BROADCASTING IN WEIGHTED-VERTEX GRAPHS

SHAHIN KAMALI

A THESIS
IN
THE DEPARTMENT _
OF

COMPUTER SCIENCE AND SOFTWARE ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY

MONTREAL, QUEBEC, CANADA

AUGUST 2008
© SHAHIN KAMALI, 2008

i+l

Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4
Canada

NOTICE:

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,

publish, archive, preserve, conserve,

communicate to the public by

telecommunication or on the Internet,

loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Bibliothéque et
Archives Canada

Direction du
Patrimoine de I'édition

395, rue Wellington
Ottawa ON K1A ON4
Canada

Your file Votre référence
ISBN: 978-0-494-45337-7
Our file Notre référence
ISBN: 978-0-494-45337-7

AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, €lectronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette thése.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canad;

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Broadcasting in Weighted-Vertex Graphs

Shahin Kamali

In this thesis, we present a new model for information dissemination in communication
networks. The model is defined on networks in which nodes are assigned some weights
representing the internal delay they should pass before sending data to their neighbors.
The new model, called weighted-vertex model, comes to have real world applications in
parallel computation and satellite terrestrial networks. Broadcasting in weighted-vertex

model is a generalized version of classical broadcasting problem, which is NP_Complete.
The problem rémains NP_Complete in some classes of weighed-vertex graphs. We show
existence of approximation algorithms for the broadcasting problem in weighted vertex
model, as well as better approximations for specific subclasses of weighted graphs. In
addition we study broadcasting in complete weighted graphs and present an algorithm for
finding the optimum solution in this case. Broadcasting in complete graphs with uniform
weights is studied separately.” Finally we introduce some heuristics for the problem and

. § . o . '
compare their performance using computer simulations.

iii

Acknowledgments

I would like to express my sincere gratitude to my supervisor Professor Hovhanness Haru-
tyunyan who helped, guided, and motivated me since the first day that I arrived to Concor-
dia.

I owe everything to my mom, my dad, and my brother Shahab. Without their endless

love and support I wouldn’t have been here.

iv

Contents

List of Figures
List of Tables

1 Introduction
1.1 A Review on the Models of Information Dissemination
1.2 Results for Broadcasting in ClassicalModel,

1.3 ThesisContribution & v v v i i e e e e e e e e e

2 Weighted-Vertex Model -
2.1 Model Definition e e e e e e e
2.2 Subclasses of WeightedGraphs

2.3 Weighted BroadcastinginTrees

3 Approximating Optimum Broadcast Scheme
3.1 Reduction from Arbitrary Weighted Graphs to Binary Weighted Graphs . .
3.2 Reduction from Bmary Weighted Graphs to Directed Unweighted Graphs .
3.3 Approximations for Weighted Vertex-Broadcasting

3.4 BroadcastinginHeavyGraphs,

4 Weighted Broadcasting in Complete Graphs

4.1 Finding the Optimum Scheme in Polynomial Time

v

vii

ix

11
14

16
16
22
23

28
29
32
34
37

40

4.2 Broadcasting in Uniform Complete Graphs

S Heuristic Algorithms for Weighted Vertex Broadcasting

5.1 Modified Dijkstra’s Algorithm
5.2 The Greedy Algorithm
5.3 The Evolutionary Algorithm

5.4 Simulations and Analysis
6 Conclusion and Future Work

Bibliography

........................

.........................

............................

vi

.................

65

66

List of Figures

1 Complete graph (a) an hypercube graph (b) with 8 vertices. 2
2 A Eroadcast tree rooted at originator A. The numbers in the right side of

nodes indicate their weights; while the numbers in left indicate the times in

which nodes receive the message (top) and complete their delay (bottom). . 19
3 Weighted graphsubclasses. 24
4 The broadcast scheme of the tree of Figure 2. The numbers on the right

side of nodes indicate the weights, the numbers on the top left indicate

the broadcast time of the subtrees, and the small numbers on the incoming

links indicate the order numbersof nodes. 25
5 Two sainples ofinsectgraphs., . 30
6 Converting a weighted graph to a binary graph. Black vertices are origina-

tors and gray vertices are multicast destinations 32

8 Converting a weighted graph to a binary graph. Black vertices are origina-
tors and gray vertices are multicast jde:stinations e e 35
9 Reduction of broadcast problem in heavy graphs to multicast problem in
unweighted graphs. Destination nodes are colored in gray 39
10 A complete weighted graphon 10 vertices. v v v v v v v v u . 41

11 Two broadcast schemes for the complete graph of Figure 10. 42

vii

12

13

14

15

16

A simple complete graph showing that choosing the neighbor with the low-
est weight does not always create the optimum scheme.
The optimum broadcast scheme for the complete graph of Figure 10 (node
Aisthe originator). I I S T
Applying modified Dijkstra’s algorithm for the weighted-vertex broadcast-
ing. The dark node fs theoriginator.
Applying greedy algorithm on the graph of Figure 14(a). The dark node is
theoriginator. ottt e
A graph in which modified Dijkstra’s algorithm performs better (br = 4)
than the greedy algorithm (br =5)..

viii

56

58

List of Tables

1 The broadcast time of the heuristics, when the éverage weight of vertices

(w) changes; The number of vertices is 200 and the number of edges is 4000. 62
2 The broadcast time of the heuristics, when the average degree of vertices

(deg) changes; The number of vertices is assumed to be 200 and the average

weight is 10. L P 63

ix

Chapter 1

Introduction

Nowadays, telecommunications networks have become essential in many aspects of mod-
ern society. Specifically computer networks have dramatically changed our life style. We
are deeply influenced by the Internet and different types of local area networks through
which data can be sent and received in fraction of a minute.

Computer networké are also required in applications such as scientific simulations and
3D animation which demand an enormous amount of computation. Computers with few
processors are not powerful enough to process the huge amount of data at a practical speed.
This is the reason that parallel machines [70], also known as MPC (Massively Parallel
Computer) [72], are built to connect thousands of processors each having its own local
memory.

The main purpose of any network, no matter a MPC network or the Internet, is to share
and spread information. Communication efficiency becomes particularly important when a
computer network supports a;’distributed file or database Sy'stem, where a large amount of
information needs to be disseminated ambng the computers in the network. For example
in parallel computers, the problem is usually divided into small tasks distributed to a set

of nodes which compute concurrently. Since the nodes in a parallel machin do not share

physical memory, they must communicate by passing messages through the network. Con-
sequently, efficient routing of messages is critical to the performance of parallel computers
[72].

In general, it is the performance of the information dissemination that often determines
the efficiency of a whole network or a parallel system.

One approach to improve the performance of information dissemination is to create
network topologies in which information can be transmitted quickly. Complete graphs
and Hypercube graphs are two popular communication networks for fast dissemination of
information. A complete graph is a graph in which there is a link between any pair of nodes
(Figure 1(a)). A hypercube of dimension d is composed of 2¢ vertices representing binary
strings of length d. Two vertices are connected if their binary representation differs exactly
in one bit (Figure 1(b)). Note that the number of links in complete and hypercube graphs
is rather high, making them costly for network design. There is an extensive research
for creating graphs with the lowest possible number of edges in which the information
dissemination can be performed in minimal time (see for example [25, 14, 76, 31, 66, 50,

45, 47, 12, 46}).

@ ‘ ®)

Figure 1: Complete graph (2) an hypercube graph (b) with 8 vertices.

A second approach to enhance the performance of information dissemination is to min-
imize the delay of information spreading. Providing efficient algorithms for effective data

dissemination can be traced back to the following problem:

Problem 1. There are n ladies, each knowing an item of scandal that is not known to any
one else. They communicate by telephone, and whenever two of them make a call, they pass
on to each other, as much scandal as they know at the time. How many calls are needed

before all ladies know all the scandal? [56]

This problem is the origin of the Gossip Problem, which is also the source of dozens of
papers on the information dissemination problems in networks. Gossiping along with its

variants constitutes the communication primitives which can be classified as follows:

e Unicasting or one-to-one communication.

Broadcasting or one-to-all communication.

Multicasting or one-to-many communication.

Gossiping or all-to-all communication.

Broadcasting is a process in which a single message is sent from one member of a
network, the originator, to all other members; while in gossiping every member in a net-
work has a message to send to all other members. Multicasting is a generalized version of
broadcasting in which originator informs a subset of members of the network.

A call is an action in which messages exchange among a vertex and at least one of its
neighbors. Information is disseminated in thevnétwork via a series of calls over the commu-
nication links of the network. Note that the communication is assumed to be synchronous,
i.e. it occurs in discrete pulses, called rounds. In this way a round is the set of parallel

calls in the same time unit.

Normally, a network can be modeled as a graph G = (V| E), where V is the set of
vertices (nodes) and E is the.set of edges. Two vertices u,v € V are neighbors if there
is an edge e € E, such that e = (u,v). The degree of a vertex v, denoted by deg(v), is
the number of neighbors of v. The degree of a graph G is the maximum degree among
all vertices of the graph. The distance between a vertex v and a vertex w, denoted by
dist(v,w), is the length of the shortest path between v and w. For message dissemination
purposes, it is natural to assume that the network is represented by a connected graph.

Given a graph, an algorithm of a communication problem generates a communication
scheme, which is a sequence of communication rounds. A scheme can be presented as
< Ey, Es, .-+, E, > in which E; is a set of calls in the form of v, — vg vat time unit <.

The number of communication rounds is usually considered as the criteria for measur-
ing the efficiency of a scheme. In the case of broadcasting, the number of rounds is called
the broadcast time of the scheme. Given a graph G and originator © € V(G), an optimum
broadcast scheme for originétor u is a scheme with minimum broadcast time. Also the -
broadcast time of u is defined to be the broadcast time of én optimum scheme of u.

In the literature, sometimes terms like bréadcast schedule or broadcast algorithm are
used instead of broadcast scheme. We use these terms in some parts of this thesis as well.
Also, the rounds are usually considered as time intervals. In this way when we say ’at time

t* we mean in round number ¢.

1.1 A Review on the Models of Information Dissemination

Once the communication problem is defined, we need to describe the communication
model which precisely defines what may happen in a round.

Regarding the communication link level, two types of models can be considered:

e One-way mode or half-duplex

e Two-way mode or full-duplex

Given two neighbor vertices v and w in a graph, under one-way mode, only one message
can travel between v and w, either from v to w or from w to v; while under two-way mode
two messages can use the link at the same time [60]. In this thesis we are mainly concerned
with the communication models defined under two-way mode.

Dissemination models can also be classified based on the number of links employed by

an informed node in one round:

e I-port or whispering pattern in which a node can only use one of its links in one

round.

e n-port or shouting pattern in which a node can use all of its links in parallel and in

one unit of time.

o k-port also referred as k-broadcasting, which is an intermediate pattern in which a

node v can use k < deg(v) of its links in parallel and in one time unit.

Among these patterns, 1-port mod'el seems to have more applications. The k-port pat-
tern is also intensively studied _in [69,' 67, 48, 49, 51, 54, 77, 39]. Radio Model is a sample
of n-port model in which a n-ode can either send a message to all of its neighbors or not
send it at all, but it can not transmit to a stricti subset of neighbors. Furthermore, a node
can receive the message from precisely one neighbor in a certain round, otherwise the mes-
sage gets corrupted [29]. In most of the models we present in the rest of this section, the
communication mode is assumed to be 1-port.

Another issue in characterizing communication models is the time required for a mes-
sage to be prepared, to travel along an edge, and to be received. There are two widely used

models addressing this issue:

o The constant model, in which the time needed to transmit and receive a message is a

constant value T,

e The linear model, in which the time needed to communicate is modeled as T =
B+ LT, where (3 is the cost of preparing the message, L is the length of the message,

and 7 is the propagation time of a data unit length.

Most papers on broadcasting adopt the constant model, since the linear model can be
reduced to the constant model by splitting large messages to the shortest possible messages.
Nevertheless, there are some specific results regarding the linear model for broadcasting
(see [10]).

Several combinations and variations of these patterns have been considered. These
include simultaneous sending to all neighbors but sequential receiving, or the concurrent
sending to one neighbor and receiving from one (possibly different) neighbor. In the rest
of this section, some of the developed models are reviewed. In providing some parts of this

review, we have referred to [71].

o Telephone Model (Classical Model):

Telephone model is usually considered as the classical Model of information dissem-
ination. When we do not precisely mention the communication model, the model is

assumed to be the telephone model.

The scandal problem introduced above adheres to the telephone model. Since in
that problem ladies communicate via telephone, the term ’telephone’ is adopted to
the model; However this model can be applied for any network. In this thesis, we
preferably use the term ’classical’ to distinguish this model from the other models.

Classical model is based on the following assumptions:

— Each call involves only one informed node and one of its uninformed neighbors.
-~ Each call requires one unit of time.

— A node can participate in only one call per unit of time.

6

- In one unit of time, many calls can be performed in parallel.

From these assumptions, it is clear that the classical model is an instance of two-way
model in which the communication pattern is whispering. Also it is a constant model

in which the message transmit time is 7" = 1.

