
and local speaker style and generate expressive result. Spe-
cially, we propose speaker fusion module on global speaker
embedding and generate augmented negative sample pairs for
contrastive learning. With augmented negative samples, we
improve the performance of the model in the conversion of the
same gender. Both objective and subjective experiments results
demonstrate that the proposed method achieves improved
performance in the naturalness of converted speech and the
similarity of timbre and prosody to the target.
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