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ABSTRACT OF THE DISSERTATION

Incremental Parallelization with Migration

By

Wenhui Zhang

Doctor of Philosophy in Information and Computer Science

University of California, Irvine, 2014

Professor Lubomir F. Bic, Co-Chair
Professor Michael B. Dillencourt, Co-Chair

This dissertation presents a new methodology for developing parallel distributed programs

in a series of incremental steps to achieve incremental parallelism and incremental perfor-

mance improvement. The methodology takes advantage of threads that are able to migrate

through the network and thus are able to follow distributed data. This allows the data to

be partitioned and distributed first, which guarantees that elements that are used together

in a computation are collocated on the same node. Next, the loops in the code are tiled

to minimize migration among nodes. After deciding on the location at which each loop is

to execute, the necessary migration and remote access statements are inserted to make the

code executable. This process is repeated based on feedback obtained from the execution,

which may improve the overall performance by suggesting a different data distribution or a

different coarseness of tiling. We show each steps and the performance data for two well-

known application. Also, we illustrate the trade-offs using a well-known application with

two different data distributions.

xi



Chapter 1

Introduction

1.1 Research Motivation and Target Problem

Generating a parallel program from a sequential one for a distributed-memory environment

is an important and difficult problem. A common approach is to decompose the original

program into smaller computations and then to construct a distributed schedule for the

computations [5, 15, 20, 21, 28, 53, 60, 64, 69]. The distributed scheduling task consists

of several subtasks: assigning each computation to a processor, chronologically ordering the

computations on each processor, and scheduling the data movement so that each computation

has the necessary data when it executes. This is difficult under the classical message-passing

approach, in which processes are stationary and any remote data required by a process is

communicated through send/receive primitives.

The Navigational Programming (NavP) [34] [39] approach to generating a distributed parallel

program can be summarized as follows. (1) the data are distributed; (2) the program is

divided into computations (tiles) based on the data distribution, and each computation

is assigned to a processor (again based on the data distribution); (3) the computations are

1



scheduled in those tiles and combined into parallel threads that migrate through the network

based on their data dependencies.

NavP [40] is still considered SPMD (Single Program Multiple Data) in that different processes

execute the same code with different data, and differs from the traditional SPMD view [40, 41]

in that processes are able to access remote data by migrating to the target node. Hence the

locus of any given computation is not stationary but follows the distribution of data as

appropriate for best performance.

All three steps are extensions of existing techniques and tools. Data distribution (step 1)

uses an affinity graph [43] produced by instrumenting the program and then partitioning the

graph using Metis [26] . To break the program into subcomputations (step 2) we rely on the

well-known techniques of tiling [23, 24, 52, 67, 68]. The main difference is that the execution

provides feedback that guides the choice of the tile size. Scheduling (step 3) is performed

only after each computation has been assigned a processor. It is straight forward because it

follows the existing data dependencies; it is a form of dataflow scheduling [2, 56].

The NavP-based methodology provides two major advantages for distributed parallel pro-

gramming:

1. Incremental parallelism. The sequential program evolves into the distributed pro-

gram in a series of incremental steps: the data is distributed, the program follows the

data, the program is divided into smaller computational units, the computational units

are scheduled. At any point during this evolution there is a viable (executable) pro-

gram that has the same semantics as the original sequential program. One consequence

of this is that it is possible to return to any decision made during the generation of the

parallel program, change the decision, and continue the generation process from that

point forward.

2. Incremental performance improvement. The feedback mechanism provides per-

2



formance evaluations, including speedup and load balance, that can be used to adjust

the output of the preceding steps. In this way, the methodology is a closed-loop system

that incrementally improves the performance of the parallel and distributed program.

What enables the incremental parallelization and performance improvement is computation

mobility. Our approach uses the principle of pivot-computes , which is different from the

commonly used owner computes [16]. Pivot computes performs the computation on the node

that contains the largest portion of the data, regardless of whether it owns it (writes it) or

only reads it and then writes it on some other node. This is only possible if computations can

migrate to the data. Consequently, the data layout can be decided first, the computations

then follow the data distribution. This simplifies the programming task because it decouples

the two main problems: data distribution/placement and code parallelization.

Another consequence of distributing data first is better performance, since migrating compu-

tation to data is frequently more efficient (only the state moves, not the code) than moving

the data to computation.

This thesis presents a new methodology for developing parallel distributed programs in a

series of incremental steps to achieve incremental parallelism and incremental performance

improvement. The methodology takes advantage of threads that are able to migrate through

the network and thus are able to follow distributed data. This allows the data to be par-

titioned and distributed first, which guarantees that elements that are used together in a

computation are collocated on the same node. Next, the loops in the code are tiled to

minimize migration among nodes. After deciding on the location at which each loop is to

execute, the necessary migration and remote access statements are inserted to make the

code executable. This process is repeated based on feedback obtained from the execution,

which may improve the overall performance by suggesting a different data distribution or a

different coarseness of tiling.

3



1.2 Dissertation Overview and Organization

Navigational Programming (NavP) offers a different approach to generating a distributed

parallel program from a sequential one, in that the transformation occurs incrementally and

produces an executable program at each stage. Under NavP, computations migrate using

hop() statements inserted explicitly by the programmer. The cost of a hop() is essentially

the cost of moving the data stored in its thread variables plus a small amount of state data.

Although the state of the computation is moved on each hop, the code is not moved. The

computations carry small amounts of data, such as intermediate results, as they migrate to

large data structures that are stationary. The synchronization among different migrating

computations is achieved by waiting on and posting of events.

In this dissertation, we describe the methodology of Incremental Parallelization with Mi-

gration. In Chapter 2, We introduce the navigational programming. Chapter 3 presents

the methodology of Incremental Parallelization with Migration, and describes its steps us-

ing two examples [71] [44]. Chapter 4 shows the performance data for two examples, also

compares the performance of NavP and MPI implementations [71] [44]. Chapter 5 gives a

proof-of-concept extension of NavP on cloud with preliminary results and future improve-

ment. Chapter 6 discusses related works. Finally, we conclude in Chapter 7 with a summary

of the contributions of this dissertation and suggestions for further research.

4



Chapter 2

Navigational Programming

2.1 Overview

Navigational Programming (NavP) [34] [39] [30] is a methodology for distributed parallel

programming based on the use of self-migrating computations. In NavP code, a program-

mer inserts navigational commands, i.e., hop() statements, to migrate the computation locus

in order to access remotely distributed data and spread out computations. Small data is

carried by the moving computation in agent variables, which are private to a computation

thread and available to the thread wherever it migrates. Large data that stays on a com-

puter is held in node variables that are resident on a particular PE (processing element)

and are shared by all computation threads currently on that PE. The cost of a hop() is

essentially the cost of moving the data stored in agent variables plus a small amount of

state data. Although the state of the computation is moved on each hop, the code is not

moved. The synchronization among different migrating computations is done through events

(signalEvent() and waitEvent()). A programmer can inject, or spawn, a migrating thread

at command line. The injection of a thread can also be done by another thread, called a

spawner. All injections happen locally (i.e., a thread can spawn another thread only on the

node on which it currently resides).There are two kinds of variables in NavP programming,

5



one is called node variable, which is usually for large amount of data and stay in one node. It

could be used for synchronizing between different threads/processes in the same node. The

other is thread-carried variable which is useful for migrating with the threads.

NavP provides a different view of distributed computation from the classical SPMD (Single

Program Multiple Data) view [40, 41]. The SPMD view describes distributed computations

at stationary locations, while the NavP view describes a computation following the movement

of its locus. The NavP view changes the way distributed parallel programs are composed

and provides some new benefits.

The good example to show the differences of those two views is the train example [39]. A

train goes across the cities and arrives and departures at certain stations at certain time.

The train schedulers and the taxi drivers are interested in when a train arrives at what time

at what station, whereas, the travelers are interested in ternary which shows the sequences

of time and station that my train will arrive in order. Fig. 2.1 shows the traces of four

travelers. So Fig. 2.2 [39] shows the view of schedulers and taxi drivers, which is SPMD MPI

view, and Fig. 2.3 shows the view of travelers, which is NavP view. Those two views are all

useful and for different purposes. NavP view is for programmers to navigate computation

across distributed systems.