The classical model of broadcasting has been intensively discussed. We review some
of the results in the next section. An important result is about the hardness of prob-
lem, as it is proved that the broadcasting problem is NP_Complete under this model
[42]. The classical model has been the inspiration root of most of the models devel-

oped afterward.

Telegraph model

Telegraph Model is an abstract version of one-way mode model. In this way, in each
round, information can be transferred from node v to one of its neighbor, say w,

meanwhile w can not send its information to v at the same time.

Except being a one-way mode communication model, the other assumptions behind
telegraph model is the ‘s'ame as the classical model. However this small difference
makes telegraph model much more tricky. To have an idea of difficulty, consider
complete and hypercube graphs. While under the classical model the complexity of
gossiping for these graphs is easy -to‘check, under telegraph model, the gossiping
time is not known for complete graph K, for all values of n and the complexity of

gossiping in hypercubes is totally unknown [40].

Line model

Line model assumes long distance calls between non neighboring processors. In
this sense, in every round of communication, the information is transmitted from the
informed nodes to uninformed nodes through paths that may have length greater than

one. If these paths be composed of disjoint vertices, the model will be vertex disjoint

7

path mode broadcasting. There are two flavors of this model considering either that
an end-node broadcasts its data to all other nodes along the path, or one of the end-
nodes sends data to the other end-node and the nodes in between do not read the

message sent [32, 34, 68, 61, 16, 35, 36, 38].

In line model, if the communication paths be edge disjoint (and not necessarily
vertex-disjoint), the result would be edge disjoint path mode broadcasting which is
also investigated in several papers [32, 34, 62, 37, 35]. This model is quite simi-
lar to the wormhole routing model employed for the analysis of permutation routing

- [22,65,2].

A central assumption to all models described above is that both sender and receiver are
busy during the whole sending process; that is only after the receiver received the message,
both ends may send the message to other nodes. More realistic models are Postal model [7]
and LogP model [21]. The idea there is that the sender may send another message before the
current message is completely received by the receiver, and the receiver is free during the
early stages of sending process. In this way the underlying communication network can be
modeled by a weighted graph. However iﬁ these models the exact structure of the network
is totally ignored and it is assumed that the network creates a complete communication

graph between nodes (processgrs).

e Postal model
Postal model incorporates a latency parameter A > 1 that measures the inverse of
the ratio between the time that it takes for a node to send a message and the time
that passes until the recipient of the message receives it. In this way we can consider
postal model as a model of broadcasting in complete graphs such that a uniform delay
A is associated to each edge (For A = 1 the postal model reduces to the classical

model in fully-connectéd networks).

In [7], an algorithm is presented for broadcasting one message in systems with n

processors and communication latency A, whose running time is ©(12;?,%5:11))). This

algorithm is proved to create the optimum solution for the problem in Postal model.

Generalized postal model

In the basic postal model, it is assumed that the communication delay ()) is constant.
In [8], the postal model is enhanced by removing this assumption and different links
may have different weights. Consequently, some edges can be disabled by assigning
large weights to them. In this way we can define some kind of topology for the
graphs; which means that the model applies for the graphs that are not necessarily |
fully connected. Hence, the classical model reduces to generalized postal model. As
a result, broadcasting under this model is NP_Complete. In [8], heuristic algorithms

are presented for broadcasting under this model.

LogP model

LogP Model is another generalization of postal model. This model is mainly applied
for the parallel computers having a point-to-point message transmission link between
any two processors. In this way the network topology is considered to be a complete

graph. In LogP a parallel machine is described by four parameters:

— L, the latency, or maximum delay, associated with delivering a message.

- 0, the overhead, representing the length of time for which a processor is busy

during the transmission or reception of a message.

- g, the gap, a lower bound on the time between the transmission of successive

messages, or the reception of successive messages at the same processor.
— P, the number of processor-memory pairs.
The parameters L, o, g are measured in units of processor cycles (rounds). Postal

model turns out to be an instance of LogP model with g = 1 and 0 = 0. LogP model

9

also specifies that the network has a finite capacity such that at most | L/g] messages
can be in transit from any processor to any processor at any time. In general, LogP
model can be considered as a ’dct‘ailed’ model which tries to reflect the critical tech-
nology trends underlying parallel computers. As a result, presenting and analysis of

algorithms under this model is rather hard.

Heterogeneous postal model

In [4] heterogeneous postal model is defined as another generalization of postal
model. Consider node v sends the message to node w at time 0 and w receives
the message at time \,,,. In this model, the assumption is that v is free to send a
new message at time s,,, and w is free from time 0 to A, — s,. The value A\, is
called the delay of link (v,w), and s, is the switching time of v. When the delay
and switching times are both equal to 1, we obtain postal model. While the broad-
casting problem is NP_Complete under this model, in [4] an O(logk) approximation

algorithm is presented for the problem.

Multiport model

This model is a sample of k-broadcasting in which in one round, each node can send
k messages to k processors and receive k messages from k processors. In [6], an
algorithm is presented for broadcasting in multiport model that produces schemes
which are optimum with an additive term of one for any number of processors, any

number of messages, and any value for k.

(ij) mode broadcasting

In the models obeying this mode, in each round, a node can send a message to ¢
neighbors and receive messages from j neighbors. Therefore, the two-way mode can
beregardedasa(1,1) mode with the additional constraint that the edges for receiving

and transmitting are the same. The (7,j) mode broadcasting has been investigated in

10

[30].

e Messy broadcasting

The messy broadcasting model has been introduced in [1]. Unlike the previously
presented models, messy broadcasting is concerned with analyzing the worst case
performance of the broadcast schemes. In other words, the messy broadcasting model

is looking for upper bounds in the broadcast time, following the constraints below:
~ One node knows only its neighbors;
— The originator or the time slot is not known;
— There is no coordinating leader;
— 1-port, constant mbdel is assumed.

This model is suitable for networks in which the memory of nodes is insufficient to

keep a coordinated protocol. The model is studied in [19, 43, 55, 44].

1.2 Results for Broadcasting in Classical Model

In this section we review somé of the results related to the classical model of information
dissemination. Some of thesev'results can be extended to the generalized model introduced
in Chapter 2.

In the rest of this thesis we mainly focus on broadcasting instead of multicasting and
gossiping. The reason is that most of the results on broadcasting can be easily generalized
to multicasting, while studying broadcasting makes notifications easier. Also the following

theorem shows that it is not needed to study gossip problem separately.

Theorem 1. In any communication model obeying two-way communication mode, the gos-

sip problem can be reduced to broadcast problem [60].

11:

Proof. Consider the information accumulation problem. This problem is the same as the
broadcast problem in which instead of informing all the vertices, a node v needs to receive
separate pieces of information from all the nodes. In this way, if < E,, Ey,-++ ,E,. >bea
broadcast scheme for a node in a two-way model, then < E,, E,_,, -, E3, E; > would
be an accumulation scheme for the same node with the same time.

In the gossiping problem, all the nodes need to accumulate the message. As a result,
a gossiping scheme can be represented as a set of n accumulation schemes performing
in parallel. We conclude that the gossiping time, in any communication model, is equal
to accumulation time. Also as mentioned before, in two-way models, broadcasting and
gossiping times are equal. We conclude that in any two-way model (including the classical

model) the gossiping problem reduces to broadcasting problem. O

Note that broadcast problem can be defined for both directed and undirected graphs.
However in most applications the network is modeled by an undirected network. In this
thesis, by notation ’graph’ we always mean undirected graph.

It is easy to verify that under the classical model, two trivial lower bounds hold for the
minimum broadcast time. The first one is [logn], where n denotes the number of nodes in
the graph, and the second one is the maximum distance frqm the source to any of the other
nodes. The second bound is rather obvious, while the first ‘bound holds because the number
of informed nodes can be at most doubled in each round.

As mentioned earlier, give_p a graph G = (V, F) and an originator u € V, it is NP _Hard
to find the optimum broadcast: scheme. The proof involves a reduction from 3D Matching
problem to the broadcast pro;blem [42]. The following is an important byproduct of this

result:

Theorem 2. The broadcast problem is NP_Complete in directed graphs.

Proof. Broadcasting in undirected graphs can be easily reduced to broadcasting in directed

graphs. We just need to replace each undirected edge (v, w) with two directed edges, one

12

from v to w and one from w to v. O

In addition it is proved that the problem remains NP_Hard for some restricted types of
graphs including bounded degree graphs [13], chordal graphs [64], planar bipartite graphs
[64], planar and decomposabl'e graphs [63].

Finding good approximations has been intensively studied for broadcasting in undi-
rected graphs [68, 75, 4, 41]. The best theoretical upper bound is presented in [28] in-
volving algorithms approximating the broadcast time with a factor of log(n)/ loglog(n) in
which n is the number of vertices.

k-multicast problem has also been considered in the literature. Having a multicast set
of size k, the best approximation is the one presented in [28] with an approximation ratio of
log(k)/ loglog(k). This algorithm is actually the same as the one presented for broadcast-
ing which is generalized to multicasting; if we set the size of multicast set to be the same
as the number of vertices of graph (k = n), we come to the same ratio log(n)/ log log(n)
for the broadcast problem. '

In [26] it has been show;n that it is NP_Hard to find a broadcast schéme within an
approximation ratio of 3 — € for any € > (.

The problem appears to be much harder in directed graphs; most of the previous ap-
proximations can not be extended to directed graphs. However the algorithm presented
in [26] applies to directed graphs and gives a logarithmic approximation to the problem.
Multicasting in directed graphs has also been studied in [28, 27]. The algorithm presented
in [27] constructs a schedule with O(b* log k + k'/2) in which k is the size of multicast set
and b* is the optimum broadcast time.

The broadcast process has also been studied for other particular network topologies,
such as trees [79], unicyclic graphs [52, 53], grids [33, 78, 18, 81], Kautz graphs [58],
pancake and star graphs [15],. chordal rings [20], k-trees [23], planar graphs [57, 63, 64]

recursive circulants [73], banyan-hypercube [11], de Bruijn, shuffle-exchange and similar

13

networks [74].

1.3 Thesis Contribution

Although there has been a huge amount of research on classical model of broadcasting, this
model is not always appropriate for all real world problems. In this thesis we present a new
communication model called weighted-vertex model.

In Chapter 2, the weighted-vertex model is defined and some of its basic properties
are discussed. In this model, the network is modeled by a graph in which the vertices are
assumed to be weighted. It is shown that weighted-vertex model can be applied on some
real world problems while remaining interesting in theoretical aspects. We generalize some
of the properties of the classical model to the weighted-vertex model. We also introduce
uniform graphs, binary graphs, heavy graphs, even graphs and odd graphs as specific types
of weighted graphs in which the broadcasting problem seems to have a more interesting
nature. Finally we present an ;éfﬁcient algorithm for broadcasting in weighted-vertex trees.

As a generalized version of classical model, the broaddasting problem is NP_Complete
in weighted-vertex model. In Chapter 3, we present an approximation algorithm for the
problem. To do so, we reduce broadcasting in weighted-vertex graphs to multicasting in
directed unweighted graphs. In addition we pfesent better approximations for broadcasting
in even graphs, binary graphs and heavy graphs.

Chapter 4 is dedicated to the study of the broadcasting problem in fully connected
weighted graphs. We present a polynbmiai algorithm for producing optimum broadcast
schemes in complete weighted graphs. We also study the problem in complete graphs with
uniform weights, which‘ gives a lower bound for the broadcast time in weighted graphs in
general case.

In Chapter S, we present t}};‘ée heuristics for the problem. We employ a modified version

of Dijkstra’s algorithm, a greédy algorithm, and also an evolutionary algorithm. Using

14

computer simulations we compare the performance of these three algorithms in different

weighted-vertex graphs.

15

Chapter 2

Weighted;Vertex Model

2.1 Model Definition

As mentioned earlier, the classical model of broadcasting does not always fit the require-
ments of real-world situations. This is the reason that several other models with different
characteristics are presented.

Here we enhance the classical model to the graphs with weighted vertices, resulting a
new model called weighted-vertex model. The weights assigned to the vertices may have
different meanings. For example each node may represent a smaller network such that
the assigned weight represents an upper bound for the broadcast time of that network. In
parallel machines, the weights assigned to processors can be intérpreted as a kind of internal
process each processor needs to perform before starting informing its neighbors (this is the
reason that sometimes we regard the weights as internal process or internal delay). The
weights can also be considered as the delay for receiving the message due to input device
limitations.

