
HAL Id: hal-03545340
https://hal.science/hal-03545340

Submitted on 31 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SOG-Based Multi-Core LTL Model Checking
Chiheb Ameur Abid, Kais Klai, Jaime Arias, Hiba Ouni

To cite this version:
Chiheb Ameur Abid, Kais Klai, Jaime Arias, Hiba Ouni. SOG-Based Multi-Core LTL Model
Checking. 2020 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big
Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Net-
working (ISPA/BDCloud/SocialCom/SustainCom), Dec 2020, Exeter, United Kingdom. pp.9-17,
�10.1109/ISPA-BDCloud-SocialCom-SustainCom51426.2020.00028�. �hal-03545340�

https://hal.science/hal-03545340
https://hal.archives-ouvertes.fr

SOG-Based Multi-Core LTL Model Checking
1st Chiheb Ameur Abid

Mediatron Lab
SupCom, University of Carthage Tunis, Tunisia

chiheb.abid@fst.utm.tn

2nd Kais Klai
LIPN, CNRS UMR 7030

University Sorbonne Paris North France
kais.klai@lipn.univ-paris13.fr

3rd Jaime Arias
LIPN, CNRS UMR 7030

University Sorbonne Paris North France
arias@lipn.univ-paris13.fr

4th Hiba Ouni
LIPN, CNRS UMR 7030

University Sorbonne Paris North France
hiba.ouni@lipn.univ-paris13.fr

Abstract—The model checking is one of the major techniques
used in the formal verification. This technique builds on an
automatic procedure that takes a model M of a system and a
formula ϕ expressing a temporal property, and decides whether
the system satisfies the property (denoted by M |= ϕ). The model
checking technique is based on an exhaustive exploration of the
state space of the system and, thus suffers from the state space
explosion problem: it can happen that the verification process
stops because of lack of time or space. Among the existing
solutions to tackle this problem the Symbolic Observation Graph
(SOG) has been proposed as a reduced representation of the
reachability graph preserving linear temporal logic properties
(LTL) i.e. checking an LTL property on the SOG is equivalent
to check it on the original state space. The parallel construction
of the SOG could increase the speedup and scalability of model
checking. In this paper, we propose a new model checking
algorithm built on a parallel construction of the SOG. The
SOG is adapted to allow the preservation of both state and
event-based LTL formulae i.e., the atomic propositions involved
in the formula to be checked could be either state-based or
event-based propositions. We implemented the proposed model
checking algorithm within a C++ prototype and compared our
preliminary results with the state of the art model checkers.

Index Terms—Parallel model checking, Temporal Logic, Deci-
sion Diagrams.

I. INTRODUCTION

Model checking [1] is a powerful formal verification method
that can be used to improve the safety of concurrent systems.
Given a formal specification, model checking algorithms ana-
lyze the system behavior by constructing/checking the whole
reachable state space. The reachable state space is traversed
to find error states that violate safety properties, or to find
cyclic paths on which no progress is made as counterexamples
for liveness properties. This technique builds on an automatic
procedure that takes a model M of a system and a formula
ϕ expressing a temporal property, and decides whether the
system satisfies the property (denoted by M |= ϕ). The
automata-based LTL verification decision procedure is reduced
to the emptiness check of a synchronized product between
two automata AM and A¬ϕ, denoted by AM × A¬ϕ. AM

represents the state space of the system and A¬ϕ represents
the automaton of the negation of the formula ϕ to be verified
(i.e. accepting all the words that do not satisfy ϕ). Since

AM ×A¬ϕ accepts all system’s executions that do not satisfy
ϕ, its emptiness implies that all system’s executions satisfy ϕ.
Otherwise, any execution accepted by AM × A¬ϕ represents
a counter-example allowing the designer to refine his model
and re-launch the model checking procedure.

The main limitation of model checking technique is the
well-known problem of combinatorial state space explosion
[2]. Indeed, the size of the state space of a given system grows
exponentially with the number of its components. In practice,
it can happen that the verification process stops because of
lack of time or space. Several approaches have been proposed
to cope with the state space explosion problem in order to get
a manageable state space and to improve the scalability of the
model checking. These approaches can roughly be classified in
two large families, namely explicit and symbolic approaches.

Explicit model checking approaches explore an explicit
representation of the synchronized product graph. A common
optimisation builds the graph on-the-fly as required by the
emptiness check algorithm: the construction stops as soon
as a counterexample is found (e.g., [3]–[5]). Partial order
reduction (e.g., [6]–[8]) is a reduction technique exploiting
independence system’s actions to discard unnecessary parts.
Another source of optimisation is to take advantage of stutter-
ing equivalence between paths in the state space graph when
verifying a stuttering-invariant property [9]: this has been done
either by ignoring some paths in the state space graph [10], or
by representing the property using a testing automaton [11]. To
our knowledge, all these solutions require dedicated algorithms
to check the emptiness of the product graph.

Symbolic model checking tackles the state space explosion
problem by representing the product automaton symbolically,
usually by means of decision diagrams (a concise way to
represent large sets or relations, e.g., BDDs [12], MDDs [13]).
Various symbolic algorithms exist to verify LTL using fixpoint
computations (see [14], [15] for comparisons and [16] for the
clarity of the presentation). As-is, such approaches do not mix
well with partial order, stuttering invariant reductions and on-
the-fly emptiness check.

However, explicit and symbolic approaches are not exclu-
sive, some combinations have already been studied [17]–[20]

to get the best of both worlds. They are referred to as hybrid
approaches. Most of these approaches consist in replacing
the state space of the system by an explicit graph where each
node contains sets of states, that is an abstraction of the system
graph preserving properties of the original system.

In addition to techniques for reduction and compression,
parallel and distributed-memory processing can be used [21].
The use of distributed processing increases the speedup and
scalability of model checking by exploiting the cumulative
computational power and memory of a cluster of computers.
Such approaches have been studied in various contexts leading
to different proposed solutions for both symbolic and explicit
model checking (e.g [21]–[25]).

In this paper, we propose a parallel model checking tech-
nique based on the Symbolic Observation Graph (SOG). The
SOG is an abstraction of the reachability state graph of concur-
rent systems [18], [20]. A SOG is a graph whose construction
is guided by a set of observable atomic propositions involved
in a linear time temporal formula. These atomic propositions
can represent events or actions (event-based SOG [18]) or
state-based properties (state-based SOG [20]). The nodes of
a SOG are aggregates hiding a set of local states which are
equivalent with respect to the observable atomic propositions,
and are compactly encoded using Binary Decision Diagram
techniques (BDDs) [12]. The arcs of an event-based SOG are
exclusively labeled with observable actions. It has been proven
that both event and state-based SOGs preserve stutter-invariant
LTL formulae ([18], [20]).

In previous works, we have investigated different ap-
proaches to parallelize the SOG construction using different al-
gorithms to benefit from additional speedups and performance
improvement in execution time and memory saving [26]–[29].
The key idea of our approaches is to build simultaneously
several nodes (aggregates) of the symbolic graph.