We use a code example [39] which only has three lines of sequence code to show the differences

of the two different views (SPMD via NavP). The sequential algorithm is listed in Fig. 2.4.

A and B are blocks with order n, and v1, v2 and v3 are vectors with size n. Line (1) gets

the diagonal entries of matrix A and assigns them to the intermediate vector v1. Line (2)

multiplies the matrix B by the intermediate vector v1, and assigns the intermediate result

to the vector v2. At the end, ine (3) computes the matrix A by the intermediate vector v2

and assigns the result to the final vector v3.

We assume A and B are too large and cannot be hold in one physical node. Fig. 2.5 list the

6
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t

s4s3s2s1 s
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t1

Figure 2.1: Four Traveler’s Traces

s1 s2 s3 s4

t1 Tr1 Tr2 Tr3 Tr4
t2 Tr2 Tr1 Tr4 Tr3
t3 Tr1 Tr2,Tr4 Tr3
t4 Tr2 Tr1,Tr3 Tr4

Figure 2.2: SPMD MPI View:Arrivals Departures at stations
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Tr1 Tr2 Tr3 Tr4

t1 s1 s2 s3 s4
t2 s2 s1 s4 s3
t3 s1 s2 s3 s2
t4 s2 s1 s2 s3

Figure 2.3: NavP View:Itineraries of trains

(1) v1 = diag (A)

(2) v2 = Bv1

(3) v3 = Av2

Figure 2.4: Example: Three lines of code computing on distributed data (a) Sequential

pseudocode for MPI, which needs to distinguish whether the node is PE 0 or PE1. If in PE0,

it needs first getting A and sending to PE0, then, waiting for B from PE1, finally computing

the final resultl; if in PE1, first it needs waiting from A from PE0, computing and sending

intermediate result to PE0. Fig. 2.6 list the pseudocode for NavP, which is computational

view, just needs to follow the execution flow going across the nodes.

Fig. 2.7 [39] shows the dependency graph in distributed system. Fig. 2.8 [39] shows the

SPMD MPI view to distinguish different nodes and Fig. 2.9 [39] shows NavP view which

just follow the execution flows going across distributed nodes.

A NavP application consists of a dynamically created, set of autonomous threads which can

migrate through the network and communicated with each other in various ways.
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(0.1) if (rank == PE0)

(1) v1 = diag (A)

(1.1) Send(v1, PE1)

(1.2) Recv(v2, PE1)

(3) v3 = Av2

(3.1) else if (rank == PE1)

(3.2) Recv(v1, PE0)

(2) v2 = Bv1

(2.1) Send(v2, PE0)

(2.2) end if

Figure 2.5: Example: Three lines of code computing on distributed data (b) MP

(1) mv1 = diag (A)

(1.1) hop(PE1)

(2) mv2 = B mv1

(2.1) hop(PE0)

(3) v3 = A mv2

Figure 2.6: Example: Three lines of code computing on distributed data (c) NavP

2.2 Characteristics

A preliminary version of the NavP model was presented in [29, 58], and NavP is keeping

improved since then [34] and extends with Java version [57]. The following list the key

characteristics of NavP:

• Self-migration: A process is able to pack up its state, recreate itself on another node

within the logical network, and to continue executing at the remote site. If the original

process then dies after recreating itself, this operation is called a hop operation. If the

caller continues, this is called a clone operation.

• Priority-based migration: Certain applications require that processes arriving at a

particular node from different locations are processed in a certain predefined order.

To make this more efficient, we allow processes to specify a priority as part of their

migration statement. The receiving node maintains all arriving processes in a priority

9
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queue ordered by process priority. When the currently-running process gives up the

CPU, it is placed appropriately in the ready queue according to its priority, and the

highest-priority process is selected to run next.

• Stationary and mobile data: There are two kinds of variables in NavP programs. Mo-

bile data is private to each process and its carried with it as the process migrates among

the machines. Stationary data is bound to a specific logical node and is accessible to

processes currently residing on that logical node.

• Process interaction: Processes can interact with each other only when they reside on

the same logical node. Data communicating is achieved through shared node variables.

Process synchronization is achieved through events and wait/signal operations.

• Non-preemptive scheduling: NavP assumes a nonpreemptive scheduling discipline,

which simplifies issues of synchronization. On each node, there is only one execu-

tion thread running at any time. An execution thread cannot be preempted. The only

way it can be blocked is when it blocks itself by issuing specific commands such as

wait(), yield(), or a blocking receive request. Nonpreemptive scheduling eliminates the

need for explicit critical sections when accessing shared variables and reduces context-

switching overhead.

• Synchronization: The extended NavP model provides events and the standard primi-

tives of wait and signal for synchronizing threads on the same logical node. Applica-

tions can create any number of distinct events. If an event has not been signaled, a

wait operation on that event causes the thread to become blocked. When the event is

signaled, the process becomes unblocked and becomes eligible for scheduling. An event

can only be signaled once. Any process that waits on an event that has already been

signaled is not blocked. A process can wait on multiple events, specified as an array of

events, all of which must be signaled before the process can continue. A process can

also wait on a disjunction of events, in which case it will be awakened when at least

13



one of the events has occurred and a return value will tell it one of the events that has

occurred.

• Remote process interaction: In the basic NavP model, the only mechanism for in-

terprocess communication is the shared node variable area. This means that for two

processes to communicate, they must reside on the same logical node. This has the

advantage of simplicity, but it may also introducing unnecessary migrations to access

remote data. The extended NavP model solves this problem by introducing a form

of remote communication between threads on different machines. This can take two

different forms, both of which allow a process to deposit data into a named mailbox

without migrating to the target. The difference is on the receiving side. In the first

form, which corresponds to a conventional send/receive, there is a corresponding re-

ceive command in which the receiver specifies how data sent to that mailbox is to be

handled. In the second form, which is a remote write operation, the receiver specifies

once how data sent to this mailbox is to be handled. Each time data is sent to the

mailbox, the specified handler is automatically invoked.
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Chapter 3

Incremental Parallelization

3.1 Methodology Overview

Navigational Programming (NavP) [34] [39] offers a different approach to generating a dis-

tributed parallel program from a sequential one, in that the transformation occurs incremen-

tally and produces an executable program at each stage. Under NavP, computations migrate

u[34] [39] sing hop() statements inserted explicitly by the programmer. The cost of a hop()

is essentially the cost of moving the data stored in its thread variables plus a small amount

of state data. Although the state of the computation is moved on each hop, the code is not

moved. The computations carry small amounts of data, such as intermediate results, as they

migrate to large data structures that are stationary. The synchronization among different

migrating computations is achieved by waiting on and posting of events.

The NavP approach to generating a distributed parallel program can be summarized as

follows. (1) the data is distributed; (2) the program is divided into computations (tiles)

based on the data distribution, and each computation is assigned to a processor (again based

on the data distribution); (3) the computations are scheduled in those tiles and combined

into parallel threads that migrate through the network based on their data dependencies.
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The NavP methodology consists of the following steps.

The transformations under the NavP view are depicted in Fig. 3.1 and Fig. 3.2. The arrows

indicate hop() operations. The basic idea behind the transformations is to spread out com-

putations using self-migrating computation threads as soon as possible without violating any

dependency conditions.

The basic idea of distributed sequential computing(DSC)[42] Transformation is that Large

data is distributed among the PEs, and hop() statements are inserted into the sequential

code in order for the computation to chase large data while carrying small data. The DSC

Transformation is schematically depicted by Fig. 3.1(a) and (b). The resulting program

performs distributed sequential computing. The immediate benefit of DSC is that, with

a small amount of work, a sequential program can efficiently solve large problems that

cannot fit in the main memory of one computer. By using a network of workstations, the

DSC program removes paging overhead by trading it against a modest amount of network

communication [29]. DSC also serves as the starting point of parallel program development

in NavP.