Another application of the weighted-vertex model is in Satellite-Terrestrial (ST) net-

works. These are networks in which a large number of nodes are interconnected by both

16

satellite and terrestrial networks [3]. ST networks can effectively support multicast ser-
vices; however the performance of these networks is not high when they are modeled by
regular unweighted graphs. The reason is that the cost of satellite nodes is more than ter-
restrial nodes. To resolve this problem, ST networks has been modeled by weighted-vertex
graphs in which the venices‘ representing satellite nodes have positive integer weights,
while the vertices representing terrestrial nodes have 0 as their costs. The weight assigned
to the satellite nodes is the sum of the costs of up-links and down-links connecting them
to the terrestrial network. By including these vertices in the broadcast tree, their costs are
included in the costs of trees [3, 82]. |

| While defining a new model, it may come to mind to put the weights on both edges and
vertices. However putting weights on the edges is not interesting in the sense that any edge
of weight w can be replaced with a path of length w to get the same problem. In the rest of
this thesis, whenever we use term weighted graphs, we mean graphs with weights on the
vertices (and not on the edges). As mentioned above, sometime we refer these weights as

internal process or internal delay of the vertices.

Definition 1. Ler G = (V, E‘) be an undirected graph where V' is a set of n nodes and
E is the set of communication links and let uw € V be the originator node. We associate
with each node v € V a non-negative integer weight w(v). These weights represent the
delay of a node to perform some process after receiving the message. Suppose that node v
‘receives’ the message at time t from one of its neighbors. After receiving the message, v
should wait for w(v) rounds and then start informing its uninformed neighbors. This is the
time in which v ’completes’ handling its delay. In this way, the first neighbor of v receives

the message at time unit t(v) + w(v) + L.

It is not hard to verify that weighted-vertex model is a novel model which differs from
all models reviewed in Chapter 1. Note that the weights assigned to the nodes are always

considered to be non-negative integers. When the weights of all vertices are 0, the model

17

is equivalent to the classical model.

The weighted-vertex model applies for digraphs as well; however in this thesis we
always consider that the weighted graphs are undirected. Multicasting and gossiping could
also be considered under the new model.

In weighted graphs, similar to unweighted graphs, any broadcast scheme can be repre-
sented by a spanning tree which is rooted at the originator. Later we show the existence of
an effective algorithm for broadcasting in trees under weighted-vertex model. This algo-
rithm enables us to represent broadcast schemes with spanning trees.

Note that in the broadcast tree of an instance (u, G) of broadcast problem, the root
(originator) and the leaves have some weights that are considered as a part of the broadcast
time. So when a leaf v receives the messa‘ge, the brpadcasting process is not complete
before an additional w(v) time units. Figure 2 shows a broadcast tree while node A is the
originator. In this scheme A receives the message at time ¢ = 0. It is busy duriflg next 5
rounds until it completes its delay at time ¢ = 5. Then A informs B at time ¢ = 6, C at time
t=17,Dattimet= 8and F at time ¢t = 9. The same way B is busy in time period [6, 8].
Afterward, F' receives the message through B at time ¢ = 9 and completes after 3 rounds
delay when it sends the message to K. The broadcasting completes when K completes its
internal delay at time ¢ = 18.

We can also present a broadcast scheme in weighted-vertex model as a sequence of
rounds < Ey, Ey, -+, E. > in which F; is a set of ’calls’ and ’internal delay units’ in the
form of v, — vg and v, | respectively. In this way v, | € E; means that node v, passes
one unit of its internal delay m round 4. We also denote the final internal delay unit of a

vertex vq by vy ..

Definition 2. A broadcast (multicast) scheme is a non-lazy scheme iff any vertex v after
receiving the message and completing its internal delay, in all rounds before the broadcast

process completes, informs one of its uninformed neighbors.

18

9/ 10 11 9 10
3 1 4 4 2
12 11 15 13 12
13 14
5 O
18 14

Figure 2: A broadcast tree rooted at originator A. The numbers in the right side of nodes
indicate their weights; while the numbers in left indicate the times in which nodes receive
the message (top) and complete their delay (bottom).

It is easy to see that for any broadcast scheme, there is an equivalent non-lazy scheme
with lower or equal broadcast time. From now, whenever we talk about a scheme, we mean
a non-lazy scheme.

Note that, in many concepts the weighted-vertex model is similar to the classical model

of broadcasting:
Fact 1. In the weighted-vertex model of broadcasting:
e The communication mode is two-way

e Message transition pattern is 1-port (whispering)

19

o The model can be considered as a sample of constant model in the sense that the
time needed to transmit a message through a link is the constant 1; although the time

needed to handle the message varies for different nodes.

The classical model is also a two-way, 1-port and constant model. This is the reason
that sometimes instead of using the term ’weighted-vertex model of broadcasting’ we use

"broadcasting in graphs with weighted vertices’.

Theorem 3. In the weighted-vertex model, the gossipping problem reduces to broadcasting

problem.

Proof. Since the model is a two-way model, we can apply Theorem 1 and conclude that in

weighted-vertex model gossiping can be reduced to broadcasting. O

Here we present some easy lower and upper bounds for the broadcast time in weighted-
vertex model. Let b(u, G) denotes the minimum time needed to complete broadcasting
from originator u € V(G). Also let W denote the sum of the weights of all vertices, i.e.

W= ZvEV ?.U(’U).

The following theorem giveS an obvious lower bound for b(u, G):

Theorem 4. b(u, G) > d+ (d + 1) Wmin in which d is the maximum distance of u to other

nodes and Wy, is a lower bound for the weights of nodes.
In Chapter 4 another lower bound for the broadcast time will be presented.

Definition 3. Given a weighted graph G, the underlying graph of G, denoted by G, is a
copy of G in which all the weights are removed. More formally, G is an unweighted graph

with the same vertex and edge sets as G.
b

We can present an upper bound for broadcast time in a weighted graph in terms of total

weight and broadcast time of the underlying graph:

20

Theorem 5. b(u,G) < W + b(u, Gy) in which W is the total weight of G, and G is the

underlying graph of G.

Proof. For any node z in G, consider the path P from originator u to z in an optimum
broadcast tree for G. So we have bg(u,z) = 3, cp w(v;) + I(v;) in which w(v;) is the
weight of v; and I(v;) is the label of incoming edge to v; when called by its parent. Note that
ba, (u; z) = Y ,.epl(vi). So we have be(u, z) = bg,(u, z) + > wiep W) < g, (u,) +
W. Hence, b(u, G) < b(u, Gou) + W. O

Applying bounds b(u, Go) < n—1and W < n wp,,, we come to the following results:

Corollary 1. b(u,G) < W + n — 1 in which W is the total weight of graph and n is the

number of vertices.

Corollary 2. b(u, G) < 1 Wpey +n — 1 in which n is the number of vertices and Woqg is

an upper bound for the weights of vertices.

At the end of this section, we present an important result on the hardness of broadcast

problem in weighted-vertex graphs:
Theorem 6. The problem of broadcasting in weighted-vertex model is NP_Complete.

Proof. As mentioned before broadcasting in classical form is an instance of weighted-
vertex broadcasting in which all the vertices of the graph have uniform weight 0. We con-
clude that the problem is NP_Hard. Also given a scheme, it can be checked in polynomial
time if the scheme completes before a specific time limit (depending on how to represent
the scheme the broadcast time of the scheme is also given). So the problem belongs to the

class NP as well. . O

21

2.2 Subclasses of Weighted Graphs

In this section we present some important subclasses of weighted-vertex graphs. Most of

these graphs would be referred in the next chapters:

o Uniform Graphs
Uniform graphs are weighted graphs in which all the vertices have equivalent weights.
A uniform weighted graph can be represented by triple (V, E, w,) in which V and E
are the vertex and edge sets respectively and w,, is the integer representing the uni-
form weight of all vertices. Uniform graphs can be applied for modeling the networks
in which all the nodes are homogeneous; which is usually the case in multi-processor

systems. The following bounds hold for broadcast time in uniform graphs:

Theorem 7. For any originator u in uniform graph G, we have d + (d + 1)W/n <
b(u,G) < b(u,Go) +.W, in which d is the maximum distance of u to the other
vertices, n is the number of vertices, W is the total weight of graph, and G is the

underlying network.

¢ Binary Graphs
Binary graphs are the weighted graphs in which the weight of all nodes is either O or
1. These graphs are very important in theoretical aspects. Note that, in binary graphs,
the total weight W is equal to the number of nodes with weight 1. In Chapter 2, we
show that broadcasting in general weighted-graphs can be reduced to broadcasting in

binary graphs.

e Heavy Graphs and Light Graphs
A heavy graph G is a weighted graph in which for any node v € V(G) we have
deg(v) < w(v). In this §vay the weights of vertices are relatively high. These graphs
may have application for modeling the networks in which the underlying commu-

nication network is a low-degree graph. For example planar weighted graphs or

22

weighted hypercubes have a high chance of being heavy graphs.

In the same way, we can define light graphs as the weighted graph in which for any
node v € V(G) we have deg(v) > w(v). These graphs may have applications when

the communication network is modeled by a dense graph.

By definition, in any heavy graphs W > 2| E| in which W is the total weight and E
is the number of edges. The same way, in light graphs, W < 2|E)|.

¢ Even Graphs and Odd Graphs
An even graph is a weighted graph in which the weight of all nodes is even. The
same way an odd graph is a graph with odd integers as the weights of vertices. Note

that a uniform graph is either an even graph or an odd graph.

Some samples of the introduced graphs are depicted in Figure 3.

Note that unweighted graphs are specific instances of the uniform graphs, binary graphs,
light graphs, and even graphs. Consequently, the broadcast problem is NP_Complete
in these four subclasses of wgighted graphs. However at this stage, we don’t have any

NP_Completeness result for broadcasting in heavy graphs and odd graphs.

2.3 Weighted Broadcasting in Trees

In this section, we study the problem of broadcasting in weighted trees. Beside the numer-
ous applications of trees for designing and modeling networks, as a basic type of graphs,
studying the problem in trees may be helpful for getting intuition about the nature of the
problem in other classes of graphs.

The broadcasting problem in unweighted trees is already studied in [79]. From there we
know that the broadcast time of an instance (7", 7) of the problem (defined for unweighted

tree 7”) can be determined in linear time using dynamic programming and working bottom-
up.

23

(a) A uniform graph with uniform (b) A binary graph
weight w
(c) A heavy graph (d) A light graph
(e) An even graph (f) An odd graph

Figure 3: Weighted graph subclasses.

Here we extend the results of [79] to the weighted trees. The trees we study are con-
sidered to be undirected; however given an originator, a direction can be imagined on the
edges from the originator to the leaves. This is the reason that sometime we use the term
rooted for the trees and consider the uninformed neighbors of a node as its children. In this
way a tree can be-denoted as j}, in which r is the root of the tree as well as the broadcast
originator.

The broadcast scheme of a tree T;. can be completely described by specifying the order

24

in which the children of each internal node receive the message. In this way, we can
represent any scheme by assigning an integer to each node v € V' — {r}, denoting the the
node’s index for receiving the message through its parent. We call this integer the order
number of node v and denote it by ord(v). For example in the tree of Figure 4, if the root

A first informs node B, and then node C, we would have ord(B) = 1 and ord(C) = 2.

Jo

Figure 4: The broadcast scheme of the tree of Figure 2. The numbers on the right side of
nodes indicate the weights, the numbers on the top left indicate the broadcast time of the
subtrees, and the small numbers on the incoming links indicate the order numbers of nodes.

To determine the broadcast scheme, we calculate the broadcast time of any of the sub-
trees rooted at children of v. For any node v, let T, be the subtree of T, rooted at v (the
subtree that does not contain originator). A.lso let br(v,T,) denote the time needed to
broadcast a message from v to the nodes of 7).

Assume that node v has p children that are labeled in a way that br(vy, T(v;)) >

25

br(ve, T(v2)) > ... > br(vp, T(vp)). Note that we can perform such ordering because

working bottom-up we know the broadcast times of each T,,. Given this ordering, the

broadcast time of any subtree can be calculated using the following equation:

br(v,T,) = w(v) v 1s an external node

br(v,T,,) = w(v) + fg%{ br(vi, Tp,)} + i v is an internal node
s

Using mathematical induction, it is rather easy to verify correctness of the above recur-

sion; we just need to consider the obvious fact that any node should first inform the subtree

with the highest broadcast time. Algorithm 1 illustrates how to set broadcast times.

Algorithm 1 Tree_Set_Br_Time

Input: A weighted tree T = (V, E) rooted at r € V
Output: The broadcast time of any subtree T, of T rooted at node v € V. The broadcast
time of T, is stored in br(T,).

: if r is an external node of T then {r has no children}

br(T,) = w(r)
return

1
2
3
4; end if
5:
6
7
8

for any child v of r do
Recursively call Tree_Wghtd Br (T5,,v)

: end for
: Sort children of r in descending order of br(T’,) {Hence br(T,) > br(T,,,)}
9: '
10:
11
12:
13:
14:
- 15:
16:

maz =0 ,
for any child v; of » do
if br(T,,) + ¢ > maz then

maz = br(T,, + 1)
end if :
end for
br(T) = w(r) + maz
return

It is not hard to verify that the dominating parameter on the complexity of the algorithm,

is in line 8 of Algorithm 1, in which a node needs to sort the labels of its neighbors. Using a

26

comparison based sorting, the complexity of the algorithm would be O(n logn). Note that
from Corollary 1, the bound br(T,,) < W + n — 1 holds for broadcast time of any of the
subtrees; which enables us to improve the running time to linear by increasing the memory
space. We can employ a non-comparison based sort algorithm (for example bucket sort)
and spend O(n+ W) memory space to sort the labels in linear time. Note thatif W = O(n),
which is the case, for example in unweighted and binary graphs, the memory space would
be linear (with respect to n). |

Given the broadcast times of all nodes, it is rather easy to perform broadcasting. After
the time at which a vertex v completes its delay, for the next d steps it sends the mes-
sage to its children in the order vy, vy, - vy (br(vy,T(v1)) > br(ve, T(v2)) > ... >
br(vp, T(vp))). The broadcast then accomplished recursively in each of the subtrees T,,.