In this paper, we exploit the strengths of the parallel
exploration/construction of the SOG to design a parallel model
checking, where both event- and state-based properties can be
expressed, combined, and verified. Instead of composing the
whole system with the Büchi automaton of the negation of
the formula to be checked, we perform the synchronization of
the automaton with an abstraction of the original reachability
system’s graph: an event/state-based SOG.

The event-based and state-based semantics are interchange-
able: an event can be encoded as a change in state variables,
and likewise one can equip a state with different events
to reflect different values of its internal variables. However,
converting from one representation to the other often leads to
a significant enlargement of the state space. Typically, event-
based semantics is adopted to compare systems according to
some equivalence or pre-order relation (e.g. [30], [31]), while
state-based semantics is more suitable to model-checking
approaches [32]. Combining both semantics allows to express
properties in a compact and intuitive manner.

In practice, due to the small number of atomic propositions
in a typical LTL formula, the SOG has a very moderate size.
Previous works have shown that the SOG-based approach is an

interesting alternative for LTL model checking outperforming
(in general) both explicit and purely symbolic verification
approaches ([18], [20], [33], [34]).

In this paper, we propose model checking algorithms built
on our parallel construction of the SOG. The main contribu-
tions of this paper are:
• The proposal of a parallel on-the-fly LTL model checker

(PMC-SOG) based on parallel construction of the SOG.
• The extension of the SOG definition to handle both event-

and state-based LTL properties.
• The design and evaluation of PMC-SOG.
The paper is structured as follows: First, we present the

necessary formalisms, basic preliminaries and notations in
Section II. Then, in Section III, we introduce the event and
state-based SOG. Section IV describes the main contribution
of the paper: a multi-core model checker based on the parallel
construction of an event- and state-based SOG. The proposed
approach is evaluated and compared to other related works in
Section VI. Finally, Section VII is dedicated to conclusion and
perspectives.

II. PRELIMINARIES

This section is dedicated to the definition of some relevant
concepts and to the presentation of useful notations.

A. Labeled Kripke Structures and Hybrid LTL

In this paper, we consider hybrid LTL formulae where
both state- and event-based atomic propositions can occur. In
consequence, we choose to represent the semantics (behavior)
of a system by a Labeled Kripke Structure (LKS for short).

Definition 1 (Labeled Kripke structure): Let AP be a finite
set of atomic propositions and let Act be a set of actions. An
LKS over AP is a 5-tuple 〈Γ,Act ,L,→, s0〉 where:
• Γ is a finite set of states ;
• L : Γ→ 2AP is a labeling (or interpretation) function;
• →⊆ Γ×Act × Γ is a transition relation ;
• s0 ∈ Γ is the initial state.
Definition 2 (Hybrid LTL): Given a set of atomic proposi-

tions AP and a set of actions Act , an LTL formula is defined
inductively as follows:
• each member of AP ∪Act is a formula,
• if φ and ψ are LTL formulae, so are ¬φ, φ∨ψ, Xφ and
φUψ.

Other temporal operators e.g., F (eventually) and G (always)
can be derived as follows: Fφ = true ∪ φ and Gφ = ¬F¬φ.

An interpretation of an LTL formula is an infinite run w =
x0x1x2 . . . (of some LKS), assigning to each state a set of
atomic propositions and a set of actions that are satisfied within
that state. An atomic proposition p ∈ AP is satisfied by a state
si if it belongs to its label (i.e., L(si)) while an action a ∈ Act
is said to be satisfied within a state si if it occurs from this
state in w (i.e., (si, a, si+1) ∈→). In our case (interleaving
model of concurrency), where a single action can occur at a
time, at most one action can be assigned to a state of a run.
We write wi for the suffix of w starting from xi and p ∈ xi,

for p ∈ AP ∪Act , when p is satisfied by xi. The hybrid LTL
semantics is then defined inductively as follows:
• w |= p iff p ∈ x0, for p ∈ AP ∪Act ,
• w |= φ ∨ ψ iff w |= φ or w |= ψ,
• w |= ¬φ iff not w |= φ,
• w |= Xφ iff w1 |= φ, and
• w |= φUψ iff ∃i ≥ 1; wi |= ψ and ∀1 ≤ j < i, wj |= φ.
An LKS K satisfies an LTL formula ϕ, denoted by K |= ϕ

iff all its runs satisfy ϕ.
It is well known that LTL formulae without the next

operator (X) are invariant under the so-called stuttering
equivalence [35]. We use this equivalence relation to prove that
event- and state-based SOGs preserves LTL \ X properties.
Stuttering occurs when the same atomic propositions hold on
two or more consecutive states of a given path.

III. EVENT AND STATE-BASED SOG

We propose to adapt the symbolic observation graphs [18]
in order to abstract systems’ behavior while preserving hybrid
LTL formulae. The Symbolic Observation Graph [18], [20],
[36] is an abstraction of the reachability graph of concurrent
systems. The construction of a SOG is guided by the set
of atomic propositions occurring in the LTL formula to be
checked. Such atomic propositions are called observed while
the others are unobserved. Nodes of the SOG are called
aggregates, each of them is a set of states encoded efficiently
using decision diagram techniques. Despite the exponential
theoretical complexity of the size of a SOG (a single state can
belong to several aggregates), its size is much more reduced
than the original reachability graph. The difference between
the event- and the state-based versions of the SOG ([18]
and [20], [36] respectively) is the aggregation criterion. In
event-based version, observed atomic proposition correspond
to some actions of the system and an aggregate contains
states that are connected by unobserved actions. In state-based
version, observed atomic propositions are Boolean state-based
conditions and an aggregate regroups states with the same truth
values of the observed atomic propositions.

In this section, we propose to define an event-state based
SOG preserving hybrid LTL formulae (i.e., both state and
action-based atomic propositions can be used within a same
formula). The modeling framework consists of Labeled Kripke
structures (LKS). The construction of the SOG depends on
a set of actions Act and state variables appearing as atomic
propositions AP involved by the formula to be checked.

A. Revisiting SOG for Hybrid LTL

The adaption of the SOG to hybrid LTL leads to a new
aggregation criterium: (1) two states belonging to a same
aggregate have necessarily the same truth values of the state-
based atomic propositions of the formula, (2) For any state s
in the aggregate, any state s′, having the same truth values of
the atomic propositions as s, and being reachable from s by
the occurrence of an unobserved action, belongs necessarily
to the same aggregate, and (3) for any state s in the aggregate,
any state s′ which is reachable from s by the occurrence

of an observed action is necessarily not a member of the
same aggregate (even if it has the same label as s), unless
it is reachable from an other state s′′ of the aggregate by
unobserved action.