Distributed and parallel computing (DPC) could have more than one forms. for example:

Pipelining form: This transformation is depicted by (b) and (c). The basic idea is to overlap

the execution of multiple DSC threads by staggering their starting times. Synchronization

may be necessary to ensure that the data dependencies among the DSC threads are not

violated. Or DPC could be Phase-shifting form: Sometimes the dependency among different

computations allows different DSC threads to enter the pipeline from different PEs. In these

situations, we can phase shift the DSC threads to achieve full parallelism, as depicted in (c)

and (d).

In summary, the NavP methodology consists of the following steps, illustrated in Fig. 3.3

with an example.
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Figure 3.1: The code transformations in NavP. (a) Sequential. (b) DSC
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Figure 3.2: The code transformations in NavP. (c) Pipelining (d)Phase shifting
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1. Data distribution: This step runs the sequential program using a small data sample

and generates the initial data partitioning and distribution.

2. Code Transformation: This step distributes the computation. It partitions the original

sequential program into smaller units, based on the given data distribution, it assigns

each unit to execute on one of the nodes, and it inserts appropriate navigational state-

ments into the code. The resulting code is still sequential but it runs in a distributed

manner using migration. This is referred to as distributed sequential computing (DSC).

3. Parallelization: This converts the single-threaded DSC into multiple threads. Each

thread combines a number of units created in the previous step and adds signals to

synchronize between different threads. Each of the threads is scheduled to run as early

as possible, subject to the constraint that all dependencies must be respected. The

result of this step is to generate distributed and parallel computing (DPC).

4. Feedback: This evaluates the performance of the DPC program in terms of speedup

and load balance, by taking into account parallelism, communication cost, computation

cost, and other overhead such as context switch. The purpose of this step is to provide

information for the previous steps to improve performance.

After Data distribution, the data is distributed into different nodes represented by different

shapes. After the Code Transformation, distributed sequential computing (DSC) is gener-

ated, it is still a single and sequential DSC thread but runs in a distributed manner using

migration.after Parallelization, distributed and parallel code (DPC) is generated, it splits

the single DSC thread into three threads and schedules those three threads as early as pos-

sible, which means that the resulting code is multi-threaded code and each of the threads is

scheduled to run as early as possible, subject to the constraint that all dependencies must

be respected. So, in this example, these three threads starts at the same time at different

nodes consistent with the constrains of data dependencies.

19



 

 

 

 

 

 

 

Sequential code 

 

 PE0 PE1 PE2 

0,0 

2,1 

1,2 

1,0 

0,1 

2,2 

2,0 

1,1 

0,2 

Time 
 

 PE0 PE1 PE2 

0,0 

2,1 

1,2 

1,0 

0,1 

2,2 

2,0 

1,1 

0,2 

Time 

Data Distribution 

Code Transformation 

Parallelization 

DPC(Distributed 
Parallel 
Computing 

DSC(Distributed 
Sequential 
Computing 

Data Distribution 

Feedback 

Figure 3.3: Methodology
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(1) do i=0,N-1

(2) do j=0,N-1

(3) t = 0.0

(4) do k=0,N-1

(5) t += A(i,k) * B(k,j)

(6) end do

(7) C(i,j) = t

(8) end do

(9) end do

Figure 3.4: Matrix Multiplication Sequential Pseudocode

3.2 Two Examples

3.2.1 An Example of Matrix Multiplication

Matrix multiplication is a fundamental operation of many numerical algorithms. Pseudocode

for sequential matrix multiplication is listed in Fig. 3.4. Throughout the paper, we assume

N is the order of the square matrices.

Matrix A is divided by row blocks and matrix B is divided by column blocks (as shown in

Fig. 3.5 ).
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Figure 3.5: Matrix multiplication

3.2.2 An Example of ADI

We will describe our methodology using the code shown in Fig. 3.4 as an example [31],

which is an abstraction of a method for solving a 2-dimensional heat equation originally

presented in [31]. The example is very good application which shows extensive both data

communication and data computation, also strong data dependencies.

It solves a 2D heat equation using the alternating direction implicit (ADI) method, which

is a finite difference method for solving parabolic, hyperbolic and elliptic partial differential

equations in numerical analysis [1]. It used the PeacemanRachford algorithm to formulate

the numerical solution of the partial differential equation as a second-order approximation

by solving two sets of tridiagonal systems of linear equations. The variables of the first set

of tridiagonal systems correspond to elements from each column of an intermediate matrix,

and the variables of the second set of traditional systems correspond to elements from each

row of a target matrix [62]. Using the Thomas algorithm, It reduce a traditional system of

linear equations to three sets of first-order recurrence equations .

The example is a variant of the alternating direction implicit (ADI) method, which makes

multiple sweeps in different directions across an array representing the discrete domain. The

example shows four 2D arrays involved in the computation (u, v, p, and q). It also shows

the computation kernel which consists of an outer loop (line 1) that repeatedly performs a

column sweep phase (lines (2)-(18)) followed by a row sweep phase (lines (19)-(35)). The

row sweep phase and the column sweep phase consist of four loops each, for a total of 8
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inner loops performed for each iteration of the outer loop. In Fig. 3.8, it shows the execution

sequences of the major four loops along with the pseudocode. In loop2, the inner loop

computes from left to right and outer loop sweep from top to bottom. In loop4, the inner

loop computes from bottom to up and outer loop sweep from left to right. In loop6, the

inner loop computes from left to right and outer loop sweep from top to bottom. In loop8,

the inner loop computes from right to left and outer loop sweep from top to bottom.

The methodology discussed in this paper takes a specified data distribution as a starting

point. We use the two data distributions illustrated in Fig. 3.7 to show the methodology

and compare the respective performance. The data distributions are shown for 3 nodes, each

represented by a different shade. The first was generated by our Data Distributor [43]; while

the second is the well-known twisted data layout [59]. In each distribution, all four 2D arrays

(u, v, p, and q) are distributed as shown in the corresponding figure.
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Perform NT iterations

(1) for (t=1; t<= ITERATIONS;t++){

//Column sweep

(2) for (i=1; i<=N ; i++){

(3) q[i][0]=v[0][i];

(4) }

(5) for (i=1; i<=N ;i++){

(6) for( j=1; j<=N ;j++){

(7) p[i][j]=F1(p[i][j-1]);

(8) q[i][j]=F2(u[j][i-1],u[j][i],

u[j][i+1],q[i][j-1],

p[i][j-1]);

(9) }

(10) }

(11) for (i=1; i<=N; i++){

(12) v[NX+1][i]= t+NX+1+i+DT+DX+DY;

(13) }

(14) for (j=1; j<=N ;j++){

(15) for (i=N ;i>=1;i--){

(16) v[i][j]=F3(p[j][i],v[i+1][j],

q[j][i]);

(17) }

(18) }

// Row sweep

(19) for (i=1; i<=N; i++){

(20) q[i][0]=u[i][0];

(21) }

(22) for (i=1; i<=N; i++){

(23) for (j=1; j<=N ;j++){

(24) p[i][j]= F4(p[i][j-1]);

(25) q[i][j]=F5(v[i-1][j],v[i][j],

v[i+1][j],q[i][j-1],

p[i][j-1]);

(26) }

(27) }

(28) for (i=1; i<=N; i++){

(29) u[i][NY+1]= t*DT+i*DX+1.0;

(30) }

(31) for (i=1; i<=N; i++){

(32) for (j=N ;j>=1;j--){

(33) u[i][j]=F6(p[i][j], u[i][j+1],

q[i][j]);

(34) }

(35) }

(36)}

Figure 3.6: ADI pseudocode
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                            (a)                                                                (b) 

Figure 3.7: Two data distribution patterns. (a) unstructured data distribution (b) twisted
data distribution
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2

for (t=1; t<=NT;t++){
for (i=1; i<=N ; i++){

q[i][0]=v[0][i];
}
for (i=1; i<=N ;i++){

for( j=1; j<=N ;j++){
p[i][j]=f(p[i][j-1]);
q[i][j]=f(u[j][i-1], u[j][i], u[j][i+1], q[i][j-1],p[i][j-1]);

}
}
for (i=1; i<=N; i++){

v[NX+1][i]=t+NX+1+i+DT+DX+DY;
}
for (j=1; j<=N ;j++){                   

for (i=N ;i>=1;i--){
v[i][j]=f(p[j][i], v[i+1][j], q[j][i]);