Algorithm 2 shows how to create the optimum scheme in this way.

Algorithm 2 Tree_Wghtd_Br
Input: A weighted tree T = (V, E), the originatorr € V
Output: The optimum scheme for broadcasting from r represented as the order number of
eachnodev € V — {r}
1: Call Tree_Set_Br_Time(T,r) {Set the broadcast time of each subtree}
2: for any vertex j in the DFS traversal of T do
3: Letthe set Ch(j) = {01, v, -+ ,vq} be the children set of j in ascending order of
b(’l),;, Tvi)-

4: for any v; € Ch(j) do

5: Set ord(v;) to be the index of v; in the sorted array.
6: end for

7: end for

27

Chapter 3

Approximating Optimum Broadcast

Scheme

As mentioned in the previous chapter the broadcasting problem in weighted-vertex model
is NP-Complete. In this chapter we prove the existence of algorithms which approximate
the optimum broadcast scheme in arbitrary weighted-graphs. We also show there are better
approximations for the problem in specific classes of weighted graphs. The approach is
mainly based on reducing the broadcast problem in weighted graphs to other dissemination
problems for which approximation algorithms exist.

In all reductions presented in this chapter, an instance of broadcast or multicast problem,
defined on an arbitrary graph, reduces td an instance of multicast problem defined on a
new graph, such that any scheme for the first instance has an equivalent scheme in the
second scheme which takes the same time to complete. As the first result, the optimum
dissemination time is the same in two instances. In addition, if a scheme approximates the
optimum solution with ratio r’ in the second instance, the equivalent scheme approximates
the optimum solution with the same ratio. In this way, any approximation algorithm for the

second problem can be applied for the first problem as well.

28

We use binary graphs as an intermediate phase to reduce broadcasting in weighted-
vertex graphs to multicasting in unweighted digraphs. In Section 3.1 we show that the
problem of broadcasting in arbitrary weighted graphs reduces to multicasting in binary
graphs. In this way we can forget about the problem in general form and focus on binary
graphs. In Section 3.2 we present a reduction from multicasting in binary graphs to multi-
casting in directed unweighted graphs. Using the results of these two sections, in Section
3.3, we show that the problem of broadcasting in weighted undirected graphs can be re-
duced to multicasting in unweighted directed graphs. The later problem is already studied
and there exist approximation algorithms for it, which can be applied for broadcasting in
weighted graphs. In Section 3.4 we show there is a better approximation for broadcasting

in heavy graphs.

3.1 Reduction from Arbitrary Weighted Graphs to Binary
Weighted Graphs

In this section we present a r{:duction of broadcasting problem in weighted vertex graphs
to multicasting in binary grabhs. More precisely we prove if there exists a scheme for
broadcasting from originator u in an arbitrary weighted-graph G which completes in ¢
rounds, then there exists a scheme for multicasting from ‘a vertex u’ to a destination set in a
specific binary graph H, which needs ¢ rounds to complete.

First, we define insect graphs as an instance of spider graphs presented in [5].

Definition 4. A set of paths S = { Py, P,, .., P;} is called an insect-graph if:
-All the paths share a vertex v as one of their end-points.
-All the paths are vertex-disjoint except for sharing vertex v.

-All paths Py, P,, ..., Py have uniform length w.
We call the shared vertex (v) the head of the insect. The other endpoints of the paths

29

Py, P,, ..., P, are called the legs of the insect. The degree of insect is the number of its legs
(Consequently the size of S). The length of insect is the uniform length of any of the paths.
A weighted insect is an insect in which a weight k is assigned to the head. The weights of

other vertices are always considered to be 0. Figure 5 shows two samples of insect graphs.

(a) An insect of weight 3, degree 4, (b) An insect of weight 2, degree 5,
length 1. length 4.

Figure 5: Two samples of insect graphs.

Theorem 8. The problem of broadcasting in weighted graphs reduces to multicasting in

binary graphs.

Proof. Given a weighted graph G, we create a binary graph H such that any optimum
broadcast scheme for G can be deduced from an optimum multicast scheme for H. To
create H, we replace any vertex v of degree d in G with an insect of degree d + 1 in a way
that vertices of even weights 2k get replaced by insects of weight 0 and length %, and the
vertices of odd weight 2k + 1“get replaced by insects of weight 1 and length k. As Figure
6 illustrates, for any edge (v, w) in G we put an edge between legs of the insects replacing
v and w. Note that any leg would be connected to at most one cher leg. In this way any
insect would have a hanging leg which is not connected to any other leg.

We map an instance (u,G) of the broadcast problem, to an instance (u’, H, dest(H))

30

of multicast problem, in which the originator u’ is the the hanging vertex of the insect
replacing u, and multicast destinations (dest(H)) are all other hanging vertices.

We claim that any broadcast scheme for the broadcast problem defined on G, has an
equivalent multicast scheme in the multicast problem defined on H with the same time to
complete. To see the proof consider an insect replacing a vertex v of weight 2k (or 2k + 1);
this insect receives the message through one of its legs, then it takes k rounds to inform the
head, O (or 1) rounds for the delay on the head and k¥ more rounds to inform another leg.
So the first leg receives the message after 2k (or 2k + 1) rounds, afterward in each round
a new leg would be informed. In this way each insects replacing a vertex of weight w, can
start sending the message to the neighbor inéects, exactly w time units after receiving the
message. Note that if a vertex of weight w is a leaf in the broadcast scheme for G, the

equivalent insect needs w rounds to inform its hanging vertex. O

Theorem 9. There exists a log(n)/loglog(n) approximation for broadcasting in even

graphs.

Proof. Applying the construction of Theorem 8 on even graphs, the weights of all vertices
in the resulted binary graph would be equal to 0. We conclude that any scheme for broad-
casting in an even graphs has an equivalent scheme for multicasting in an unweighted graph
which takes the same time to complete. Note that the size of multicast set is equal to the
number of vertices in the orig:inal even graph. From this we conclude that any approxima-
tion applied for multicasting in unweighted ‘graph can be applied for broadcasting in the
even graph to get a solution withA the séme approximation ratio. As mentioned in Chap-
ter 1 there exists a polynomia.l time algorithm which approximates the optimum multicast
scheme with a ratio of log k/ log log k in unweighted graphs in which k is the size of multi-
cast set. We come to the concl};sion that there exists a polynomial algorithm approximating

the optimum broadcast scheme in even graphs with ratio log(n)/ log log(n). O

31

3] 3
®
2
CJ (.
7 6

(a) A weighted graph.

(b) The equivalent binary graph.

Figure 6: Converting a weighted graph to a binary graph. Black vertices are originators
and gray vertices are multicast destinations

3.2 Reduction from Binary Weighted Graphs to Directed
Unweighted Graphs

In this section we show that multicasting in undirected binary graphs reduces to multi-
casting in directed unweighted graphs. This reduction, together with Theorem 8, result a
reduction broadcasting in undirected weighted-vertex graphs to multicasting in unweighted
directed graph. This result is i'mportant in the sense that there are results for multicasting
in directed graphs which can be applied for broadcasting in weighted graphs.

Like the previous section we present some auxiliary components which will be useful

- 32

in the reduction process:

Definition S. A widget from v to w is a directed cycle of length 2, 3 or 4 having v and w
as two of its vertices:

- A simple-widget from v to w is simply a directed cycle having v, w as its exclusive
vertices (Figure 7(a)).

- A three-widget from v to w is a directed cycle of length 3 such that the distance of v to
w is 2 and distance of w to v is 1 (Figure7(b)).

- A four-widget from v to w is a directed cycle of length 4 such that the distance of v to w

and w to v is 2 (Figure 7(c)).

Note that a simple-widget from v to w is also a simple-widget from w to v. This is the

same about four-widgets; however this symmetry does not hold in the case of three-widgets.

v w

TS
Simple-widget Three-widget

(a) (b)

Four-widget
© '

Figure 7: Widgets.

Theorem 10. The problem of multicasting in binary graphs can be reduced to multicasting

in unweighted directed graphs.

Proof. Consider an instance of multicast problem defined on arbitrary binary graph G, with

originator u, and destination set dest(G). We create an instance of multicast problem for a

33

directed graph H.

To create H we start with the same vertex set of G. Also let the originator and multicast
destinations in the new instance be the same as the instance defined on G. So what we are
doing is just modifying the edges of G. As Figure 8 illustrates, we replace any edge (v, w)

in G with a widget in H in the following way:
¢ If v and w both have weight 0, replace (v, w) with a simple-widget.
o If v has weight 1 and w has weight 0, replace (v, w) with a three-widget from v to w.
o If v and w both have weight 1, replace (v, w) with a four-widget.

We claim that any scheme for multicasting in the first instance defined on G, has an
equivalent scheme in the second instance defined on H, which takes the same time to
complete. To see that, consider a rooted (hence directed) tree representing a multicast
scheme for G. This tree has an equivalent tree in H with the same topology in which some
of the edges are replaced with paths of length 2. These are the edges having their head at
a vertex of weight 1. It means that in the equivalent scheme in H, a *one round delay’ is
applied to any node with weight 1 before receiving message. More precisely if in a scherﬁe
for G, a vertex w with weight'_l is informed through vertex v, in the equivalent scheme for
H the edge between v and w iS replaced with a path of length 2, hence the one round delay

is applied in this scheme before w receives the message.

3.3 Approximations for Weighted Vertex-Broadcasting

The following theorem prévides an approximation for k-multicast problem in directed

graphs presented by Elkin and Kortsarz in [28].

34

(b) The equivalent directed unweighted graph.

Figure 8: Converting a weighted graph to a binary graph. Black vertices are originators
and gray vertices are multicast destinations.

Theorem 11. There is a polynomial time algorithm for the multicast problem in directed
graphs that produces a scheme with a ratio of O(k®® / log k) of the optimum scheme in

which k is the size of multicast set.

The next theorem, presented by the same groupe in [27], provides a bit better approxi-

mation to the multicast problem in directed graphs:

Theorem 12. There is a polynomial time algorithm for the multicast problem in digraphs
that construct a schedule with O(b* log k + kY/?) in which k is the size of multicast set and

b* is the optimum broadcast time.

35

We can apply both Theorems 11 , 12 to come up with approximations for multicast
problem in binary graphs, consequently broadcast problem in weighted graphs.

Note that the size of multicast group does not change during the reduction of Theorem
10. In other words, if we need to inform k nodes in a binary graph G, in the equivalent
directed graph H also k nodes need to be informed. Applying the approximation algorithm
of Theorem 11, we can come up with a scheme that approximates the optimum solution
for G with rati_o O(k®/® /logk). The result of this expression is stated in the following

theorem:

Theorem 13. There is a polynomial time algorithm for the multicast problem in binary
graphs that produces a scheme with a ratio of O(k*/%) [log k) of the optimum scheme in

which k is the size of multicast destination set.
The next theorem follows from Theorems 8 and 13:

Theorem 14, There is a polynomial time algorithm for the broadcast problem in weighted-
vertex graphs that produces a scheme with a ratio of O(n‘®3/logn) of the optimum

scheme in which n is the numbef of vertices [28].

If we apply the approximation of Theorem 12, The approximations presented in Theo-

rems 13 and 14 enhance to the followings:

Theorem 15. There is a polynomial time algorithm for the multicast problem in binary
graphs that produces a scheme that completes in O(m* log k + k) time units in which k

is the size of multicast destination set and m* is the optimum multicast time.

Theorem 16. There is a polynomial time algorithm for the broadcast problem in weighted-
vertex graphs that produces a scheme that completes in O(b* logn + n!/?) time units in

which n is the number of vertices and b* is the optimum broadcast time.

36

3.4 Broadcasting in Heavy Graphs

In this section we study broadcast problem in heavy graphs. We recall that heavy graphs
are weighted graphs in which the weight of each node is higher than its degree. We present
a reduction from broadcasting in heavy graphs to multicasting in (undirected) unweighted
graphs. Applying the results on multicast problem, we deduce an approximation algorithm
for the broadcast problem in heavy grapHs.

Note that we do not have any NP_Completeness results for broadcasting in heavy
graphs. In this sense there may be an algorithm for finding the optimum broadcast scheme
in polynomial time (we intuitively believe that such an algorithm does not exist). The ap-
proximation provided here can be considered as the first bsolution to the problem in heavy

graphs.