Definition 3 (Event-state based aggregate): Let K =
〈Γ, Act,L,→, s0〉 be an LKS over a set of atomic propo-
sitions AP and let Obs ⊆ Act be a set of observed actions
of K. An aggregate a of K w.r.t. Obs is a triplet 〈S, d, l〉
satisfying:
• S ⊆ Γ where:

– ∀s, s′ ∈ S, L(s) = L(s′);
– ∀s ∈ S, (∃(s′, u) ∈ Γ × (Act \ Obs) | L(s′) =
L(s) ∧ s u−→ s′)⇒ s′ ∈ S;

– ∀s ∈ S, (∃(s′, o) ∈ Γ×Obs | s o−→ s′)∧ (6 ∃(s′′, u) ∈
S× (Act\Obs) | L(s′′) = L(s′)∧ s′′ u−→ s′)⇒ s′ 6∈
S.

• d ∈ {true, false}; d = true iff S contains a dead state.
• l ∈ {true, false}; l = true iff S contains an unobserved

cycle (i.e., with unobserved actions).
Before defining the event- and state-based SOG, let us

introduce the following operations:
• SATAP (S): for a set of states S ⊆ Γ with the same labels

(i.e. such that L(s) = L(s′), for any s, s′ ∈ S), returns
the set of states that are reachable from any state in S,
by a sequence of unobserved actions and which have the
same value of the atomic propositions as S. It is defined
as follows:
SATAP (S) = {s′′ ∈ Γ | ∃s ∈ S,∃σ ∈ UnObs∗, s

σ−→
s′′∧∀s′ ∈ Γ,∀β prefix of σ, s β−→ s′ ⇒ L(s) = L(s′)}.

• Out(a, t): returns, for an aggregate a and a action t, the
set of states outside a that are reachable from some state
in a by firing t. It is defined as follows:

Out(a, t)

{s′ ∈ Γ | ∃s ∈ a.S, s t−→ s′} if t ∈ Obs
{s′ ∈ Γ | ∃s ∈ a.S, s t−→ s′ ∧ L(s) 6= L(s′)}
if t ∈ UnObs

• Outτ (a): returns, for an aggregate a, the set of states
whose label is different from the label of any state of a,
and which is reachable from some state in a by firing
unobserved actions. It is defined as follows:
Outτ (a) =

⋃
t∈UnObsOut(a, t).

• PartAP (S): returns, for a set of states S ⊆ Γ, the set
of subsets of S that define the smallest partition of S
according to the labeling function L. It is defined as
follows:
PartAP : 2Γ −→ 22Γ

PartAP (S) = {S1, S2, . . . , Sn} ⇔ S =
⋃n
i=1 Si ∧ ∀i ∈

{1..n},∀s, s′ ∈ Si, L(s) = L(s′) ∧ ∀s ∈ Si,∀s′ ∈
Sj , j 6= i, L(s) 6= L(s′).

Definition 4: Let K = 〈Γ, Act,L,→, s0〉 be an LKS over
a set of atomic propositions AP and let Obs ⊆ Act be a set
of observed actions of K. The SOG associated with K, over
AP and Obs, is an LKS G = 〈A, Obs ∪ {τ},L′,→′, a0〉
where:

1) A is a non empty finite set of aggregates satisfying :

s0

a.b

s1a.b

s2

a.b

s3

a.b

s4

a.b

s5

a.b

s6 a.b

s7

a.b

τ

o1

τ
o2

τ

τ

τ

o1

o2

τ

τ

(a) Example of LKS

s0

s4

a0

a.b

s2

s3

a1

a.b

s6

s7

a2

a.b

s1

s5

a3

a.b
τ

τ τ

τ τ

o1

o1

τ

o2

(b) A corresponding SOG: AP =
{a, b} and Obs = {o1, o2}

Fig. 1. An LKS and its SOG

• ∀a ∈ A, ∀t ∈ Obs,∀oi ∈ Part(Out(a, t)),∃a′ ∈
A s.t. a′.S = SATAP (oi)

• ∀a ∈ A, ∀oi ∈ Part(Outτ (a)),∃a′ ∈
A s.t. a′.S = SATAP (oi)

2) L′ : A → 2AP is a labeling (or interpretation) function
s.t. L′(a) = L(s) for s ∈ a.S;

3) →′⊆ A×Act×A is the transition relation where:
• ((a, t, a′) ∈→′) ⇔ ((t ∈ Obs) ∧ (∃oi ∈
Part(Out(a, t)) s.t. SATAP (oi) = a′)

• ((a, τ, a′) ∈→′) ⇔ (∃oi ∈ Part(Outτ (a)) s.t.
SATAP (oi) = a′)

4) a0 is the initial aggregate s.t. s0 ∈ a0.S.
The finite set of aggregates A of the SOG is defined in

a complete manner such that the necessary aggregates are
represented. The labeling function associated with a SOG
gives to any aggregate the same label as its states. Point (3)
defines the transition relation: (1) there exists an arc, labeled
with an observed action t (resp. τ), from a to a′ iff a′ is
obtained by saturation (using SATAP) on a set of equally
labeled reached states Out(a, t) (resp. Outτ (a)) by the firing
of t (resp. any unobserved action) from a.S. The last point of
Definition 4 characterizes the initial aggregate.

Figure 1(b) illustrates an event-state based SOG correspond-
ing to the LKS of Figure 1(a). The presented SOG consists of
4 aggregates {a0, a1, a2, a3} and 4 edges. The initial aggregate
a0 is obtained by adding any state reachable from the initial
state s0 of the LKS, by unobserved sequences of actions
only, and labeled similarly to s0. For this reason, the initial
aggregate contains the state s4. State s2, which is reachable
from s0 by an observed action o1, is excluded from a0 and
belongs to a1. The same holds for s6 which is reachable from
s4 by o1 and belongs to the aggregate a2. s3 (resp. s7) is
added to a1 (resp. a2) since it is reachable from s2 (resp. s6)
by an unobserved action and since it is labeled similarly. Note
that one can merge a1 and a2 since they have the same label.

According to Definition 4, the SOG associated with an
LKS is unique. It can also be non deterministic since, for
instance, an aggregate can have several successors with τ
(when the reached states, by τ , have different labels).

B. Checking stuttering invariant properties on SOGs

The equivalence between checking a given stuttering invari-
ant formula (e.g., LTL\X formula) on the new adapted SOG
and checking it on the original reachability graph is ensured
by the preservation of maximal paths (finite paths leading
to a dead state and infinite paths). First, the SOG preserves
the observed traces of the corresponding model which allows
to preserve infinite runs involving infinitely often observed
transitions. Then, the truth value of the state-based atomic
propositions occurring in the formulae are visible on the
SOG by labeling each aggregate with the atomic propositions
labeling (all) its states. Finally, the d and l attributes of each
aggregate allow to detect deadlocks and livelocks (unobserved
cycles) respectively. Note that the detection of the existence of
dead states and cycles inside an aggregate is performed using
symbolic operations (set operations) only.

In conclusion, the following result establishes that an LKS
satisfies an LTL\X formula iff the corresponding SOG does.

Theorem 1: Let K be an LKS and let G be the corresponding
SOG over Obs and AP . Let ϕ be an LTL \X formula on a
subset of Obs ∪AP . Then K |= ϕ⇔ G |= ϕ

The proof of this Theorem can be found at https://up13.fr/
?azDbYg5n.