}
}

for (i=1; i<=N; i++){
q[i][0]=u[i][0];

}
for (i=1; i<=N; i++){

for (j=1; j<=N ;j++){
p[i][j]=f(p[i][j-1]);
q[i][j]=f(v[i-1][j],v[i][j],v[i+1][j],q[i][j-1],p[i][j-1]);

}
}

for (i=1; i<=N; i++){
u[i][NY+1]=t*DT+i*DX+1.0;

}
for (i=1; i<=N; i++){

for (j=N ;j>=1;j--){
u[i][j]=f(p[i][j], u[i][j+1], q[i][j]);

}
}

}

N (i)

N (j)

N 

N (j)

N (i) 

N  

Loop2

Loop4

Loop6

Loop8

Figure 3.8: ADI Code and Execution Sequence
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3.3 Code Transformation and Placement

Starting from the sequential code and an initial data distribution, we first build the DSC that

navigates through the network and accesses the distributed data sequentially. The simplest

way of constructing a working DSC program would be to insert conditional hop statements

in the sequential program before each data access. The program resulting from this simple

strategy would be correct, but it could be quite inefficient due to the large number of hops.

To reduce the number of hops we first partition the iteration space into smaller tiles, which

will be executed locally. As discussed below, we use tiling to reduce communication and

increase the opportunity for parallelism. After the tiling operation is complete, we assign a

location to each tile.

3.3.1 Partitioning phase 1: Adapt to the data distribution

Tiling proceeds in two phases. The goal of the first phase, which is performed once, is to

minimize communication overhead. The second phase, discussed in the next subsection, may

be repeated multiple times and is intended to increase opportunities for parallelism.

We define the write set and read set of a tile to be, respectively, the set of all data written

by and read by the tile. The partitioning in this first phase is then based on the following

principles:

1. Homogenous write sets: All the writes to memory from any given tile are to data

on a single machine.

2. Isothetic cuts: The write sets of the tiles are all rectangles and the boundaries

between write sets of tiles all fall on a common set of vertical and horizontal lines.

3. Minimized communication: The tiles should be as large as possible, consistent with
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the first two conditions.

The read sets are not necessarily homogenous. Condition 2 implies that all write sets are

rectangles, but the rectangles do not necessarily have the same size. This can be seen in

Fig. 3.30(a), which shows the result of applying phase 1 partitioning to the data distribution

of Fig. 3.7(a).

3.3.2 Partitioning phase 1: Example of ADI

The tile size can be changed without changing the codes. Fig. 3.10 Fig. 3.11 illustrates the

first phase of tiling for a 3 × 3 twisted layout. Considering loop 4 (lines 14-18 of Fig. 3.6 ),

if this loop is transformed to DSC simply by inserting hop statements, three hops would be

required per column for a total of 3N hops (Fig. 3.10(a)). However, if the code is transformed

as shown in Fig. 3.9, then only 9 hops are necessary for the entire loop as can be seen in

Fig. 3.10(b).
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for (J=0; J < num_blk_J; J++)

for (I = (num_blk_I-1); I >= 0; I--)

for (j = j_start (I,J);

j <= j_end(I,J); j++)

for (i = i_end (I,J);

i >= i_start (I,J); i--)

v[i][j] = F3(p[j][i],

v[i+1][j],q[j][i]);

Figure 3.9: Computing sequences of different number of tiles

        

                                                        
(a)  (b) 

Figure 3.10: Computing sequences of different number of tiles. (a) Original computation
sequence of loop4 (b) Computing sequence of loop4 after tiling

        

                                                   

  

(C ) 

Figure 3.11: Computing sequences of different number of tiles. (c) Computing sequence of
loop4 with sub-tiles
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3.3.3 Partitioning phase 1: Example of Matrix Multiplication in

one dimension

We first apply transformation to sequential matrix multiplication, as depicted in Fig. 3.12

where we assume N = 3. This DSC transformation essentially distributes the computation in

the j dimension. The PE network is 1D in which each PE has a unique identifier HnodeID =

0, 1, ..., N - 1 from west to east. Again, the arrows represent hop() operations. Thick boxes

contain node variables on different machines, and thin boxes carry agent variables. All PEs

are assumed to be fully connected via a collision-free switch, rather than being connected as

a ring. This assumption is true for most modern hardware environments, and it makes the

initial staggering (i.e., moving the entries of the three matrices to the right places before any

computation begins) faster, because each matrix entry can be shipped to any destination

directly instead of having to go stepwise through a number of intermediate PEs.

Pseudocode for DSC matrix multiplication is listed in Fig. 3.12. In the pseudocode hereafter,

A and B indicate node variables, whereas mA and mB represent agent variables. 1 Matrix

A is loaded into agent variable mA and carried by the migrating thread.

In Fig. 3.13, matrix A is initially put on the PE with HnodeID = 0, and the columns of

matrices B and C are distributed such that B(., j) and C(., j) are on the PE with HnodeID

= j. In Fig. 3.13, node(j) maps to the PE that hosts column j of matrices B and C. Every

time the computation thread hops back to node(0), it will pick up a different row of matrix

A for the computation of the loop over j.
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Figure 3.12: DSC

(1) hop(node(0))

(2) inject(RowCarrier)

(1) RowCarrier

(2) do mi=0,N-1

(3) do mj=0,N-1

(4) hop(node(mj))

(5) if(mj=0) mA(*) = A(mi,*)

(6) t = 0.0

(7) do k=0,N-1

(8) t += mA(k) * B(k)

(9) end do

(10) C(mi) = t

(11) end do

(12) end do

(13) end

Figure 3.13: Pseudocode for DSC
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3.3.4 Partitioning phase 1: Example of Matrix Multiplication in

second dimension

In second dimension, the first step is to introduce a 2D network in which each PE has a unique

2D identifier (HnodeID, VnodeID), where HnodeID = 0, 1, ..., N - 1 from west to east, and

VnodeID = 0, 1, ..., N - 1 from north to south. Then the DSC Transformation is applied

in the second dimension, as depicted in Fig. 3.15. Essentially, this DSC transformation

further distributes the computations in the i dimension. Pseudocode for DSC in the second

dimension is listed in Fig. 3.14. The rows of matrix A and columns of matrix B are carried

in their corresponding agent variables mA and mB, respectively. The ColCarriers ship the

B columns, and the RowCarriers use these B columns to compute with the A rows that they

carry. The events are necessary because the consumers, i.e., the RowCarriers, need to hold

on their computations until the producers, i.e., the ColCarriers, finish putting the columns

of B in place. The matrices are initially distributed, as shown in Fig. 3.15 , such that A(N

. 1 . l, .) and B(., l) are on node(N . 1 . l, l), and C(i, j) (initialized to 0) is on node(i, j),

where node(i, j) maps to the PE that hosts entry (i, j) of matrix C.
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(1) do ml=0,N-1

(2) hop(node(N-1-ml,ml))

(3) inject(RowCarrier(N-1-ml))

(4) inject(ColCarrier(ml))

(5) end do

(1) RowCarrier(int mi)

(2) mA(*) = A(*)

(3) do mj=0,N-1

(4) hop(node(mi,(N-1-mi+mj)%N)

(5) waitEvent(EP(mi,(N-1-mi+mj)%N))

(6) do k=0,N-1

(7) C += mA(k) * B(k)

(8) end do

(9) end do

(10) end

(1) ColCarrier(int mj)

(2) mB(*) = B(*)

(3) do mi=0,N-1

(4) hop(node((N-1-mj+mi)%N,mj))

(5) B(*) = mB(*)

(6) signalEvent(EP((N-1-mj+mi)%N,mj))

(7) end do

(8) end

Figure 3.14: Pseudocode for DSC in the 2nd dimension
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Figure 3.15: DSC in the second dimension
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3.3.5 Partitioning phase 2: Increase opportunities for parallelism

The result of the first partitioning phase is a tiling with low communication cost. Splitting the

tiles further will have two conflicting effects: it will increase the number of hops, but it will

increase the potential for parallelism. The first effect will result in increased communication

cost and hence decreased speedup, while the second effect will increase speedup.