Theorem 17. The problem of broadcdsting in heavy graphs can be reduced to multicasting

in unweighted graphs.

Proof. Consider the broadcast problem defined on the heavy graph G with originator w.
We reduce this problem to a multicast problem defined on the unweighted graph H with
originator 4/, We show any broadcast scheme for the first problem has an equivalent mul-
ticast scheme for the second problem which takes the same time to complete. In this way
any approximation for the second problem can be applied as an approximation for the first
problem with the same ratio.

To create H from G, we start with a copy of G and replace any vertex v of degree
deg(v) and weight w(v) with'a complete graph (clique) 6n deg(v) + 1 vertices in which
all the links are replaced with paths of length w(v). We call the vertices lying on this path
internal nodes of the clique, while the nodes at the endpoints are external nodes. For each
link (v, w) in G, we put an edge between two external node of the cliques replacing v and

w. Each external node should be connected to at most one external node of another clique.

37

In this way, each clique would have exactly one free external node which is not connected
to any other external node. Figure 9 illustrates how to construct H from G.

In the multicast problem defined on H, the originator would be the free vertex of the
clique replacing the originator of broadcast problem defined on G, and multicast set would
be the set of free vertices of all other cliques.

It can be easily verified that any scheme for the broadcast problem defined on G has an
equivalent scheme for the multicast problem defined on H. To see that, consider an external
node v, of a clique receives the message through an external node of another clique. Note
that v, sends the message on all the paths toward the external nodes before any other
external node of the clique receives the message. This is because the lengths of these paths
is higher than the clique size. As a result, v, informs the external vertices of its clique in
time units w, w+1,...,w+deg(v) — 1 in which v is the vertex of G replaced by clique of
vq. Hence, the neighbor cliques can be informed in time units w+ 1, w+2,...,w+deg(v)
which is the same as time units in which v informs its neighbors.

]

Corollary 3. There exists a log(n)/ loglog(n) approximation for broadcasting in heavy

graphs.

Proof. From the previous theorem, we know that broadcasting in even graphs is equivalent
to multicasting in unweighted graphs while the size of multicast set is equal to the size
of original even graph. As mentioned before there exists a polynomial time algorithm
approximating the optimum niultic’:ast scheme with a ratio of log k/ log log k in unweighted
graphs in which k is the size of multicast set. We come to the conclusion that there exists a
polynomial algorithm approximating the optimum broadcast scheme in heavy graphs with

ratio log(n)/ loglog(n). : O

38

\V A

(b) The equivalent unidrected graph

Figure 9: Reduction of broadcast problem in heavy graphs to multicast problem in un-
weighted graphs. Destination nodes are colored in gray

39

Chapter 4

Weighted Broadcasting in Complete

Graphs

In many message-passing systems, the exact structure of the underlying communication
network may not be known. In such systems it may be assumed that the network creates a
complete communication graph [7]. Postal and LogP models are two well-known models
in which the topology of the network is ignored and assumed to be a complete graph. In this
chapter we study the weighted vertex model in complete graphs. In Section 4.1, we present
an algorithm for broadcasting in any weighted complete graph in optimum time. In section
4.2, the problem is studied in uniform complete graphs, which results in tight lower and
upper bounds for broadcastiné in these graphs, as well as a lower bound for broadcasting
in arbitrary weighted graphs.

Figure 10 shows a complete weighted-graph on 10 vertices.

4.1 Finding the Optimum Scheme in Polynomial Time

Here we look for an'a]gorithm to find optimum broadcast scheme in weighted-vertex com-

plete graphs. Note that in unWeighted complete graphs there is a kind of symmetry which

40

Figure 10: A complete weighted graph on 10 vertices.

makes the broadcasting trivial. In this case, any vertex after receiving a message, can arbi-
trarily choose one of uninformed nodes in each round to pass the message.

In complete weighted-vertex graphs the problem is not that easy in the sense that the
weights assigned to the vertices are not uniform and in each round a vertex should choose
between its neighbors based on their weights. Consider Figure 11 which shows two broad-
cast schemes for the graph of Figure 10, when node A is the originator. As the numbers on
the nodes illustrate, the broadcast time of the first scheme is equal to 9, while the broadcast
time of the second scheme is 11. It shows that a smart algorithm is needed for broadcasting
in complete weighted-graphs.

To some extent, weighted-vertex model in complete graphs is similar to generalized
postal model [7]. In both cases the underlying network is a complete graph and the com-
munication model is 1-port and constant. The only difference is that in generalized postal

model the weights are assigned to the edges, while in weighted-vertex model the weights

41

(a) A scheme in which the nodes first inform the (b) A scheme in which the nodes informs neigh-
neighbors with lower weights bors randomly

Figure 11: Two broadcast schemes for the complete graph of Figure 10.

are on the vertices. This small change makes the difference between the two models dra-
matic. With the weights on the edges, a kind of topology can be defined for graphs by
disabling some edges through assigning large weights to them. In this way, the classical
broadcasting reduces to broadcasting in generalized postal model. Consequently, the broad-
casting problem is NP_Hard under generalized postal model. However when the weights
are on the vertices, specific topologies can not be constructed by assigning large weights
to the vertices; hence we can not deduce any NP_Hardness result. In contrast, we will
show that there exists a polynomial algorithm for finding the optimum broadcast scheme in
complete weighted-vertex graphs.

Having another look to Figure 11, it may come to mind that in a good broadcast scheme,
any node first informs the neiéhbors with lower weights. We may conclude that in optimum
broadcast trees, lower-weighted nodes construct the upper levels, while the vertices with
higher weights construct the leaves and lower levels of thé broadcast tree. This idea makes

sense, since the neighbors with lower weights can perform their internal process faster

42

and participate in informing more nodes. Figure 11(a) is a broadcast tree built using this
method; any node after finishing its internal process sorts uninformed neighbors based on
their weights and informs theme in this order in the rest of broadcast process.

However this approach does not always create an optimum broadcast scheme. Consider
a simple complete graph of Figure 12. If the originator A first informs the neighbor with
lower weight, which is B, and then informs the other vertex, which is C, the broadcast time
would be 11, while informing C before B leads to a broadcast time 10. So informing B
before C does not improve broadcast time. The reason is that B can not inform any other
node after finishing its internal process. The idea behind informing vertices with lower
weights was to inform more vertices (since they finish their internal process faster) and let
the broadcast tree grow faster. However at the end of broadcasting, most of the nodes are
already informed and the internal delay of high-weight nodes is a more important issue

than the growth of the broadcast tree.

we 1 o w=10

Figure 12: A simple complete graph showing that choosing the neighbor with the lowest
weight does not always create the optimum scheme. -

In this way, in the begi'nnihg of broadcast process (upper levels of broadcast tree), in-
forming the low-weight vertices is effective for spreading the message faster, while at the
end of broadcast process (lower levels of broadcast tree), it makes sense to inform the

vertices with larger weights to make them finish their internal process faster.

43

We come to the conclusion that we should know the optimum broadcast time when con-
structing an algorithm for creating the optimum scheme. To do so, we create an algorithm
that receives a guess value for the broadcast time. The algorithm returns either a broadcast
scheme of length not greater than br or Poor_Guess. We call this algorithm broad_Guess
which accepts as input a weighted complete graph K, the originator u and the guess br
for the upper bound on the optimum broadcast time for broadcasting in K. If the guess
is correct the procedlire returns a broadcast schedule for (u, K,,) of length not greater than
br. In the opposite case, the procedure returns the value Poor Guess.

Note that n — 1 + W is an upper bound for broadcast time in which n is the number
of vertices and W is total weight of the graph (Corollary 2). In the main algorithm, we
just need to conduct a binary search on the value of the guess br; on each iteration it
invokes broad.Guess(K,, s, br), the smallest value of br for which a schedule is returned
is the optimum multicast time and the rctuméd schedule would be the optimum multicast
scheme. |

As mentioned in Chapter :2, any broadcast scheme can be represented by a spanning
tree or a sequence of calls. In the case of complete graphs, this can be easier; we represent
any scheme by a sequence < Inf(0), Inf(l),.' <, Inf(k) >, (k < br) in which Inf(t)
denotes the set of nodes that get informed at time ¢ and k is an upper bound for broadcast
time. To see why such a sequence prescribes a scheme, note that in any time unit ¢ < br

we separate the vertices into three groups:

e The set I of vertices that are informed at time ¢ and have passed the internal delay as

well (i.e. ¢(v) + w(v) < t). We denote them by I which stands for Informed.

o The set W of vertices that are informed, but have not passed the delay, (i.e. t(v) +
w(v) > t,t(v) < t). We denote them by W which stands for Waiting.

e The set U of vertices that are not informed (i.e. ¢(v) < t). We denote them by U

44

standing for UnInformed.

The following fact justifies the proposed representation for the broadcast scheme:

Fact 2. In each time unit, any multicast schedule needs to make a mapping from vertices of
I to the vertices of U. Since in a complete graph any vertex of I is connected to all vertices

of U this mapping is just an ordering for the vertices Of U.

To create a correct ordering of the vertices of U, in broad_Guess(K,, u, br), in each

round we separate the uninformed nodes into three groups:

e A vertex v € U is called a late vertex if ¢t + 1 + w(v) > br which means that v
can not be informed before time unit br. Note that if there exists a late node, the
multicasting can not be completed before time br. In this case the algorithm should

return PoorGuess.

o A vertex v is called an external vertex if t + 1 +w(v) = br which means that v can be
informed before time unit br if and only if it gets informed at time unit ¢ otherwise
broadcasting can not be completed before time br.{ Note that when the number of
external vertices is more than informed vertices multicasting can not complete before
time unit br. In this case the algorithm again returns Poor Guess. We call these

nodes external since they create the external nodes of the potential broadcast scheme.

e A vertex v is called an-intemal vertex if ¢ + 1 4+ w(v) < br. It means that v can be
informed before time unit br, and it can participate in informing the other vertices.
It is rather easy td verify that if a vertex v € I have a choice between two internal
vertices vg, v, € U, it chooses the one with smaller weight; because such a vertex.
can start informing the other vertices sooner . We call these nodes internal since they

can be the internal nodes of _the potential broadcast scheme.

45

Algorithm 3 broad_Guess

Input: A weighted complete graph K, the originator u, and a guess br for broadcast time
Output: Either a broadcast scheme that completes in less than br time units or
PoorGuess

1: Initialize the sets I, W, U with ®, {u}, v — {u} respectively

2: Settimeftobe 0

3: while U # ® do {main loop on ¢}

4:

0 oo W

10:
11:
12:
13;
14:
15:
16:

17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:

Initialize the set In f(t) with ® {The set of vertices that receive the message at time
t} .
for any vertex v € U do
if t + 1 + w(v)) > br thén {Late vertices}
return PoorGuess
end if
if £ + 1 + w(v)) = br then {External vertices}

Inf(t) = Inf(t) U {v}

U=U - {v}
end if
end for
k = size of I - size of Inf(t)
if £ < 0 then : ,
return PoorGuess {The number of external vertices is more than informed ver-
tices} |
end if

Extract vy, vs, ...vx € U as k vertices with smallest weights in U
Inf(t) = Inf(t) U {v1,v2, .., 0%}
U=U-Inf(t)
W =WUInf(t)
for any vertex v € W do
if t(v) + w(v) = ¢ then

I=T1uU{v}
W =W - {v}
end if
end for
t=t+1

29: end while
30: return < Inf(0),Inf(1),..,Inf(t) >

46

The first phasé of the algorithm is to initialize the sets J, W, U. At the beginning, there
is no informed vertex (I = ®). While the originator is supposed to be the only waiting
vertex (W = {s}), the other vertices are considered to be uninformed (U = V' — {s}).

The algorithm involves a main loop that simulates the broadcasting in each round
t < br. So an iteration of this loop is equivalent to a time unit. The goal is to create
the set the vertices that get informed in each iteration (Inf(t)). In each time unit, first
it is checked if there is any late vertex, and if the number of external vertices is more
that informed vertices. In these cases the algorithm retumns PoorGuess. Otherwise the
algorithm makes an ordering of vertices of U in a way that the external vertices (if any)
have the highest priority. Among the other uninformed vertices those with lower weights
have higher priority because they can finish their internal process faster and contribute in
message passing. Based on this ordering, the set Inf(t) is constructed. Finally the sets
I, W, U are updated at the end of each iteration regarding to Inf(t). A precise explanation

is provided in Algorithm 3.
Theorem 18. The time complexity of the algorithm broad_Guess(K,,u, br) is O(n x br).

Proof. The main loop of the algorithm is perférmed O(br) times. It is rather easy to verify
that the two For loops in lines 5 and 22 of Algorithm 3 each take O(n) time. Also line 18
can be performed in O(n) times. To extract the k < n nodes with smallest weights in linear
time, we can sort the vertices which implies a preprocessing time of O(n logn) out of the
main loop. Overall we come to the time complexity of O(nlogn + n x br). Applying the

obvious bound br > logn we come to the complexity O(n x br). O

Corollary 4. There is an algorithm with time complexity O(n x brlogbr) to create the
optimum broadcast scheme in'an instant (u, K,,) of the broadcast problem on the complete

graph K, in which br is an upper bound for the broadcast time in K ,.