IV. PARALLEL LTL MODEL CHECKER BASED ON THE SOG

We propose an on-the-fly multi-core LTL model checking
approach based on the SOG. This approach is intended for a
configuration with shared memory architecture. We propose
two versions for this approach by using two different tech-
niques for the parallelization of the SOG building process.
First used technique is based on the use of threads by following

https://up13.fr/?azDbYg5n
https://up13.fr/?azDbYg5n

the same approach presented in [26]. In this case, parallelism
is performed at the level of construction of aggregates by
creating a fixed number of threads such that every thread builds
some aggregates. Second technique allows a finer parallelism
granularity. Indeed, parallelization is performed at the level
of the decision diagrams operations by using lock-less data
structures and a work-stealing scheduling strategy.

Figure 2 illustrates different steps followed by the proposed
model checker according to the two versions of parallelism.
The proposed model checker considers an LKS and an LTL
formula. After building the Büchi automaton of the formula
negation, it initiates the parallel construction of the SOG
simultaneously with the model checking process (computation
of the synchronized product and the emptiness check). The
model checker performs model checking in a sequential way
while SOG construction is realized in parallel either by using a
fixed number of threads to build several aggregates in parallel,
or by parallelizing the construction of a single aggregate.

A. Parallelization at the level of aggregates

We recall that, in order to check a property that is ex-
pressed by an LTL formula on a given LKS, the parallel
construction of the SOG is simultaneously performed with the
model checking. We have two kinds of threads, namely one
model checker thread and a set of builder ones. The model
checker thread computes the synchronized product between
the LKS representing the SOG and the Büchi automaton of the
formula negation. It also performs the emptiness check of the
product automaton on-the-fly. The builder threads cooperate
simultaneously in order to build a SOG by adopting a dynamic
load balancing scheme. For every thread a stack is associated
in order to store the aggregates to be processed. A newly
aggregate to be generated is pushed into the stack of the
builder thread having the minimum load (i.e., the one having
least elements in its stack).

Since the computation of the synchronized product and
the building of the SOG are performed simultaneously, it is
possible that the model checker thread tries to reach nodes
of the SOG that are not yet built. For this reason, we add
a Boolean attribute to every aggregate to indicate whether
its successors are built, or not. By checking the value of
this attribute of an aggregate, the model checker thread can
check if it is possible to reach the successors of the aggregate,
otherwise it has to wait until the attribute of the considered
aggregate is updated.

The termination of the model checking algorithm is deter-
mined by the model checker thread. It is performed when
the emptiness check process is finished, i.e. when the model
checker thread terminates, builder threads are forcibly termi-
nated by the model checker thread. The property is then proved
to be unsatisfied by the system (an acceptance cycle has been
found). If builder threads finish the construction of the SOG
before the computation of the emptiness check is completed,
only the builder threads terminate, while the model checker
thread continues the exploration of the SOG until it determines
the truth value of the property.

B. Parallelization at the level of decision diagrams operations

For this algorithm, a finer granularity level of parallelization
is proposed for the construction of a SOG during model check-
ing. We exploit parallel LDD operations already implemented
in the Sylvan library [13], [37] which is used in the implemen-
tation of the SOG construction. The difference between the
current and the previous algorithm is parallelism granularity.
Indeed, in the previous algorithm, parallelization concerns ag-
gregates construction, whereas the current algorithm performs
parallelization at the level of LDD operations through the
use of recursive functions. In the previous algorithm, only
one thread is responsible of the construction of an aggregate
that corresponds to one LDD tree. However, in the current
approach, different threads cooperate in order to build one
LDD tree that corresponds to an aggregate.

Sylvan is a multi-core decision diagrams library based on
the work-stealing framework Lace [38]. Like the majority
of work-stealing frameworks, Lace implements task-based
parallelism by creating tasks (spawn) and waiting for their
completion (sync) to use the results. Parallelization of LDD
operations is performed by using lock-less data structures and
work-stealing scheduling strategy. The basic idea behind work-
stealing [39] is to break down a calculation into small tasks.
Independent subtasks are stored in queues (work-pools) and
idle processors steal tasks from the queues of busy processors.
This will allow a processor to always have tasks to perform.
The data structures used by Sylvan library are based on
the lock-less paradigm, which ensures mutual exclusion and
depends on atomic operations.

Data: agg,dest : Aggregate;
s: Stack;
obs tr : Set of actions;

1 obs tr=getFirableObservablelactions(agg);
2 for every action t ∈ obs tr do
3 s.push(t);
4 SPAWN(ComputeAggregate,get successor(agg,t));

5 while s is not empty do
6 t=s.pop();
7 dest=SYNC(ComputeAggregate);
8 if dest does not exist in the SOG then
9 dest.div = isDiv(DEST);

10 dest.deadlock = isDeadlock(DEST);
11 Insert into the SOG the node dest;
12 Insert into the SOG the arc (agg,t,dest));

13 else
14 Insert into the SOG the arc (agg,t,dest)); ;

Algorithm 1: Aggregate successors using Lace

Consider an LTL formula and an LKS . The synchronized
product, between the automaton modeling the negation of the
formula and the SOG corresponding to the LKS is computed
sequentially. However, building an aggregate is performed in
parallel. The model checker starts by requesting the parallel

Build the automaton corresponding
to the negation of the formula

Explore the initial
aggregate Build initial aggregate,

Distribute markings succesors
over threads stacks

Th1
ThN

Explore an aggregate

Indicate the emptiness check result

False

True

False

True

...

[An acceptance
cycle is detected

 or all aggregates
are explored]

[All builder threads have
no element to process
or the emptiness check

has been completed]

Build the initial
aggregate in parallel

Build the sucessors of
the aggregate in parallel

Posix thread version ?
False

True

Posix thread version ?

Posix thread version ?

False

True

Posix thread
version ?

False

True

Build an aggregate from a marking
popped from the stack,

Distribute markings successors
over threads stacks

according to their load

True

False

Fig. 2. Posix thread-based parallel LTL model checker using SOGs

construction of the initial aggregate. Then, it processes a loop
in which it performs the computation of the synchronized
product. In order to advance in the exploration of the SOG
from an aggregate, the model checker triggers the construction
of all successors of the current aggregate.

As illustrated by Algorithm 1, the construction of an aggre-
gate successors is realized by using Sylvan library. It is initi-
ated by computing enabled observable actions from the con-
sidered aggregate. Then, using SPAWN , for every enabled
action t (t could be either an observed action, or an unobserved
action changing the label of the current aggregate), we create
a task for the recursive function ComputeAggregate to com-
pute the aggregate obtained by firing t. Results are retrieved by
calling SPAWN. It is worth noting that ComputeAggregate
is in its turn implemented recursively by breaking it down into
more small parallel tasks using SPAWN . Further, since tasks
are stored in queues with a LIFO (Last In First Out) order,
then last created task will be the first one to deliver its results.
When a new aggregate is inserted in the SOG, we compute
whether it contains a livelock (unobserved cycle) or a deadlock
state. An aggregate that has a deadlock (resp.a lovelock) will
correspond in the LKS built by the model checker to a node
that has deadlock (resp. a livelock) successor that it is always
reachable.