3.3.6 Partitioning phase 2: Example of ADI

As an example, Fig. 3.10(c) shows the result of splitting each tile into 4 subtiles. This

transformation increases the number of hops from 9 to 36. It increases the opportunity

for parallelism because, for example, the tile with write set c can begin executing as soon

as the tiles with write sets a and b have completed. The tradeoffs between the increased

communication cost and the increased opportunity for parallelism, and the optimal level of

tile splitting that should occur, are difficult to evaluate a priori, as they depend on the tile

size and on the order in which tiles are evaluated. These considerations suggest the following

strategy: start with the largest possible tile; split the tiles; estimate the resulting speedup;

and repeat these steps for as long as the estimated speedup continues to increase. The

resulting feedback loop is discussed in Section VII. The result of this further partitioning

is code that is identical to the code in Fig. 3.9. The only difference is that the parameters

describing the number and extent of the blocks have changed.
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for (J=0; J < num_blk_J; J++){

for (I = (num_blk_I-1); I >= 0; I--) {

if (I < num_blk_I)

x = load(v[i_end(I,J)+1]

[j_start(I,J)..

j_end (I,J)];

hop(comp_loc(I,J));

if (I < num_blk_I) unload(x);

for (j = j_start(I,J);

j <= j_end(I,J); j++)

for (i = i_end(I,J);

i >= i_start(I,J); i--)

v[i][j] = F3(p[j][i],

v[i+1][j],q[j][i]);

}

}

Figure 3.16: Loop4 pseudocode after assigning locations for tiles

3.3.7 Partitioning phase 2: Example of Matrix Multiplication in

second dimension

We apply the Phase 2 Transformation in both dimensions, as depicted in Fig. 3.17. Basically,

a pair of A and B entries can move on along their pipelines respectively as soon as they finish

computing and contributing the corresponding C entry. A producer BCarrier needs to make

sure that the B entry produced by its predecessor in the pipeline is consumed before it puts

the B entry it carries in place. This is the reason for a second event EC(., .). Pseudocode for

DSC with pipelining in both dimensions is listed in Fig. ??. The entries of matrices A and

B are carried in their corresponding agent variables mA and mB, respectively. The matrices

are initially distributed, as shown in Fig. 3.17, such that A(N . 1 . l, .) and B(., l) are on

node(N . 1 . l, l), and C(i, j) (initialized to 0) is on node(i, j). An event EC(i, j) is signaled

on node(i, j) for all values of i, j initially.
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Figure 3.17: Sub DSC in the second dimension
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3.3.8 Assigning a location to each tile

Once the size of the tiles has been chosen, each tile needs to be assigned to one of the nodes.

In most cases this is a straightforward procedure: all writes from each tile are to variables

on the same node, and often the best strategy is to assign the tile to that node. This is

consistent with the well-known owner-computes strategy [16].

The strategy that we actually use is to assign each tile to the node that holds the most data

accessed by the tile (either as part of the read set or the write set). We call this node the pivot

node, and we call the resulting strategy pivot-computes [42]. The pivot-computes strategy

can result in significantly less data movement in certain situations, such as a REDUCE-type

operation where a large amount of data stored on one node is summarized in a few variables

stored on a second node. In this case, performing the computation on the node that holds

the read set is more efficient than the node that writes the final value. For a specific example

see [41]. The two strategies frequently produce the same result, as they do with the examples

of this paper.

Once a tile has been assigned to a node, additional code is inserted to ensure that the

execution is performed on the chosen node and all necessary data is carried there. Fig. 5

shows the result of inserting this code in the code of Fig. 3.9. The additional partial row of

v necessary for the tile computation is loaded into the local variable x. After the hop to the

node where the computation will occur, the data carried in x is unloaded.

3.4 Parallelization Generation

The result of the previous steps is a set of code tiles, each of which has been assigned to a

node. The next step is to turn these into a parallel program. The fact that each tile has

already been assigned a node makes this step relatively straightforward: all that is needed
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is to group the tiles into threads and insert appropriate commands for synchronization and

transfer of data among threads. This step proceeds in three stages. First we build a Weighted

Dependence Graph which captures the essential dependency relations among the tiles. Next

we combine the tiles into threads. At this point, we can pass the Weighted Dependence

Graph and thread information to the Feedback Mechanism. Based on the feedback, we may

decide to go back and change some decisions made during the earlier code transformation

and placement phase or to change the data distribution. If we are satisfied with the results

of the feedback, we proceed to the third state, which is the generation of the parallel code.

3.4.1 Building the Weighted Dependence Graph

The Weighted Dependence Graph is a precedence graph that captures the relationships

among the tiles derived using the code transformation. Each node represents a tile. All edges

are directed and indicate that the tile corresponding to the origin node must be computed

before the tile corresponding to the destination node.

Each node is assigned a cost, which is the relative amount of computation required by

the corresponding tile. Associated with each edge is the communication cost and context

switching cost associated with that edge. The context-switching cost is taken to be constant.

The communication cost is zero if the two endpoints of the edge are tiles assigned to the

same node. Otherwise, the cost is a function of the amount of data that needs to be moved,

using a piecewise-linear communication cost model that takes into consideration packet size,

latency per packet of the given size, and bandwidth [65].

To estimate the communication cost, we use a piecewise linear communication cost model.

Instead of applying fixed latency, we use different latencies in different packet size ranges.

The latency for a packet is fixed if the packet size is within a certain range of size. The

latency changes if the packet size increases to reach another range of size due to the presence
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of Maximum Transmission Unit (MTU). MTU is the packet size that a network can transmit

and measured in bytes. The communication cost for a packet is per packet latency plus a

per Byte bandwidth cost. A node may communicate with a number of other nodes at the

same time, and many nodes may communicate with each other at the same time. So, given

the limited network resources, the congestion and contention may happen and they have

random costs. Our piecewise linear model assume congestion and contention free network

which is the reality in most modern network for the purpose of high performance computing.

In mathematics, a transitive reduction of a binary relation R on a set X is a minimal relation

R’ on X such that the transitive closure of R’ is the same as the transitive closure of R. The

transitive reduction of a finite acyclic graph is unique. We apply transitive reduction to the

Weighted Dependence graph. During the reduction, only the edges with the property of Zero

cost can be reduced, because if an edge not only represents synchronization, but also carries

data, the edge cannot be removed. If the edge only represents synchronization, the edge can

be removed if other edges guarantee the data dependence relation of this edge.

Once the graph has been constructed, we simplify it using a restricted form of transitive

reduction: If an edge in the Weighted Dependence Graph only represents synchronization

(i.e., carries no data) and if other edges guarantee the precedence relation represented by

the edge, the edge can be removed.

3.4.2 Building the Weighted Dependence Graph: Example of ADI

Fig. 3.18 shows original Weighted Dependence Graph corresponding to loops 2, 4, 6, and

8(Loops 1, 3, 5, and 7 are used only for initialization and are omitted to simplify the presen-

tation). Fig. 3.19 shows the reduced or simplified Weighted Dependence Graph. The shapes

of the graph nodes represent the processing node where the computation is executed. There

are three different shapes because the data are distributed over three processing nodes. Each
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Figure 3.18: Weighted Dependence Graph
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graph node is annotated L(I,J), where L is the loop number and the pair (I,J) is the write

set of the tile. For example, 4(0,1) means loop4 and (0, 1) is its write set, where I=0 and

J=1. A solid edge means that a whole data block has to be transferred, while a dashed edge

means that the data dependence consists only of boundary data.

3.4.3 Building the Weighted Dependence Graph: Example of Ma-

trix Multiplication

Since the matrix multiplication has no data dependencies, so, it could perform multiple

element calculations concurrently as long as each core only compute one element at the

same time. Therefore, there is no need to build dependence graph. However, since matrix A

and B are not duplicated in each node and only have one copy, the carries of certain row of

matrix A and certain column of matrix B needs to be at the same node at the right timing,

so still needs synchronization to fully paralleled.