Proof. The complexity of broad_Guess is O(n x br). As mentioned before we just need to

call this algorithm O(log br) times in a binary search approach to find the smallest value of

41

br for which the algorithm returns a broadcast scheme. So in general the time complexity

would be O(n x brlogbr). O

Figure 13 shows the output of the presented approach as the optimum broadcast scheme

of the complete graph of Figure 10.

Figure 13: The optimum broadcast scheme for the complete graph of Figure 10 (node A is
the originator).

4.2 Broadcasting in Uniform Complete Graphs

In this section we study the problem of broadcasting in complete graphs in which all ver-
tices have the uniform weight w. This uniform weight can be a constant value or a func-
tion of the number on vertices. Because of the symmetric structure of the uniform com-
plete graphs, any arbitrary none-lazy scheme can be considered as the optimum broadcast

scheme. What we do in this section is to analyze the time complexity of the optimum

48

broadcast scheme in these graphs. This study is important because it provides a lower

bound for broadcast time in uniform weighted graphs.

Theorem 19. If f(t) denotes the number of vertices that receive the message in round t in

a weighted complete graph of 'um'form weight w then we would have:

ft) =1 t=0
f@t)=0 , 0<t<Lw
fO)=ft-1)+ft-w-1) t>w

Proof. 1t is assumed that originator receives the message at time ¢t = 0, so f(0) = 1.
Before time unit w, the originator has not completed its delay and no new vertex receive the
message, hence f(t < w) = 0. Attime unit w originator gets ready to inform other vertices,
and at time unit w + 1 the first neighbor of originator receives the message (f(w+1) = 1).
In each round ¢(t > w), any vertex that has préviously informed one of its neighbors can
inform another neighbor. It means the number vertices receiving the message in round ¢ is
at least equal to that of round ¢ — 1, which is f(¢ — 1). In addition, the vertices who have
received the message at time ¢ —w — 1 already completed their delay at time ¢ — w and can
inform one node at time ¢. In this way f(t —w — 1) additional vertices receive the message

at time ¢. Totally we would have f(¢) = f(t — 1) + f(t —w — 1). O

Note that f(¢) denotes the number of vertices that receive the message just in time ¢.

The following theorem gives the total number of vertices who have received the message:

Theorem 20. Total number of vertices who have received the message by the end of round

t, denoted by fioa(t), is equal to f(t + w + 1).

Proof. We need to show that |

49

t

Frotat(t) =) f(&) = ft+w+1) (1)

i=0
Using mathematical induction on ¢ the proof is straightforward.

As the base of induction, it is easy to verify for any t < w, fia(t) = 1 = f(t +w + 1).
Note that for any value of ¢ inrange w + 1 < t < 2w + 1 we have f(¢) = 1.

Forany t > w:

t—1

DA =D+ f) = flE+w)+ f) = flt+w+1)

=0 i=0
The second equality is due to induction hypothesis, while the third one is based on defini-

tion of f(t).
O

Note that functions f(t), fi.ta(t) concern the number of vertices that have received the
message. However in weighted-vertex model, the broadcast time is a matter of the number
of vertices that have completed their internal delay. Let g(t) denote the number of vertices

that complete their delay at round ¢. We call this number production number of round .

Theorem 21. For the production number of round t, the followings hold:

git)y=0 t<w

9(t) = f(t - k) t2w

Proof. Note that before round w, no vertex has completed its delay. Due to uniform weights
on the vertices, the vertices that complete their internal process at time ¢ > w are those who

have received the message at time ¢ — w. It means that g(t) = f(t — w). O

Theorem 22. Total number of vertices who have completed their delay at time t, denoted

by Giotal(t), is equal to f(t + 1).

50

Proof. We have to show

gtotal(t) = 29(2) = f(t + 1)

=0
Which is rather easy to verify:
t t t—w
Yoy =" fli—w)=)" fi)=f(t+1)
i=0 i=w i=0

The third equality holds based on equation (1).
O

Note that broadcasting completes when the number of vertices that have completed
their delay equals to the number of vertices. It means that b(u, K,) = min{¢|giotai(t) > n}

which results to the following theorem:

Theorem 23. In a complete uniform graph K,, the optimum broadcast time from any

originator u can be described as b(u, K,,) = min{¢|f(t + 1) > n}.

Theorem 23 reveals the relevance between the function f(t) and broadcast time; which
makes f(t) much more important to study. It should be mentioned that a similar recursion
to f(t) is already introduced in [7]. Also a more generalized version of the recursion is
introduced in [24]. Here we present an explicit representation of f(t) using an adapted

version of the proof presented in [24]:

Theorem 24.
w o a;‘.‘—(w+1) ,
=y ———
f®) Zw+1—wa;1
r=0
in which o,(r =0,1,...,w) are w +1 roots of the equation z¥** —z¥ —1 = (.

Proof. Note that

VTl —gz¥ —1=0 ()

is the characteristic equation of the recursion. Hence

51

f) =) dal, 3)
r=0
in which d,(r = 0, 1,..., (w — 1)) are arbitrary constants satisfying the recursion for f(t),

as can be verified by direct substitution and comparison with equation (2). So d, must

satisfy the following set of equations:

fO)=1=dy+di+...+dy
f(l)=0=d0a0+d1a1+...+dw_1aw

f@Q)=0=dyoi+dyo2+...+dy10?

flw)=0=doog +dyof +...+dy-1 o

The Vandermonde determinant,
Ia’ﬂ:H(ai-aj), i7j=0,1,"'7wa (4)
i>j

is not zero, since equation(2) has no multiple roots [24]. The determinant formed by replac-
ing the column of |of| by the f(5)’s reduces immediately to a product involving another

Vanderemonde determinant:

Qp...Qr_1 Qpy ... Oy H(ai - aj),
i>j

05 =0,1,...,(r=1),(r+1),...,w.

52

By Cramer’s rule, we have

ag... . Qp10psy...Q a¥
0 r—1Cr41 wo__ r (5)

= T e —5) (e~ a)

where j = 0,1,...,(r —1),(r +1),...,w. But the denominator of the last expression

is the derivative of the left member of equation (2) evaluated at z = «,.. Hence

aw
dr = . ’ (6)
(w+1)a¥ — wap-!

and, therefore,
w (t—(w+1))

Qp
f(t)::;_;w%—l'—wa;l

which completes the proof. O
The previous theorem along with Theorem 23 result in the following theorem:

Theorem 25. In the complete uniform graphs, if the weights on the vertices be a constant

value, the broadcasting completes in ©(logn).

Proof. Letp(t) = t“1 —t¥ —1 be the characteristic polynomial of f(t). Note that p(t) is a

continuous function and p(1) = =1 < 0, p(2) > 1. Applying intermediate value theorem

[80], we deduce that p(t) has a real root o, in the interval (1, 2). As a result we can say:

agt—(w+1)) ,

F) 2 2~ aate

Tw+1-wag!
in which ¢, ¢’ are constant values. So f(t) = Q(c!). Applying this bound on Theorem 23
we would have br(u, K,,) = O(logn)

In addition, it is easy to verify that f(t) decreases with respect to w, which means
fw(t) < fwf-l(t) <...< fO(t)

53

Applying equation fy(t) = 2!, we would have f(t) = O(2'). As aresult f(t) = O(2}).
Again using Theorem 23 we can conclude br(u, K,,) = Q(logn).
Having br(u, K,) = O(logn), and br(u, K,) = Q(logn) we conclude br(u, K,) =
O(logn).

a

We can use the results obtained for complete graphs to present a lower bound for broad-

cast time in weighted graphs in general sense.

Corollary §. For any originator u in arbitrary weighted graph G, we have br(u,G) =

QU(log n) in which n is the number of vertices in G.

Proof. Given a weighted graph G, we create a complete weighted graph K, from G by
adding all missing edges of G to K,,. These extra edges reduce broadcast time of K, so
br(u, K,) < br(u, G). Now if we reduce the weights of vertices in K, to Wi, in which
Wmin i the minimum weigh on a vertex of G, we come up with a uniform weighted graph
K suchthat br(u, K’) < br(u, K). From Theorem 25 we know that br(u, K’) = ©(logn).
Applying br(u, G) 2 br(u, K) we conclude br(u, G) = Q(log,, n).

O

Note that when the uniform weight of vertices is equal to 1, the recursion of f(t) turns
out to be the well-known Fibonacci sequence. In this case we have gsp1qi(t) = f(t + 1) =
l_&\};l + .5J in which & is the Golden Ratio constant [17]. Applying Theorem 4.2, we

would have: W

Theorem 26. In any compléte weighted graph K, in which all vertices have uniform
weight w = 1, for any originator u we have b(u, K,) = logg(n — 1) in which n is the

number of vertices and ® is the golden ratio constant.

54

Chapter 5

Heuristic Algorithms for Weighted

Vertex Broadcasting

In this chapter we present three heuristic algorithms for the broadcast problem in weighted
vertex graphs. In Section 5.1, a modified version of Dijkstra’s algorithm is presented which
creates weighted shortest path trees as potential good answers to the problem. In Section
5.2, a greedy algorithm is described; while in Section 5.3, an evolutionary algorithm is
proposed for the problem. In Section 5.4, the performance of these methods is compared
using computer simulation. It should be mentioned that in designing these algorithms we
used the idea behind the algorithms presented in [8]. There, the authors were interested in

heuristics for broadcasting in complete graphs under generalized postal model.

5.1 Modified Dijkstra’s Algorithm

Dijktra’s algorithm solves the single-source shortest-path problem in an arbitrary graph.
A version of this algorithm for creating shortest path trees in weighted-vertex graphs is

studied in [9]. The cost of a path between two vertices is considered to be the length of

the path plus the total weights of the vertices on that path. Note that originator has a cost

35

as well, which is equal to its weight. Figure 14(a) shows a weighted vertex graph; and
Figure14(b) denotes the shortest path tree created by Dijkstra’s algorithm. Note that c(v)
denotes the cost of a node v in the shortest path tree.

Here we apply Dijkstra’s algorithm to solve the broadcast problem in weighted-vertex
graphs. Having originator v, as the source of the tree, the shortest path tree rooted at v, can
be assumed to be a good solution to the problem.

The algorithm is the same as classical Dijkstra’s algorithm. The only difference is that
while adding a node v to the output tree, the weight of v is also added to the cost of v.
Algorithm 4 is a pseudocode for the weighted vertex Dijkstra’s algorithm. To present the

output tree, the algorithm determines the parent of each node (except originator) in the tree.

(a) A weighted weight graph
c=3 c=4

c=8 c=8
(b) The output tree of Dijkstra’s algorithm

Figure 14: Applying modified Dijkstra’s algorithm for the weighted-vertex broadcasting.
The dark node is the originator.

In [9], it is proved that, for any weighted vertex graph G(V, E), the time complexity of

56

Algorithm 4 Dijkstra’s Algorithm
Input: A weighted graph G = (V, E), the originator vy € V
Output: The shortest path tree from vy as a scheme for broadcasting from vy in G.
1: for any vertex v; € V do
22 c(v) & 0
32 p(v;) — NULL
4: end for
5: I « {vo} {the set of Informed vertices}
6: c(vg) — w(vy)
7
8
9

: UV — {w} {the set of Uninformed vertices}

: while U # ¢ do

: Find vueI,ve U, (u,v) € E such that

c(u) + w(v) = min; ;(c(?) +w(j)) [t € I,j € U, (4,) € E]

10 p(v) —u '
11: c(v) = c(u) +wv) +1
122 I —ITu{v}
132 U«U-{v}
14: end while
15: return p(vo), p(v1), -+ - p(vn)

Dijkstra’s algorithm, is O(|E| + |V| log |V]).

5.2 The Greedy Algorithm

In Dijkstra’s algorithm, the cost of a node remains constant once it has been set, ignoring the
fact that sending message to each neighbor requires a separate unit of time. Here we present
a greedy algorithm in which this issue is considered. The algorithm is based on the modified
Dijkstra’s algorithm. Let I represents the set of informed vertices in each iteration of the
algorithm, while U is the set of uninformed vertices. When a link (u,v) [u € I,v € U] is
attached to the broadcast tree; after setting the cost of w, the cost of u increases one unit.
As a result, an extra cost would be applied in the cost of any other neighbor of u which is
going to be informed in future iterations. Algorithm 5 is a pseudocode for this approach.
Note that the only difference between Algorithm 5 and Algorithm 4 is the additional
step in line 12 of Algorithm 5. However this small difference dramatically enhances greedy

approach in comparison with iDijkstra’s algorithm (as will be discussed later). Figure 15

57

c=10 c=10

Figure 15: Applying greedy algorithm on the graph of Figure 14(a). The dark node is the
originator. ‘ .

shows the output by the greedy method for the graph of Figure 14(a). It is easy to verify
that the broadcast time of this tree is equal to 9. Note that the broadcast time of the tree
generated by modified Dijkstra’s algorithm (Figurel4(b)) is 10. Later we generalize this
result to state that the performance of greedy algorithm, in average, is much better than

Dijkstra’s algorithm.