V. IMPLEMENTATION AND EXPERIMENTATION

A. Implementation

The implementation of the multi-core model checker is
based on Spot library [40]. It is an object-oriented model
checking library written in C++ that offers a set of building
blocks that allow to develop LTL model checkers based on
the automata theoretic approach. The chosen model of the

system is a Petri net and the formula can involve places and/or
transitions of the model.

The automaton class used by Spot to represent ω-automata
is called action-based ω-automaton (TωA for short). As its
name implies, the TωA class handles action-based acceptance,
but it can emulate state-based acceptance using action-based
acceptance by ensuring that all actions leaving an aggregate
have the same acceptance set membership. In addition, there is
a class, named kripke that can be used to represent an LKS .
During model checking, we translate built parts of the SOG
to the LKS structure.

The checking algorithm visits the synchronized product of
the ω-automaton corresponding to the negation of the formula
and the LKS corresponding to the SOG. The translation of
an LTL formula into an ω-automaton is proposed by Spot and
it is dedicated to different formalism for the representation of
the system to be checked.

Three abstract classes must be specialized to represent the
ω-automata. The first abstract class defines a state, the second
allows to iterate on the successors of a given state and the
last one represents the whole ω-automaton. In our context,
we have derived these classes for implementing a multi-core
model checker based on the SOG. It is important to notice
that the effective construction of the SOG is driven by the
emptiness check algorithm of Spot and it can be managed
on-the-fly. In our proposed approach, we have implemented
the two aforementioned versions for the parallelization of the
construction of the SOG.

In a given state, an atomic proposition associated with a
place is satisfied if the place contains at least one token. In this
case, the complete set of states corresponding to an aggregate
is obtained by applying, until saturation, the transitions relation
limited to the actions which do not modify the truth value

10 −4 10 −2 1 10 2
10 −4

10 −3

10 −2

10 −1

1

10

10 2

property
T
F

robot50

pmc-sog (Lace, # cores: 1)

pm
c-

so
g

(L
ac

e,
 #

 c
or

es
: 1

6)

(a) Model robot50

10 −4 10 −2 1 10 2
10 −4

10 −3

10 −2

10 −1

1

10

10 2

property
T
F

spool5

pmc-sog (Lace, # cores: 1)

pm
c-

so
g

(L
ac

e,
 #

 c
or

es
: 1

6)

(b) Model spool5

Fig. 3. Comparison of sequential and multi-core (16 cores) performance in
pmc-sog

of atomic propositions. Instead of checking this constraint
explicitly, we statically restrict the set of Petri net actions to
be considered to the ones which do not modify the marking
of the places involved in the formula to be checked.

VI. EXPERIMENTS

The experimental results presented in this section were
obtained on Magi cluster1 of University Sorbonne Paris Nord.

1http://magi.univ-paris13.fr/wiki/

We used the partition COMPUTE which has 40 processors (two
Intel Xeon E5-2650 v3 at 2.30GHz) connected by an Infini-
Band network, and 64GB of RAM. A total of 5 models from
the Model Checking Contest2 were used in our experiments:
Philosophers (philo), RobotManipulation(robot), Swim-
mingPool (spool), CircularTrains (train), and TokenRing
(ring). The reader can find all the files needed to reproduce
our experiments and figures at https://up13.fr/?azDbYg5n.

We exploit for these experiments a shared memory archi-
tecture with 24 cores. We measured the time (in seconds)
consumed by the verification of 100 random formulas by
progressively increasing the number of cores (1, 8, 16, 24).
LTL\X formulas were generated by the tool randltl3 and
filtered into 50 satisfied and 50 violated properties. All the
figures of this section are presented using a logarithmic scale.
Each point represents a formula where satisfied properties are
green and violated properties are red.

First, we compared the sequential and multi-core perfor-
mance of our multi-core model checker (pmc-sog). Figure 3
shows the performance comparison when using 1 and 16 cores
with models robot50 and spool5 as inputs. As we can
observe, the multi-core execution outperforms the sequential
one. In fact, the multi-core version manages to verify the
formulas where the sequential version reaches a time limit.
The same interpretation holds for all our experiments’ results.

We then compared the two versions of pmc-sog: the one
using POSIX threads (pthreads version) and the one using
the work-stealing framework LACE (lace version). Figure 4
shows the comparison of both versions using 16 cores with
models robot50 and spool5 as inputs. As we can observe,
the version with POSIX threads outperforms the version using
parallel LDD operations.

Finally, we performed a comparison between our tool
(pthreads version) and the LTSmin model checker [41].
LTSmin4 is an LTL/CTL/µ− calculus model checker that
started out as a generic tool set for manipulating labelled
transition systems. It accepts inputs in different modeling
formalisms, e.g. PNML, UPPAAL, DiVinE. For sake of sim-
plicity, we choose the traditional place/transition Petri nets
in PNML format, thus we run pnml2lts-mc in our ex-
periments since it is the LTSmin frontend that performs LTL
model checking for PNML models. We also adopted the DFS
(Depth First Search) algorithm for all approaches. Moreover,
we considered only the atomic propositions based on the states
because LTSmin is a state based model checker.

We keep all the parameters across the different model
checkers the same. Tuning these parameters on a per-model
basis could give faster results than presented here. It would,
however, say little about the scalability of the core algorithms.
Therefore, we decided to leave all parameters the same for
all the models. We avoid resizing of the state storage in all
cases by increasing the initial hash table size enough for all
benchmarked input models.

2https://mcc.lip6.fr/models.php
3https://spot.lrde.epita.fr/randltl.html
4https://ltsmin.utwente.nl/

http://magi.univ-paris13.fr/wiki/
https://up13.fr/?azDbYg5n
https://mcc.lip6.fr/models.php
https://spot.lrde.epita.fr/randltl.html
https://ltsmin.utwente.nl/

10 −4 10 −2 1 10 2
10 −4

10 −3

10 −2

10 −1

1

10

10 2

property
T
F

robot50

pmc-sog (Lace, # cores: 16)

pm
c-

so
g

(P
th

re
ad

s,
 #

 c
or

es
: 1

6)

(a) Model robot50 using 16 cores

10 −4 10 −2 1 10 2
10 −4

10 −3

10 −2

10 −1

1

10

10 2

property
T
F

spool5

pmc-sog (Lace, # cores: 16)

pm
c-

so
g

(P
th

re
ad

s,
 #

 c
or

es
: 1

6)

(b) Model spool5 using 16 cores

Fig. 4. Comparison of lace and pthreads versions of pmc-sog

Figure 5 shows a selection of our experimental results.
As we can observe, our approach performs better than
pnml2lts-mc for several experiments, especially unsatis-
fied properties. However, no model checker has an absolute
advantage over the other for all the experiments: our model
checker is the fastest for some models while LTSmin performs
better for other cases. It is important to emphasize that our tool
is still a prototype and better results could be found in a more
mature version.