3.4.4 Combining tiles into threads

To create execution threads from the reduced graph, we use a bottom up approach. Initially

each tile is considered a separate thread. These are then combined into longer threads.

3.4.5 Generating threads for ADI

There are many ways to combine the tiles into a thread. We apply a heuristic strategy, which

combines threads inside a single loop within the same global iteration. Our heuristic threads

together tiles that cannot be executed in parallel. In particular, it combines tiles connected

by edges because the data dependencies require such tiles to be executed sequentially. For
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Figure 3.19: Simplified Weighted Dependence Graph
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example, in Fig. 3.18, for loop2, tile (0,0), (0,1), (0,2) are grouped into a thread, tile (1,0),

(1,1), (1,2) are grouped into a thread, and tile (2,0), (2,1), (2,2) are grouped into a thread.

3.4.6 Generating threads for Matrix Multiplication in one dimen-

sion

Since there is no data dependencies among the DSC threads, but still need synchronization to

ensure the elements need to be computed are in the local node. According to the pipelining

idea which is to overlap the execution of multiple DSC threads by staggering their starting

times. The result of this pipelining is depicted in Fig. 3.20. Each row of matrix A is assigned

to a different computation thread. Injected into the PE pipeline in order, these threads

follow each other in the network to compute the corresponding C entries.

Sometimes the dependency among different computations allows different DSC threads to

enter the pipeline from different PEs. In these situations, we can phase shift the DSC

threads to achieve full parallelism, We apply our Phase-shifting Transformation to achieve

a full DPC, as depicted in Fig. 3.21. This is possible because each row of A, though needed

on all three PEs, can start its computation from any PE.

3.4.7 Generating threads for Matrix Multiplication in second di-

mension

Same as in one dimension, in two dimension, we apply our Pipelining and Phase-shifting

in both dimensions, as depicted in Fig. 3.22 and Fig. 3.23. Basically, a pair of A and B

entries can move on along their pipelines respectively as soon as they finish computing and

contributing the corresponding C entry. A producer BCarrier needs to make sure that the

B entry produced by its predecessor in the pipeline is consumed before it puts the B entry
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it carries in place. This is the reason for a second event EC(., .).
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Figure 3.20: Pipelining in one dimensions
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Figure 3.21: Phase shifting in one dimension
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Figure 3.22: Pipelining in both dimensions
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Figure 3.23: Phase shifting in both dimensions
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3.4.8 Generating the Code

Generating the code requires inserting code so that the multiple threads synchronize with

each other.

3.4.9 Generating the Code: Example of ADI

For instance, loop4 is responsible for computing v[i][j]. It must wait until p[j][i] and q[j][i] are

ready, which are computed by other threads. Synchronization code must be added to wait

for data computed by other threads and to signal that data is ready to be accessed. The

basic principle is to insert signal/wait primitives at each end of a solid edge and add code to

transfer data for any edge that carries data (edges with non-zero weight.) Fig. 3.24 shows

the portion of the DPC code that represents the transformed Loop 4. Builder.msgr injects

a spawner. loop4 spawner.msgr creates the multiple threads for loop4 (Loop4 sweeper) and

injects them at the node where the computing starts for loop 4. Fig. 3.25 shows the portion

of the DPC code that represents the transformed Loop 8.

Each of these threads processes a column of tiles. It executes as a doubly indexed loop

(lines 9-10), where the outer loop runs through all iterations of the main loop in the original

sequential program and the inner loop runs through all the tiles in the column. For each

tile, it hops to the pivot node (line 11) synchronizes with other threads (line 12), computes

the tile (line 13-17) , and synchronizes with other threads (lines 18-21). Since each hop is

carrying data, we do not explicitly show load and unload data in this pseudo code.

In this example, no data transmission code is needed for solid edges because their weights

are all zero. This is true in most cases because any two tiles that access the same data will,

due to the pivot-computes principle, be assigned to the same node.
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(1) Builder.msgr(ITERATIONS)

(2) inject(Loop4_spawner,ITERATIONS);

(3) loop4_spawner.msgr

(4) for (J = 0; J < num_blks_J J++) {

(5) hop(comp_loc[0,J]);

(6) inject(Loop4_sweeper, J);

(7) }

(8) Loop4_sweeper(J):

(9)for(iter=0; iter< ITERATIONS;iter--){

(10) for (I=(num_blk_I-1);I>=0;I--){

(11) hop(comp_loc[I,J]);

(12) if(I==(num_blk_I-1))

wait(E(iter,loop4,J,I,p/q)) ;

(13) for(j=j_start(I,J); j<=j_end(I,J); j++){

(14) for(i=i_end(I,J); i>=i_start(I,J);i--){

(15) v[i][j]= F3(p[j][i],v[i+1][j],q[j][i];

(16) }

(17) }

(18) if(I==0)signal(E(iter,loop6,I,J,v) ;

(19) if(I!=(n_num_blks_I-1) && I!=0){

(20) Push with Signal E(iter,I,J,v_plus);

(21) Push with Signal E(iter,I,J,v_minus);}

(22) }

(23) }

(24)}

Figure 3.24: DPC Code
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loop8_sweeper.msgr

(1) for (J= n_num_blks_per_row-1; J >=0; J--) {

(2) n_curr_node = n_node_map[I,J];

(3) if ( n_curr_node != myID )

(4) hop(link=n_links[n_curr_node]);

(5) if(J == n_num_blks_per_row-1){

(6) wait_element(m_iter,loop8,I,n_num_blks_per_row-1,u);}

(7) wait_element(m_iter,loop8,I,J,p/q);

(8) loop8_sweep(I,J);

(9) if(m_iter+1 <= ITERATIONS){

(10) set_element(m_iter+1,loop2,I,J,u);

(11) set_space(m_iter+1,loop2,I,J,p/q);

(12) if(n_reverse_fetch_minus[I,J]!=-1){

(13) inject(PUSH_U_MINUS,m_iter+1,I,J);

(14) }

(15) if(n_reverse_fetch_plus[I,J]!=-1){

(16) inject(PUSH_U_PLUS,m_iter+1,I,J);

(17) }

(18) }

(19)}

Figure 3.25: DPC Code Loop8

3.4.10 Generating the Code: Example of Matrix Multiplication

in one dimension

Pseudocode for pipelined DSC matrix multiplication is listed in Fig. 3.26. The matrix A

is initially put on the PE with HnodeID = 0, and the columns of matrices B and C are

distributed such that B(., j) and C(., j) are on the PE with HnodeID = j.

Pseudocode for Phase-shifting in one dimension is listed in Fig. 3.27. Rows of matrix A

are carried by the corresponding agent variables mA. In this implementation, matrix A is

initially distributed such that A(i, .) is on the PE with HnodeID = i, and the columns of

matrices B and C are distributed such that B(., j) and C(., j) are on the PE with HnodeID

= j.
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(1) hop(node(0))

(2) do i=0,N-1

(3) inject(RowCarrier(i))

(4) end do

(1) RowCarrier(int mi)

(2) mA(*) = A(mi,*)

(3) do mj=0,N-1

(4) hop(node(mj))

(5) t = 0.0

(6) do k=0,N-1

(7) t += mA(k) * B(k)

(8) end do

(9) C(mi) = t

(10) end do

(11) end

Figure 3.26: Pseudocode for pipelined DSC

(1) do mi=0,N-1

(2) hop(node(mi))

(3) inject(RowCarrier(mi))

(4) end do

(1) RowCarrier(int mi)

(2) mA(*) = A(*)

(3) do mj=0,N-1

(4) hop(node((N-1-mi+mj)%N))

(5) t = 0.0

(6) do k=0,N-1

(7) t += mA(k) * B(k)

(8) end do

(9) C(mi) = t

(10) end do

(11) end

Figure 3.27: Pseudocode for DPC in one dimension
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3.4.11 Generating the Code: Example of Matrix Multiplication

in second dimension

Pseudocode for DSC with pipelining in both dimensions is listed in Fig. 3.28. The entries of

matrices A and B are carried in their corresponding agent variables mA and mB, respectively.