5.3 The Evolutionary Algorithm

There are another type of heuristic algorithms that can be applied for the broadcast problem
based on evolutionary processes. In [S9] a genetic algorithm is proposed for the problem in
classical model. Also a simulated annealing approach is presented in [8] for broadcasting in
generalized postal model. Here we introduce an evolutionary algorithm for broadcasting in
weighted-vertex graphs. The élgoﬁthm is desired to be simple enough for future theoretical
analysis.) | |

To obtain a good scheme.for an instrxnce G = (u,V) of broadcasting problem, We
star;c with a candidate solution (broadcast tree) which is initialized randomly. Then the
solution is improved in an evolutionary process. In each iteration of the evolution, a small

change, called mutation, is applied on the tree. If the broadcast time of the mutated tree is

58

Algorithm § Greedy Algorithm
Input: A weighted graph G = (V, E), the originator vy € V
Output: A tree rooted at vy as a scheme for broadcasting from v, in
G.
1: for any vertex v; € V do
22 t(y;) « o0
33 p(y) — NULL
4. end for
5: I « {vo} {the set of Informed vertices}
6
7
8
9

: c(vo) — w(wo)
: U — V — {uo} {the set of Uninformed vertices}
: while U # ¢ do
: Find ue I,ve U, (u,v) € E such that
c(u)+’w() = ming;(c(i) + w(5)) [i € I, j € U, (3,) € E]

10 p(v) «
1: cv)-—c(u)—i—w(v)-l—l
122 c(u)=c(u)+1

133 I« Tu{v}

4. Ue<—U-{v}

15: end while

16: return p(vo), p(v1), - - - p(vn)

better than the original one, the new tree will be accepted; otherwise the algorithm rejects
it. This process continues up to the point that the broadcast times of mutated trees do not
improve after a series of iterations. In this situation we séy the system is freezed and stop
the evolution process.

In this way, the process starts at a random solution and gradually moves to better and
better states until it cannot improve any more. Algorithm 6 precisely describes the evolution

process. The algorithm works based on the following assﬁmptions:

e A mutation is applied by removing a random edge of the tree, thus splitting a subtree
off it. Then the subtree is rejoined to the main tree by inserting an edge between the

root of subtree and a random node of the main tree.

o The algorithm always keeps the best solution to returns it, if at the end of the process

no better solution was found.

59

e An Equilibrium is reached if no improvement occurs after a certain number of itera-
tions (In Algorithm 6 this number is stored in valuable ctr). In this situation we reset

the current solution with the preserved best solution.

e After a certain number of repeated equilibriums, the system is considered to be
freezed and the algorithm terminates (in Algorithm 6 this number is stored in valu-

able freezLevel).

Algorithm 6 Evolutionary Algorithm

Input: A weighted graph G = (V, E), the originator vy € V, FreezBond [the freezing
bound indicating termination condition]. _

Output: A tree rooted ‘at vy as a scheme for broadcasting from vy in

G. _

1: curTree «— arandom schedule (spanning tree) of G {the current solution that is evolv-
ing })

2: bestTree — curTree, bestTime « bry,(curTree) {the best solution to the prob-
lem is kept in these variables} '

3: freezLevel =0
4: ent =0
5. while freezLevel < freezBond do
6: curTree — mutation(curTree)
7. if bry,(curTree) < bestTime then
8: bestTree « curlree
9: bestTime = bry,(curTree)
10: freezLevel =0
11: else
12: ent =cnt+1
13; if cnt > freezBond then
14: curTree « bestTree :
15: freezLevel = freezLevel + 1
16: end if
17. endif ,
18: end while

19: return bestTree

Note that the time compleziity of the algorithm is a matter of freezBond. Higher values
for this value may result in better solutions, however it may dramatically increase the time

complexity of the algorithm.

60

5.4 Simulations and Analysis‘

In this section we compare the performance of the heuristics introduced in the previous
section based on computer simulation. Note that theoretically we can not say that any of
the heuristics always performs better than another one. It may come to mind that the output
by the greedy algorithm is always better than modified Dijkstra’s algorithm. However it is
not true. Figure 16 shows a graph and output trees of the two algorithms. It can be verified
that broadcasiin'g in the scheme generated by Dijkstra’s algorithm completes after 4 rounds;
while the scheme created by greedy method needs 5 rounds to complete.

Here, we compare the average performance of the algorithms using computer simu-
lation. We implemented the algorithms presented in the prévious sections, as well as an
algorithm for creating random spanning trees as. the baséline solution. We applied each
algorithm 50 times on 100 different randomly generated graphs.

While creating random graphs, it is assumed that a specific number of edges is dis-
tributed uniformly between nodes of graph. Also it is assumed that the weights assigned to
the nodes obey a normal distribution.

Here, it is studied how the average weight and the avefage degree of vertices affect the

efficiency of the algorithms.

o Average weight of vertices:

In this experiment, we create random graphs on n = 200 vertices and 4000 edges (so
the average degree of each node is 40) to study the performance of the algorithms
when the average weight of the vertices changes. Note that the topology of graphs
is preserved when the weights change. Table 1 contains the broadcast times of the

algorithms in each cases.

As expected, in average, the results of greedy algorithm are much better than Dijk-

stra’s algorithm. Also, we can see when the weights grow up, the gap between the

61

w | Dijkstra | Greedy | Random | Evolutionary
0 42 8 12 11
1 46 9 21 17
2 53 13 29 26
5 53 25 75 62
10 60 40 121 107

20 69 70 255 214

40 154 157 573 457

60 230 234 766 690

80 266 267 1034 791

100 340 339 1188 999

Table 1: The broadcast time of the heuristics, when the average weight of vertices (W)
changes; The number of vertices is 200 and the number of edges is 4000.

performance of the greedy algorithm and Dijkstra’s algorithm decreases. A simple
explanation is that when the weights increase, this is the weight (and not degree) of
the vertices lying on th_é paths from bﬁginator to the leaves, that mainly determines
the broadcast time; while the the strength of the greedy algorithm is in producing
schemes with lower degrees. Note that the perforrhance of evolutionary algorithm
decreases when the weights grow up. We should recall that the efficiency of the evo-
lutionary algorithms is a matter of freezBound. In this experiment, this parameter is
set to be 10 which is rel;itively low. Hdwéver, as Table 1 shows, this 'fast’ algorithm

evolves randomly made trees in a reasonable rate.

e Average degree of vertices:

In this experiment, we create graphs on n = 200 vertices and average weight of
@ = 10. We change the number of edges to study the performance of the algorithms

when the average degree of nodes changes. Table 1 contains the broadcast times of

the algorithms in each case.

Theoretically, the broadcast time of the optimum scheme improves when the average

62

Table 2: The broadcast time ?of the heuristics, when the average degree of vertices (deg)
changes; The number of vertices is assumed to be 200 and the average weight is 10.

degree increases. However in Table 2 it can be seen that the performance of Dijkstra’s
algorithm decreases when the number of edges grows. The reason is that in this
algorithm, the cost caused by the degree of the vertices does not come to account; the
output of Dijkstra’s algé;rithm in large-degree graphs are trees with high-degree and
small diameter. As an extreme example, in complete graphs, the output of Dijkstra’s
algorithm is a star tree; which is the worst possible scheme (much wost than a random
scheme). The greedy approach is also based on minimizing the length of paths. So
in dense graphs the algorithm tends to create trees with small diameter. However the
cost applied for extra children compromises this drawback to some extent. In the

case of random trees and trees generated by evolutionary algorithms, the broadcast

deg | Dijkstra | Greedy | Random | Evolutionary
30 72 55 140 133
40 82 46 135 131
50 78 50 135 128
60 83 44 133 125
70 82 51 131 123
80 92 45 128 123
90 103 46 122 115
100 193 44 121 114
150 196 43 107 102

time reduces in high-degree graphs; which is quite natural.

63

(c) The output tree of greedy algorithm

Figure 16: A graph in which modified Dijkstra’s algorithm performs better (br = 4) than
the greedy algorithm (br = 5).

64

Chapter 6

Conclusion and Future Work

In this thesis we presented a new method for information dissemination in which the under-
lying communication network is modeled by a weighted-vertex graph. As a generalization
of the unweighted graphs, broadcasting in weighted graphs is more tricky than unweighted
graphs. While the broadcasting problem is NP_Complete for the weighted graphs, the prob-
lem remains NP_Hard for some classes of the weighted graphs including uniform graphs,
light graphs, even graphs and binary graphs. Verifying NP_Completeness for uniform and
odd graphs is not easy, and is a subject for future work. We show the existence of approx-
imation algorithms for the problem in general term, as well as better approximations for
some subclasses of weighted gll;aphs. Also Qe studied the broadcasting problem in complete
weighted graphs, and presented a pobl‘yr‘xomial algorithm for finding the optimum scheme in
those graphs. Specifically, we discussed the broadcast time of complete graphs with uni-
form weights on the vertices. Finally, we presented three heuristics for the problem, and
using computer simulation compared their performance.

As the future work, I am imainly interested in studying the problem when the weights
assigned to vertices may be negative. Althdugh negative weights do not make sense in
most of the applications, this taste of problem seems to have interesting characteristics in
theoretical aspects.

Another interesting problem is broadcasting in weighted digraphs. All the weighted

65

graphs discussed in this thesis were assumed to be undirected. In the case of weighted
digraphs, the problem turns to be a different (and much harder) problem that should be
studied separately.

Creating weighted graphs with good performance under specific limitation on the num-
ber of links and weights is another subject that may have applications in real world. This
would generalize the efforts performed for creating graphs on n vertices with minimum
number of edges in which broadcasting can be completed within theoretically minimal
time. _

What we did here was actﬁally applying claésical model (telephone model) on weighted
graphs. Broadcasting in weighted graphs under other existing models is another subject for
future work. Most of the models defined in Chapter 1 can be applied for weighted vertex
graphs as well.

Classical model can be applied in the weighted graphs in a different way to achieve a
new model. In this approach, it may be considered that in the broadcast trees the costs of
leaves not be added to the brpadcast time. In this way, broadcasting completes when all
leaves 'receive’ the message (they don’t need to perform internal delay). This assumption,
dramatically changes the model and most of the results of this thesis can not be applied on

that model. Studying this model may be a subject for future work.

66

Bibliography

[1] R. Ahlswede, H. Harutounian, and L. H. Khachatrian. Messy broadcasting in net-
works. In Communications and Cryptography , eds. R.E. Blahut, D.J. Costello Jr., U.
Mauter, and T. Mittelholzer (Kluw‘er, Boston/Dordrecht/London), pages 13-24, 1994,

[2] B. Aiello, F. T. Leighton, B. M. Maggs, and M. Newman. Fast algorithms for bit-
serial routing on a hypercube. In ACM Symposium on Parallel Algorithms and Archi-

tectures, pages 55-64, 1990.

[3] T. Asaka, T. Miyoshi, and Y. Tanaka. Multicast routing in satellite-terrestrial net-
works. Fifth Asia-Pacific Conference on Communications and Fourth Optoelectronics

and Communications Conference, 1:768-771 vol.1, 1999,

[4] A. Bar-Noy, S. Guha, J . Naor, and B. Schieber. Multicasting in heterogeneous net-
works. In STOC ’98: Proceedings of the thirtieth annual ACM symposium on Theory
of computing, pages 448-453, New Ydrk, NY, USA, 1998. ACM.

[5] A. Bar-Noy, S. Guha, J. Naor, and B. Schieber. Multicasting in heterogeneous net-
works. In STOC ’98: Proceedings of the thirtieth annual ACM symposium on Theory
of computing, pages 448453, New York, NYY, USA, 1998. ACM.

[6] A. Bar-Noy and C-T. Ho. Broadcasting multiple messages in the multiport model.
IEEE Transactions on Parallel and Distributed Systems, 10(5):500-508, 1999.

67

[71 A.Bar-Noy and S. Kipnis. Designing broadcasting algorithms in the postal model for
message-passing systems. In ACM Symposium on Parallel Algorithms and Architec-

tures, pages 13-22, 1992.

[8] A.Bar-Noy and U. Nir. The generalized postal model-broadcasting in a system with
non-homogeneous delays. Electrotechnical Conference, 1998. MELECON 98., 9th
Mediterranean, 2:1323-1327 vol.2, 18-20 May 1998.

[9] Michael Barbehenn. A note on the complexity of dijkstra’s algorithm for graphs with

weighted vertices. /EEE Transactions on Computers, 47(2):263, 1998.

[10] B. Beauquier, S. Pérennes, and O. Delmas. Tight bounds for broadcasting in the linear

cost model. Journal of fnterconnection Networks, 2(2):175-188, 2001.