10 −4 10 −2 1 10 2
10 −4

10 −3

10 −2

10 −1

1

10

10 2

property
T
F

robot50

pmc-sog (Pthreads, # cores: 16)

pn
m

l2
lts

-m
c

(#
 c

or
es

: 1
6)

(a) Model robot50

10 −4 10 −2 1 10 2
10 −4

10 −3

10 −2

10 −1

1

10

10 2

property
T
F

spool5

pmc-sog (Pthreads, # cores: 16)

pn
m

l2
lts

-m
c

(#
 c

or
es

: 1
6)

(b) Model spool5

Fig. 5. Comparison of pmc-sog and pnml2lts-mc using 16 cores

VII. CONCLUSION

In this paper, we proposed an on-the-fly multi-core model-
checker approach for LTL\X logic based on event-based and
state-based symbolic observation graphs. We have proposed
two versions using different techniques of parallelization. One
is based on the POSIX threads, and the other is based on
the work-stealing framework LACE. The emptiness check
is performed on-the-fly during the construction of the SOG
allowing to reduce the runtime of the model checking process.
Experiments show that our approach is competitive in com-

parison with the LTSmin although more experiments have to
be achieved in order to compare the efficiency of our approach
on other significant models and against other model checker
tools. Also, we plan to check the behavior of our approach
with a BFS-based emptiness check algorithm. Finally, it would
be interesting to have a fully parallel approach where the
emptiness check process is also parallel (e.g., [42]).

REFERENCES

[1] E. M. Clarke, O. Grumberg, and D. Peled, Model checking. MIT press,
1999.

[2] A. Valmari, “The state explosion problem,” in Advanced Course on Petri
Nets. Springer, 1996, pp. 429–528.

[3] C. Courcoubetis, M. Y. Vardi, P. Wolper, and M. Yannakakis, “Memory-
efficient algorithm for the verification of temporal properties,” in Proc.
of CAV’90, ser. LNCS, vol. 531. Springer, 1990, pp. 233–242.

[4] T. A. Henzinger, O. Kupferman, and M. Y. Vardi, “A space-efficient
on-the-fly algorithm for real-time model checking,” in CONCUR, ser.
LNCS, vol. 1119. SV, 1996, pp. 514–529.

[5] J.-M. Couvreur, “On-the-fly verification of linear temporal logic,” in FM,
ser. LNCS, vol. 1709. SV, 1999, pp. 253–271.

[6] P. Godefroid and P. Wolper, “A partial approach to model checking,” in
Proceedings of Annual IEEE Symposium on Logic in Computer Science,
LICS’91. IEEE, 1991, pp. 406–415.

[7] G. Bhat and D. Peled, “Adding partial orders to linear temporal logic,”
in CONCUR, ser. LNCS, vol. 1243. SV, 1997, pp. 119–134.

[8] A. Valmari, “A stubborn attack on state explosion,” Formal Methods in
System Design, vol. 1, no. 4, pp. 297–322, 1992.

[9] K. Etessami, “Stutter-invariant languages, ω-automata, and temporal
logic,” in Proc. of CAV’99, ser. LNCS, vol. 1633. Springer, 1999,
pp. 236–248.

[10] R. Kaivola and A. Valmari, “The weakest compositional semantic
equivalence preserving nexttime-less linear temporal logic,” in Proc. of
CONCUR’92, ser. LNCS, vol. 630. Springer, 1992, pp. 207–221.

[11] H. Hansen, W. Penczek, and A. Valmari, “Stuttering-insensitive automata
for on-the-fly detection of livelock properties,” in Proc. of FMICS’02,
ser. Electronic Notes in Theoretical Computer Science, vol. 66(2).
Elsevier, 2002.

[12] R. E. Bryant, “Symbolic boolean manipulation with ordered binary-
decision diagrams,” ACM Computing Surveys (CSUR), vol. 24, no. 3,
pp. 293–318, 1992.

[13] T. van Dijk and J. van de Pol, “Sylvan: Multi-core decision diagrams,” in
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 2015, pp. 677–691.

[14] K. Fisler, R. Fraer, G. Kamhi, M. Y. Vardi, and Z. Yang, “Is there a best
symbolic cycle-detection algorithm?” in Proc. of TACAS’01, ser. LNCS,
vol. 2031. Springer, 2001, pp. 420–434.

[15] F. Somenzi, K. Ravi, and R. Bloem, “Analysis of symbolic SCC hull
algorithms,” in Proc. of FMCAD’02, ser. LNCS, vol. 2517. Springer,
2002, pp. 88–105.

[16] Y. Kesten, A. Pnueli, and L. on Raviv, “Algorithmic verification of linear
temporal logic specifications,” in Proc. of ICALP’98, ser. LNCS, vol.
1443. Springer, 1998, pp. 1–16.

[17] A. Biere, E. M. Clarke, and Y. Zhu, “Multiple state and single state
tableaux for combining local and global model checking,” in Proc. of
CSD’99, ser. LNCS, vol. 1710. Springer, 1999, pp. 163–179.

[18] S. Haddad, J.-M. Ilié, and K. Klai, “Design and evaluation of a symbolic
and abstraction-based model checker,” in International Symposium on
Automated Technology for Verification and Analysis. Springer, 2004,
pp. 196–210.

[19] R. Sebastiani, S. Tonetta, and M. Y. Vardi, “Symbolic systems, explicit
properties: on hybrid approches for LTL symbolic model checking,” in
Proc. of CAV’05, ser. LNCS, vol. 3576. Springer, 2005, pp. 350–363.

[20] K. Klai and D. Poitrenaud, “Mc-sog: An ltl model checker based on
symbolic observation graphs,” in International Conference on Applica-
tions and Theory of Petri Nets. Springer, 2008, pp. 288–306.

[21] J. Barnat, V. Bloemen, A. Duret-Lutz, A. Laarman, L. Petrucci, J. van de
Pol, and E. Renault, “Parallel model checking algorithms for linear-
time temporal logic,” in Handbook of Parallel Constraint Reasoning.
Springer, 2018, pp. 457–507.

[22] G. J. Holzmann, “Parallelizing the spin model checker,” in International
SPIN Workshop on Model Checking of Software. Springer, 2012, pp.
155–171.

[23] I. Filippidis and G. J. Holzmann, “An improvement of the piggyback
algorithm for parallel model checking,” in Proceedings of the 2014
International SPIN Symposium on Model Checking of Software. ACM,
2014, pp. 48–57.

[24] J. Barnat, L. Brim, and P. Rockai, “Divine 2.0: High-performance
model checking,” in 2009 International Workshop on High Performance
Computational Systems Biology (HiBi 2009), 2009, pp. 31–32.

[25] J. Barnat, L. Brim, V. Havel, J. Havlı́ček, J. Kriho, M. Lenčo, P. Ročkai,
V. Štill, and J. Weiser, “Divine 3.0–an explicit-state model checker
for multithreaded c & c++ programs,” in International Conference on
Computer Aided Verification. Springer, 2013, pp. 863–868.