The matrices are initially distributed, as shown in Fig. 3.28, such that A(N . 1 . l, .) and

B(., l) are on node(N . 1 . l, l), and C(i, j) (initialized to 0) is on node(i, j). An event EC(i,

j) is signaled on node(i, j) for all values of i, j initially.

(1) do ml=0,N-1

(2) hop(node(N-1-ml,ml))

(3) inject(spawner(ml))

(4) end do

(1) spawner(int ml)

(2) do mk=0,N-1

(3) inject(ACarrier(N-1-ml,mk))

(4) inject(BCarrier(mk,ml))

(5) end do

(6) end

(1) ACarrier(int mi, int mk)

(2) mA=A(mk)

(3) do mj=0,N-1

(4) hop(node(mi,(N-1-mi+mj)%N))

(5) waitEvent(EP(mi,(N-1-mi+mj)%N))

(6) C += mA * B

(7) signalEvent(EC(mi,(N-1-mi+mj)%N))

(8) end do

(9) end

(1) BCarrier(int mk, int mj)

(2) mB=B(mk)

(3) do mi=0,N-1

(4) hop(node((N-1-mj+mi)%N,mj))

(5) waitEvent(EC((N-1-mj+mi)%N,mj))

(6) B = mB

(7) signalEvent(EP((N-1-mj+mi)%N,mj))

(8) end do

(9) end

Figure 3.28: Pseudocode for pipelining in second dimensions.

Pseudocode for DPC in both dimensions is listed in Fig. 3.29. The entries of matrices A
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and B are carried in their corresponding agent variables mA and mB, respectively. The

matrices are initially distributed such that A(i, j), B(i, j) and C(i, j) (initialized to 0) are on

node(i, j). In the above figures such as Fig. 3.23, each sub-matrix block, e.g., A10 or C11,

is called a distribution block in our implementation, as it is a basic unit of data distribution

on a PE. To achieve better performance from a block algorithm, a further level of matrix

decomposition is used [47] . A distribution block is decomposed into algorithmic blocks, and

each algorithmic block of A or B is carried by a migrating thread (i.e., ACarrier or BCarrier).

Our sequential and MPI (Message Passing Interface) implementations described below use

algorithmic blocks as well.
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(1) do mj=0,N-1

(2) hop(node(0,mj))

(3) inject(spawner(mj))

(4) end do

(1) spawner(int mj)

(2) do mi=0,N-1

(3) hop(node(mi,mj))

(4) signalEvent(EC(mi,mj))

(5) inject(ACarrier(mi,mj))

(6) inject(BCarrier(mi,mj))

(7) end do

(8) end

(1) ACarrier(int mi, int mk)

(2) mA = A

(3) do mj=0,N-1

(4) hop(node(mi,(N-1-mi-mk+mj)%N)

(5) waitEvent(EP(mi,(N-1-mi-mk+mj)%N))

(6) C += mA * B

(7) signalEvent(EC(mi,(N-1-mi-mk+mj)%N))

(8) end do

(9) end

(1) BCarrier(int mk, int mj)

(2) mB = B

(3) do mi=0,N-1

(4) hop(node((N-1-mj-mk+mi)%N,mj))

(5) waitEvent(EC((N-1-mj-mk+mi)%N,mj))

(6) B = mB

(7) signalEvent(EP((N-1-mj-mk+mi)%N,mj))

(8) end do

(9) end

Figure 3.29: Pseudocode for full DPC in second dimensions.
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3.5 Feedback Mechanism

The long-term goal of the feedback loop is to be able to periodically improve the performance

of the actual program by adjusting its current data distribution and level of parallelism

at runtime based on information gathered automatically from the instrumented program.

Currently, the feedback loop uses only a simulator, which executes a discrete-event simulation

of the simplified Weighted Dependence Graph. The communication costs are estimated

using the communication cost model discussed earlier. The computation time of each tile is

estimated by the relative time to perform the computation. The simulator gives the following

output to help us evaluate the performance of the parallel distributed program:

• Total execution time. This includes communication cost, computation cost, the

overlap of communication cost and computation cost, overhead of context switch, and

the time to wait for dependent data. The execution time is not real wall clock time; it

is a relative time, but it can be scaled to real time. This feedback is used to evaluate

and analyze the DPC code for further improvements.

• Idle time: This is the total of the idle times over all physical nodes.

• Efficiency ratio: This is the ratio of the total attained time (simulated CPU time)

to the total execution time (attained time, communication time, and idle time)

• Speedup: This is the speedup of DPC codes over sequential codes.

• Degree of load balance: This measure captures how well the load is balanced over

all physical nodes.

After evaluating the parallel distributed programs, the Feedback mechanism passes its eval-

uations to the previous steps. These evaluations include the speedup, the idle time, the
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efficiency ratio, and load imbalance, and serve as guide to improve the respective transfor-

mations as shown next.

3.5.1 Case 1: Feedback to Code Transformer

When the Code Transformer receives the speedup feedback, it tries to increase parallelism by

reducing the tile size. As the number of tiles increases, the communication and context switch

cost increase while the parallelism increases. Both changes directly affect speedup. The

process of decreasing the tile size is repeated until the speedup reaches its peak. Beyond this

point the speedup decreases despite increased parallelism because the gains are outweighed

by the even faster increasing communication and context switching costs.

 

                  

 

                
(a)  (b)  ( c ) 

Figure 3.30: Different options of tiles for the same data distribution

Fig. 3.30 shows the same partitioning of loop4 but with different number of tiles. Fig. 3.30

(a) has 9 tiles, Fig. 3.30(b) has 16, and Fig. 3.30 (c) has 25. Clearly, the first case has

the smallest communication cost but also the smallest opportunity for parallelism, while the

third case shows the opposite. Fig. 3.31(a) shows the speedup for four different tile sizes.
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(a)  (b) 

Figure 3.31: (a) Speedup for different tile options for the unstructured data distribution (b)
Speedup for different tile options for the twisted data distribution

No.1 through No.3 correspond to the above three tile sizes, and No.4 corresponds to an even

smaller tile size. The curve shows an improvement when tile size is increased from 9 to 16

but drops off with the next smaller tile size. Based on this, the second option, Fig. 3.30(b),

is the best choice.

Fig. 3.31(b) shows the results for the same program but using the twisted data distribution.

No.1 has 9 tiles, No.2 has 36 tiles, and No.3 has 81 tiles. The speedup decreases with the

tile size. Hence the best choice for this distribution is the first option.

3.5.2 Case 2: Feedback to Data distributor

When the Feedback mechanism determines that the load is highly imbalanced, it will suggest

to the Data Distributor to increase the number of partitions and try a different assignment

of partitions to nodes.

Fig. 3.33, Fig. 3.34 and Fig. 3.35 shows three versions of data partitioning and their assign-

ment to three different nodes. (a) has 6 partitions (resulting in 2 partitions assigned to each
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Figure 3.32: Speedup achieved for the three cases of Fig.10

node), (b) has 9 partitions (3 per node) and (c) has 12 partitions (4 per node). Fig. 3.32

shows the performance for the three cases. As the number of partitions increases, the distrib-

utor has more flexibility in assigning partitions to nodes, which increases the chances to keep

the load balanced. However, more partitions result in more communication overhead. Thus

when the number of partitions increases beyond its peak, the increased communication cost

outweighs the benefits of the better load distribution. For the example, using 9 partitions

was the best choice.
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Figure 3.33: 6 partitions (2 partitions per node)
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�

Figure 3.34: 9 partitions (3 per node)

�

Figure 3.35: 12 partitions (4 per node)
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Chapter 4

Experiments

4.1 Experiment of ADI

In this section, we present our experimental results for the target application. The data

was obtained using a network of Linux cluster and 100Mbps of Ethernet connection with a

collision-free switch and using the NFS file-sharing system.

Fig. 4.1 shows the performance when using the unstructured data distribution. Array size

is the size of the arrays u, v, p and q. DPC is execution time for the parallel program,

which is divided by the sequential time to get the speedup. Fig. 4.2 Fig. 4.2 Fig. 4.3 Fig. 4.4

Fig. ?? shows the performance results for the twisted data distribution, for array sizes of

5040×5040, 12600×12600, and 15120×15120. Both experiments show a significant speedup

for all cases.