[11] A. Bellaachia and A. Youssef. Personalized broadcasting in banyan-hypercube net-
works. Computer Communications and Networks, 1995. Proceedings., Fourth Inter-

national Conference on, pages 470474, 20-23 Sep 1995.

[12] J-C. Bermond, H. A. Harutyunyan, A. L. Liestman, and S. Perennes. A note on the
dimensionality of modified knodel graphs. International Journal of Foundations of

Computer Science, 8(2):109+, 1997.

[13] J-C. Bermond, P. Hell, A. L. Liestman, and J. G. Peters. Broadcasting in bounded
degree graphs. SIAM J. Discret. Math., 5(1):10-24, 1992,

[14] J-C. Bermond, P. Hell, A L. Liestman, and J. G. Peters. Sparse broadcast graphs.
Discrete Appl. Math., 36(2):97-130, 1992.

[15] P. Berthome, A. Ferreira, and S. Perennes. Optimal information dissemination in
star and pancake networks. IEEE Transactions on Parallel and Distributed Systems,

07(12):1292-1300, 1996.

68

[16] B. Birchler, A. Esfahanian, and E. Torng. Information dissemination in restricted
routing networks. In International Symposium on Combinatorics and Applications,

pages 33-44, 1996.

[17] D. M. Burton. The History of Mathematics : An Introduction. McGraw-Hill Sci-
ence/Engineering/Math, 2002.

(18] F. Comellas and C. Dalfo. Optimal broadcasting in 2-dimensional manhattan street

networks. volume 246, pages 135-140. Utilitas Mathematica Publishing Inc, 2005.

[19] F Comellas, H. A. Harutyunyan, and A. L. Liestman. Messy broadcasting in mesh

and torus networks. Journal of Interconnection Networks, 4:37-51, 2003.

[20] F. Comellas and P. Hell. Broadcasting in generalized chordal rings. Networks,

42(3):123134,2003.

[21] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramo-
nian, and T. Von Eicken. Logp: towards a realistic model of parallel computation.

SIGPLAN Not., 28(7):1-12, 1993.

[22] W. J. Dally and C. L. Seitz. Deadlock-free message routing in multiprocessor in-
terconnection networks. Computers, IEEE Transactions on, C-36(5):547-553, May
1987.

[23] A. Dessmark, A. Lingas, H. Olsson, and H, Yamamoto. Optimal broadcasting in
almost trees and partial k-trees. In STACS °98: Proceedings of the 15th Annual Sym-
posium on Theoretical Aspects of Computer Sciencg, pages 432-443, London, UK,
1998. Springer-Verlag. ‘ | |

[24] D. Dickinson. On sums involving binomial coefficients. The American Mathematical

Monthly, 57(2):82-86, 1950.

69

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

(33]

M. J. Dinneen, M. R. Fellows, and V. Faber. Algebraic constructions of efficient
broadcast networks. In AAECC-9: Proceedings of the 9th International Symposium,
on Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, pages 152—
158, London, UK, 1991. Springer-Verlag.

M. Elkin and G. Kortsarz. Combinatorial logarithmic approximation algorithm for
directed telephone broadcast problem. In STOC ’'02: Proceedings of the thiry-fourth
annual ACM symposium on Theory of computing, pages 438-447, New York, NY,
USA, 2002. ACM.

M. Elkin and G. Kortsarz. Approximation algorithm for directed telephone multicast

problem. Lecture Notes in Computer Science, 2719:188, 2003.

M. Elkin and G. Kortsarz. Sublogarithmic approximation for telephone multicast:
path out of jungle (extended abstract). In SODA *03: Proceedings of the fourteenth
annual ACM-SIAM symposium on Discrete algorithms, pages 76-85, Philadelphia,
PA, USA, 2003. Society for Industrial and Applied Mathematics.

M. Elkin and G. Kortsarz. Logarithmic inapproximability of the radio broadcast prob-
lem. J. Algorithms, 52(1):8-25, 2004.

S. Even and B. Monien. On the number of rounds necessary to disseminate informa-
tion. In ACM Symposium on Parallel Algorithms and Architectures, pages 318-327,
1989.

A. M. Farley. Minimal broadcast networks. Networks, 9(4):313-332, 1978.
A. M. Farley. Minimum-time line br_oadcast networks. Networks, 10(1):59-70, 1980.

A. M. Farley and S. T. ‘Hedetniemi. Broadcasting in grid graphs. In the 9** Conf.
Combinatorics, graph theory, and computing, pages 275-288. Utilitas Mathematica
Publishing Inc, 1978.

70

[34] R. Feldmann, J. Hromkovic, S. Madhavapeddy, B. Monien, and P. Mysliwietz. Op-
timal algorithms for dissemination of information in generalized communication

modes. Discrete Applied Mathematics, 53(1-3):55-78, 1994.

[35] P Fraigniaud. Approximation algorithms for collective communications with limited
link and node-contention. Technical Report LRI-1264, Universite Paris-Sud, France,
2000.

[36] P. Fraigniaud. Approximation algorithms for minimum-time broadcast under the

vertex-disjbint paths mode. Lecture Notes in Computer Science, 2161:440+, 2001.

[37] P. Fraigniaud. Minimum-time broadcast under edge-disjoint paths modes. In Inter-

national conference on fun with algorithm, 2001.

[38] P. Fraigniaud. A note on line broadcast in digraphs under the edge-disjoint paths
mode. Discrete Appl. Math., 144(3):320-323, 2004.

[39] P. Fraigniaud and E. Lazard. Methods and problems of communication in usual net-

works. Discrete Appl. Math., 53(1-3):79-133, 1994,

[40] P. Fraigniaud and S. Vial. Approximation algorithms for information dissemination
problems. IEEE Second International Conference on Algorithms and Architectures

for Parallel Processing (ICAPP), pages-155-162, 1996.

[41] P. Fraigniaud and S. Vial. Approximation algorithms for broadcasting and gossiping.

J. Parallel Distrib. Comput., 43(1):47-55, 1997.

[42] M. R. Garey and D. S. Jc;hhson. Compufers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

[43] T.Hart and H. A. Harutyunyan. Improved messy bfoadcasting in hypercubes and and

complete bipartite graphs. Congressus Numerantium, 156:124-140, 2002.

71

[44] T. Hart and H. A. Harutyunyan. New bounds on messy broadcasting. Conressus

Numerantium, 2002,

[45] H. A. Harutyunyan. Multiple message broadcasting in modified knodel graph. In
SIROCCQ, pages 157-165, 2000.

[46] H. A. Harutyunyan. Minimum multiple message broadcast graphs. Networks,

47(4):218-224, 2006.

[47] H. A. Harutyunyan and A. L. Liestman. More broadcast graphs. Discrete Applied
Mathmatics, 98(1-2):81-102, 1999,

[48] H. A. Harutyunyan and A. L. Liestman. Improved upper and lower bounds for k-
broadcasting. Networks, 37(2):94-101, 2001.

[49] H. A. Harutyunyanand A. L. Liestman. k?broadcasting in trees. Networks, 38(3):163-
168, 2001. |

[50] H. A. Harutyunyan and A. L. Liestman. On the monotonicity of the broadcast func-
tion. Discrete Math, 262(1-3):149~157, 2003.

[51] H. A. Harutyunyan, A.L. Liestman, and B. Shao. A linear algorithm for finding the

k-broadcast center of a tree. Networks, to appear.

[52] H. A. Harutyunyan and E. Maraachlian. Linear algorithm for broadcasting in uni-
cyclic graphs. In International Computing and Combinatorics Conference (CO-

COON), pages 372382, 2007.

[53] H. A. Harutyunyan and E. Maraachlian. On broadcasting in unicyclic graphs. Journal

of Combinatorial Optimization (JCO), 2008 (to appear).

[54] H. A. Harutyunyan and B. Shao. An efficient heuristic for broadcasting in networks.

Journal of Parallel and Distributed Computing, 66(1):68-76, 2006.

72

[55] H.A. Harutyunyan and A.L. Liestman. Messy broadcasting. Parallel Process. Lett.,
8:149-159, 1998.

[56] S. M. Hedetniemi, S. T. Hedetniemi, and A. L. Liestman. A survey of gossiping and

broadcasting in communication networks. Networks, 18(4):319-359, 1998.

[57] P. Hell and K. Seyffarth. Broadcasting in planar graphs. Australas. J. Combin.,
17:309318, 1998.

[58] M-C. Heydemann, J. Opatrny, and D. Sotteau. Broadcasting and spanning trees in de
bruijn and kautz networks. Discrete Applied Math, 27-28:297-317, 1992.

[59] Cory J. Hoelting, Dale A. Schoenefeld, and Roger L. Wainwright. A genetic algo-
rithm for the minimum broadcast time problem using a global precedence vector. In
SAC ’96: Proceedings of the 1996 ACM symposium on Applied Computing, pages
258-262, New York, NY, USA, 1996. ACM.

[60] J. Hromkovic, R. Klasing, B. Monien, and R. Peine. Dissemination of information in
interconnection networks (broadcasting & gossiping). Combinatorial Network The-

ory, pages 125-212, 1996.

[61] J. Hromkovic, R. Klasing, and E. Stohr. Dissemination of information in vertex-
disjoint paths mode, paft 1: General bounds and gossiping in hypercube-like net-

works. In Information and Computation, 1993.

[62] J. Hromkovic, R. Klasing, W. Unger, and H. Wagener. Optimal algorithms for broad-
cast and gossip in the edge-disjoint path modes (extended abstract). In Scandinavian

Workshop on Algorithm Theory, pages 219-230, 1994.

[63] A. Jakoby, R. Reischuk, and C. Schindelhauer. The complexity of broadcasting in
planar and decomposable graphs. Discrete Appl. Math., 83(1-3):179-206, 1998.

73

[64] K. Jansen and H. Miiller. The minimum broadcast time problem for several processor

networks. Theoretical Computer Science, 147(1-2):69-85, 1995.

[65] P. Kermani and L. Kleinrock. Virtual cut-through: a new computer communication

switching technique. Computer Networks, 3:267-286, 1979,

[66] L. H. Khachatrian and H. S. Haroutunian. Construction of new classes of minimal
broadcast networks. In Proceedings 3rd International Colloquium on Coding Theory,

pages 69-77, 1990.

[67] J-C. Kdnig and E. Lazard. Minimum k-broadcast graphs. Discrete Applied Mathe-
matics (DAM), 53(1-3):199-209, 1994.

[68] G. Kortsarz and D. Peleg. Approximation algorithms for minimum-time broadcast.

SIAM J. Discret. Math., 8(3):401-427, 1995.

[69] S. Lee and J. A. Ventura. An algorithm for constructing minimal c-broadcast net-

works. Networks, 38(1):6-21, 2001,

[70] X. Lin and L.M. Ni. Multicast communication in multicomputer networks. Parallel

and Distributed Systems, IEEE Transactions on, 4(10):1105-1117, Oct 1993.

[71] C.D. Morosan. Studies bf Interconnection Networks with Applications in Broadcast-

ing. PhD thesis, Concordia University, Montreal, Canada, 2007.

[72] L. M. Ni and P. K. McKinley. A survey of wormhole routing techniques in direct
networks. Computer, 26(2):62-76, 1993. |

[73] J-H. Park and K-Y. Chwa. Recursive circulant: a new topology for multicomputer
networks (extended abstliact). Parallel Architectures, Algorithms and Networks, 1994.

(ISPAN), International Symposium on, pages 73-80, 14-16 Dec 1994,

74

[74] S. Perennes. Broadcasting and gossiping on de bruijn shuffle exchange and similar

networks. Technical Report 93-53, I3S, 1993.

[75] R. Ravi. Rapid rumor ramification: approximating the minimum broadcast time. In

FOCS ’94 IEEE Symps. on Foundations of Computer Science, pages 202-213, 1994,

[76] J.-F. Saclé. Lower bounds for the size in four families of minimum broadcast graphs.

Discrete Math., 150(1-3):359-369, 1996.

[77] B. Shao. On k-broadcasting in graphs. PhD thesis, Concordia University, Montreal,
Canada, 2006.

[78] Z. Shen. An optimal broadcasting schema for multidimensional mesh structures. In
SAC ’03: Proceedings of the 2003 ACM symposium on Applied computing, pages
1019-1023, New York, NY, USA, 2003. ACM.

[79] P.J. Slater, E. J. Cockayne, and S. T. Hedetniemi. Information dissemination in trees.

SIAM Journal on Computing, 10(4):692-701, 1981.

[80] J. Stewart. Single Variable Calculus: Concepts And Contexts. Thomson Brooks/Cole,
2003.

[81] I. Wojciechowska. Broadcasiing in grid graphs. PhD thesis, Morgantown, WV, USA,
1999. Chair-Frances L. Scoy. |

[82] E.H-k. Wu and C. Chang. Adaptive multicast routing for satellite-terrestrial network.
Global Telecommunications Conference, 2001. GLOBECOM '01. IEEE, 3:1440-
1444 vol.3, 2001.