[26] H. Ouni, K. Klai, C. A. Abid, and B. Zouari, “A parallel construction of
the symbolic observation graph: the basis for efficient model checking
of concurrent systems,” in SCSS 2017. The 8th International Symposium
on Symbolic Computation in Software Science 2017, ser. EPiC Series in
Computing, vol. 45, 2017, pp. 107–119.

[27] ——, “Parallel symbolic observation graph,” in Ubiquitous Computing
and Communications (ISPA/IUCC), 2017 IEEE International Symposium
on Parallel and Distributed Processing with Applications and 2017 IEEE
International Conference on. IEEE, 2017, pp. 770–777.

[28] ——, “Reducing time and/or memory consumption of the sog construc-
tion in a parallel context,” in Ubiquitous Computing and Communica-
tions (ISPA/IUCC), 2018 IEEE International Symposium on Parallel and
Distributed Processing with Applications. IEEE, 2018.

[29] ——, “Towards parallel verification of concurrent systems using the
symbolic observation graph,” in 2019 19th International Conference on
Application of Concurrency to System Design (ACSD). IEEE, 2019,
pp. 23–32.

[30] Z. Tao, G. von Bochmann, and R. Dssouli, “Verification and diagnosis
of testing equivalence and reduction relation,” in Proceedings of Inter-
national Conference on Network Protocols. IEEE, 1995, pp. 14–21.

[31] R. Kaivola and A. Valmari, “The weakest compositional semantic equiv-
alence preserving nexttime-less linear temporal logic,” in International
Conference on Concurrency Theory. Springer, 1992, pp. 207–221.

[32] J. Geldenhuys and A. Valmari, “Techniques for smaller intermediary
bdds,” in International Conference on Concurrency Theory. Springer,
2001, pp. 233–247.

[33] K. Klai and L. Petrucci, “Modular construction of the symbolic obser-
vation graph,” in ACSD. IEEE, 2008, pp. 88–97.

[34] A. Duret-Lutz, K. Klai, D. Poitrenaud, and Y. Thierry-Mieg, “Self-loop
aggregation product - a new hybrid approach to on-the-fly ltl model
checking,” in Automated Technology for Verification and Analysis, 9th
International Symposium, ATVA 2011., ser. Lecture Notes in Computer
Science, vol. 6996, 2011, pp. 336–350.

[35] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking. The
MIT Press, 2000.

[36] K. Klai, S. Tata, and J. Desel, “Symbolic abstraction and deadlock-
freeness verification of inter-enterprise processes,” Data & Knowledge
Engineering, vol. 70, no. 5, pp. 467–482, 2011.

[37] T. van Dijk and J. van de Pol, “Sylvan: multi-core framework for deci-
sion diagrams,” International Journal on Software Tools for Technology
Transfer, pp. 1–22, 2016.

[38] T. van Dijk and J. C. van de Pol, “Lace: non-blocking split deque
for work-stealing,” in European Conference on Parallel Processing.
Springer, 2014, pp. 206–217.

[39] R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded compu-
tations by work stealing,” Journal of the ACM (JACM), vol. 46, no. 5,
pp. 720–748, 1999.

[40] A. Duret-Lutz, A. Lewkowicz, A. Fauchille, T. Michaud, E. Renault, and
L. Xu, “Spot 2.0—a framework for ltl and \ω-automata manipulation,”
in International Symposium on Automated Technology for Verification
and Analysis. Springer, 2016, pp. 122–129.

[41] G. Kant, A. Laarman, J. Meijer, J. van de Pol, S. Blom, and T. van Dijk,
“Ltsmin: high-performance language-independent model checking,” in
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 2015, pp. 692–707.

[42] S. Evangelista, L. M. Kristensen, and L. Petrucci, “Multi-threaded ex-
plicit state space exploration with state reconstruction,” in International
Symposium on Automated Technology for Verification and Analysis.
Springer, 2013, pp. 208–223.

APPENDIX

A. Proof of Theorem 1

To prove Theorem 1, we will prove that the SOG preserves
the maximal paths of the corresponding LKS . We recall that
maximal paths (of finite systems) are any path π satisfying
one of the following requirements:

1) π = s0
t1−→s1

t2−→· · · tn−→sn such that sn is a dead
marking

2) π = s0
t1−→· · · tl−→sl tl+1−→· · · tn−→sn such that

sl
tl+1−→· · · tn−→sn is a circuit.

Before giving the proof of the preservation of maximal paths,
let us present two lemmas about the correspondence between
paths of K and those of G.

Lemma 1: Let π = s1
t2−→s2

t3−→· · · tn−→sn be a path of
N and a1 be an aggregate of G such that s1 ∈ a1. Then,
there exists a path a1

t′2−→a2
t′3−→· · · t′l−→al of G and a strictly

increasing sequence of integers i1 = 1 < i2 < · · · < il+1 =
n + 1 satisfying {sik , sik+1, · · · , sik+1−1} ⊆ ak for all 1 ≤
k ≤ l.

Proof 1: We proceed by induction on the length of π.
If n = 1, knowing that s1 ∈ a1 concludes the proof.

Let n > 1 and assume that a1
t′2−→a2

t′3−→· · ·
t′l−1−→al−1 and

i1, · · · , il correspond to the terms of the lemma for the
path s1

t2−→s2
t3−→· · · tn−1−→sn−1. Then, sn−1 ∈ al−1. Let us

distinguish two cases.
(i) If tn ∈ UnObs ∧ L(sn−1) = L(sn) then, by def-

inition of aggregates, sn ∈ al−1. Thus both the path

a1
t′2−→a2

t′3−→· · ·
t′l−1−→al−1 and the sequence i1, · · · , il for the

path of length n− 1 stand for the path of length n as well.
(ii) If tn ∈ Obs∨L(sn−1) 6= L(sn) then, since sn−1

tn−→sn,
there exists (by definition of the SOG) an aggregate al
such that al−1

tn−→al and sn ∈ al. As a consequence,
the path a1

t′2−→a2
t′3−→· · · tl−1−→al−1

t′l=tn−→ al and the sequence
i1, · · · , il, il + 1 satisfy the proposition.

The next lemma shows that the inverse also holds.
Lemma 2: Let π = a1

t2−→a2
t3−→· · · tn−→an

be a path of G. Then, there exists a path
s1

σ1−→s′1
t2−→s2

σ2−→s′2
t3−→· · · tn−→sn σn−→s′n of N s.t.,

∀i = 1 . . . n, σi ∈ UnObs∗, si, s′i belong to ai.S and
all the traversed states from si and s′i by firing σi have
the same label (the same truth value of state-based atomic
propositions).

Proof 2:
Let π = a1

t2−→a2
t3−→· · · tn−→an be a path of G. First, let

us define the four following functions related to π and any
aggregate ai of π, for i = 1 . . . n.

• Inπ(ai) =

{
{s′ ∈ ai.S | ∃s ∈ ai−1 : s ti−→s′} if i 6= 1;
Outπ(ai) otherwise.

• Outπ(ai) =

{
{s ∈ ai.S | s ti−→} if i 6= n;
Inπ(ai) otherwise.

• Candidateπ(ai) =

 {s ∈ Inπ(ai) | ∃s′ ∈ Candidate′(ai),
∃σ ∈ UnObs∗ : s σ−→s′} if i 6= 1;
Candidate′π(ai) otherwise.

• Candidate′π(ai) =

{s ∈ Outπ(ai) |
∃s′ ∈ Candidate(ai+1), s

ti+1−→s′}
if i 6= n;
Candidateπ(ai) otherwise.

Informally, Inπ(ai) (for i = 2 . . . n) represents the set of
input states of aggregate ai that are immediately reached by
firing ti from states in ai−1. All the states of ai are then
obtained by adding the successors of this set of states by
unobservable sequences, while having the same truth values
of the state-based atomic propositions. For the first aggregate,
Inπ(a1) is the set of output states Outπ(a1) i.e., the states
in a1.S enabling t2. The same holds for Outπ(ai), for any
i = 1 . . . n− 1 i.e., it contains states enabling action ti+1. For
an, Outπ(an) = Inπ(an).

Sets Candidateπ(ai) and Candidate′π(ai), for i = 1 . . . n
represent sets of states from which the states si and s′i
could be chosen, respectively, in order to build the path
s1

σ1−→s′1
t2−→s2

σ2−→s′2
t3−→· · · tn−→sn σn−→s′n in a reverse order

(starting from the end). In fact, s′n = sn can be first chosen
from Candidateπ(an) = Inπ(an). Then s′n−1 is obtained
from Candidate′π(an−1) i.e. states in an−1.S enabling tn
and thus leading to Candidateπ(an). sn−1 can be chosen
from Candidateπ(an−1) i.e. to reach Candidate′π(an−1) by
unobservable actions only (and without traversing a differently
labeled state), ... and so on.

We are now in position to study the correspondence between
maximal paths to prove Theorem 1 through two new lemmas.

Lemma 3: Let π = s0
t1−→· · · tn−→sn be a maximal path of

K. Then, there exists a maximal path π′ = a0
t′1−→· · · t′l−→al of

G such that there exists a sequence of integers i0 = 0 < i1 <
· · · < il+1 = n+ 1 satisfying {sik , sik+1, · · · , sik+1−1} ⊆ ak
for all 0 ≤ k ≤ l.

Proof 3: If sn is a dead marking then knowing that
s0 ∈ a0 and using Lemma 1, we can construct a path
π′ = a0

t′1−→a1 · · ·
t′l−→al and the associated integer sequence

corresponding to π. Because the last visited state of π belongs
to al, the dead attribute of al is necessarily equal to true and
π′ is then a maximal path of the SOG.

Now, if sn is not a dead marking then, one can decompose
π as follows: π = π1π2 s.t. π1 = s0

t1−→s1 → · · · tk−1−→sk
and π2 = sk

tk+1−→· · · tn−→sk s.t., π2 is a circuit. Once again,
applying Lemma 1 from s0, one can construct a path π′1 =

a0
t′1−→a1

t′2−→· · · am corresponding to π1. The path in G as-
sociated with π′2 can be also constructed applying the same
lemma. However, this path must be constructed from am to
which belongs sk. π1 and π2 can be chosen as follows:

1) If π2 involves unobserved actions and all traversed states
(by π2) have the same truth value of state-based atomic
propositions, then π2 is a cycle inside aggregate am and
the live attribute (cycle) of am is necessarily set to true.

2) otherwise (i.e. either π2 involves observed actions, or
unobserved actions that change the truth value of state-
based atomic propositions), then we chose the subpaths
such that tk+1 as an observed action, or an unobserved
one s.t. (L)(sk) 6= (L)(sk+1). By definition of the SOG,

since sk ∈ am, there exists an aggregate ao1
successor

of am by action tk+1. By using Lemma1, and the
definition of the SOG, let π′1 = a0

t′1−→a1
t′2−→· · · am and

π′2 = ao1

tp1−→ . . . tl−→aq1 with sk ∈ aq1 .S. If aq1
tk+1−→ao1

,
then π′2 is a circuit of G and π′1π

′
2 is a maximal path of G

satisfying the proposition. Otherwise, by construction of
the SOG, there exists an other successor of aq1 contain-
ing sk. Applying again Lemma 1 from this aggregate, we
can construct a new path in G corresponding to π2. Let

ao2

t′p1−→ . . . aq2 be this path. If we can deduce a circuit of
G from this path (if aq2

tk+1−→ao2), this concludes the proof.
Otherwise, we can construct a new path corresponding to
π2 starting from a successor of aq2 . Because the number
of aggregates in G is finite, in particular the number of
aggregates to which belongs sk is bounded by 2N (where
N is the number of state in the original LKS), a circuit
will be necessarily obtained.

Notice that for all the previous cases above, a sequence of
integers can be easily constructed from the ones produced by
Lemma 1.

Lemma 4: Let π′ = a0
t1−→· · · tn−→an be a max-

imal path of G. Then, there exists a maximal path
s0

σ1−→s′1
t2−→s2

σ2−→s′2
t3−→· · · tn−→sn σn−→s′n of K s.t., ∀i =

1 . . . n, σi ∈ UnObs∗ and si, s′i belong to ai.S.
Proof 4: Let π′ be a maximal path reaching an aggregate

an such that an.d = true ∨ an.l (either the dead or the
livelock attribute (cycle) is true). First, let us notice that the
proof is trivial if the path π′ is reduced to a single aggregate
because dead state (resp. a state containing a circuit of a0) is
necessarily reachable from s0.

Otherwise, using the same principle of Lemma 2 proof,
one can demonstrate the existence of the maximal path in
K. We have just to define Inπ(a0) as the singleton {s0} and
Outπ(an) as the dead state (if an.d = true) or the set of
states forming a cycle in an (if an.l = true).

Now, if neither an.d nor an.l is true, then by construc-
tion of the SOG, π′ = a0

t1−→· · · tl−→al tl+1−→· · · tn−→an with
al
tl+1−→· · · tn−→an a circuit of G i.e., an = al. Here also, we can

use the same scheme as for the proof of Lemma 2 by defining
Inπ(a0) as the singleton {s0} and Outπ(an) as the set of
states in an enabling tl+1. Thus, starting from these states,
and using the functions Candidateπ() and Candidate′π()
as defined in Lemma 2, one can build by backtracking the
maximal path in K satisfying the terms of Lemma 4.

	Introduction
	Preliminaries
	Labeled Kripke Structures and Hybrid LTL

	Event and State-Based SOG
	Revisiting SOG for Hybrid LTL
	Checking stuttering invariant properties on SOGs

	Parallel LTL model checker based on the SOG
	Parallelization at the level of aggregates
	Parallelization at the level of decision diagrams operations

	Implementation and Experimentation
	Implementation

	Experiments
	Conclusion
	References
	Proof of Theorem 1