Number of Array size DPC Sequential Speedup
Nodes Exec. Time Exec. Time

3 5040 × 5040 38.176 111.875 2.930
4 5056 × 5056 36.581 138.104 3.775
5 9600 × 9600 104.357 410.104 3.929
6 9600 × 9600 93.262 410.104 4.397

Table 4.1: Speedup given unstructured data distribution.
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Number of Array size DPC Sequential Speedup
Nodes Exec. Time Exec. Time

3 7560 × 7560 86.006 250.139 2.908
4 12600 × 12600 178.764 684.181 3.827
5 12600 × 12600 144.85 678.368 4.683
6 15120 × 15120 174.096 977.904 5.617

Table 4.2: Speedup given twisted data distribution A

Number of Array size DPC Sequential Speedup
Nodes Exec. Time Exec. Time

3 5040 × 5040 38.556 110.266 2.859
4 5040 × 5040 34.586 109.469 3.165
5 5040 × 5040 23.597 108.539 4.599
6 5040 × 5040 22.407 108.656 4.849
7 5040 × 5040 20.437 108.213 5.294
8 5040 × 5040 28.486 109.813 3.854
9 5040 × 5040 15.350 106.811 6.958

10 5040 × 5040 14.330 108.110 7.544
11 5040 × 5040 13.959 107.985 7.735
12 5040 × 5040 13.593 108.064 7.949

Table 4.3: Speedup given twisted data distribution B

 

0

1

2

3

4

5

0 1 2 3 4 5 6 7

S

p

e

e

d

u

p

number of nodes

SpeedUp

Figure 4.1: Speedup with unstructured data distribution
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Number of Array size DPC Sequential Speedup
Nodes Exec. Time Exec. Time

4 12600 × 12600 178.764 684.181 3.827
5 12600 × 12600 144.850 678.368 4.683
6 12600 × 12600 121.155 679.125 5.605
7 12600 × 12600 104.834 676.331 6.451
8 12600 × 12600 95.154 686.331 7.212
9 12600 × 12600 82.883 667.568 8.054

10 12600 × 12600 84.588 675.687 7.987
11 12600 × 12600 78.631 734.869 9.345
12 12600 × 12600 65.423 675.400 10.323

Table 4.4: Speedup given twisted data distribution C

Number of Array size DPC Sequential Speedup
Nodes Exec. Time Exec. Time

6 15120 × 15120 174.096 977.904 5.617
7 15120 × 15120 149.346 973.917 6.521
8 15120 × 15120 134.631 988.317 7.340
9 15120 × 15120 118.279 961.299 8.127

10 15120 × 15120 106.704 972.990 9.118
11 15120 × 15120 101.219 1000.2391 9.881
12 15120 × 15120 106.514 972.576 9.130

Table 4.5: Speedup given twisted data distribution D
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Figure 4.2: Speedup with twisted data distribution
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4.2 Experiment of Matrix Multiplication

4.2.1 Gentlemans Algorithm of Matrix Multiplication

Gentlemans Algorithm [18] [49] is a classical SPMD algorithm for parallel matrix multipli-

cation. The pseudocode is listed in Fig. 4.3, in which an arrow represents a combination of

receive and send among remote PEs. During initial staggering, each entry of matrix A will

stagger i times to the west, where i is the entrys row number, and each entry in matrix B will

stagger j times to the north, where j is the entrys column number. An entry can be either

a single value or a sub-matrix. Thus, a skewed transformation of matrices A and B results.

Like the NavP pseudocode, our MPI implementation assumes a fully connected network,

and matrix staggering is accomplished in a single step (not shown in Fig. 4.3) rather than

in a series of steps. Throughout the entirety of Gentlemans Algorithm, matrix C remains

stationary. Once the initial staggering completes, matrices A and B are multiplied and the

results are placed in matrix C. For N - 1 iterations, matrix A shifts its columns one step to

the west and matrix B shifts its rows one step to the north, and A and B are multiplied with

the results added to the C matrix. In our implementation, non-blocking receives (i.e., MPI

Irecv()) are used in conjunction with blocking sends to prevent deadlocking. MPI Wait(),

which blocks until the incoming matrix has been received, assists in providing synchroniza-

tion between PEs. As a result of using algorithmic blocks, many blocks are shifted from a

PE to itself during the computation. Instead of sending an algorithmic block to a PE itself,

or copying an algorithmic block from a local memory, we use pointer swapping to shift an

algorithmic block locally.

66



(1) do k=0,N-2

(2) doall node(i,j) where 0<=i,j<=N-1

(3) if i>k then

(4) A <- east(A)

(5) end if

(6) if j>k then

(7) B <- south(B)

(8) end if

(9) end do

(10) end do

(11) doall node(i,j) where 0<=i,j<=N-1

(12) C = A * B

(13) end do

(14) do k=0,N-2

(15) doall node(i,j) where 0<=i,j<=N-1

(16) A <- east(A)

(17) B <- south(B)

(18) C += A * B

(19) end do

(20) end do

Figure 4.3: Pseudocode for Gentlemans Alg.

4.2.2 Performance data

We have implemented parallel matrix multiplication using both NavP and message passing.

The NavP system used was MESSENGERS developed in Donald Bren School of Information

Computer Sciences, University of California Irvine. The message passing system used was

LAM from Indiana University [17]. The ScaLAPACK used was from University of Tennessee,

Knoxville and Oak Ridge National Laboratory [9]. The performance data was obtained from

SUN workstations and 100Mbps of Ethernet connection.

These workstations have a shared file system (NFS). When the working set of a sequential

program exceeds the physical memory on a PE, thrashing happens and the performance

degrades. In a distributed program, however, the data of a sub-problem may fit in the

memory of a machine completely even if the entire problem is too large. In order to obtain

fair speedup numbers, we calculate sequential timing for large problems using least squared
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curve fitting with a polynomial of order 3 using performance numbers collected with small

problems.

When the working set of a sequential program exceeds the physical memory on a PE, thrash-

ing happens and the performance degrades. In a distributed program, however, the data of

a sub-problem may fit in the memory of a machine completely even if the entire problem is

too large. In order to obtain fair speedup numbers, we calculate sequential timing for large

problems using least squared curve fitting with a polynomial of order 3 using performance

numbers collected with small problems.

Table 1 in Fig. 4.4 lists the performance data for NavP and ScaLAPACK on a 1D PE network

of three machines. It can be seen that the performance improves as we go from NavP DSC

to NavP pipelining and then to NavP phase shifting. For small problems, NavP 1D DSC is

only marginally slower than the corresponding sequential execution; however, as the problem

size grows, NavP 1D DSC becomes faster, as indicated by the data from actual runs (not

curve-fitted data). Table 2 in Fig. 4.5 indicates that with several networked computers DSC

performs almost as fast as the sequential program running with enough main memory, and

it is significantly faster than the sequential program paging using virtual memory. With N

= 9216, the total memory usage is about 1GB, but our machines each have only 256MB of

main memory.

Tables 3 and 4 in Fig. 4.6 and Fig. 4.7 list the performance data for MPI, NavP, and

ScaLAPACK on a 2D PE network of nine machines. Again, performance improves as we

hierarchically apply the three NavP transformations in the second dimension. In both 1D

and 2D cases, our DSC and pipelining programs achieve high performance. This can be

attributed to the use of algorithmic blocks. The RowCarriers or ACarriers, each of which

responsible for the computation of a row of algorithmic blocks or an algorithmic block, can

spread out their computations to the entire network earlier than if a full distribution block
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on a PE has to be computed before these carriers can hop out. The MPI implementation

used for the comparison was Gentlemans Algorithm modified to use block partitioning of

matrices; moreover, pointer swapping was used in order to avoid unnecessary local data

copying. ScaLAPACK uses a logical LCM hybrid algorithmic blocking technique [16], so the

block orders in the tables do not apply to the ScaLAPACK numbers.

The performance data indicates that the NavP implementation achieves a higher speedup

than the MPI implementation.

Table 1. Performance on 3 PEs

Sequential NavP (1D DSC) NavP (1D pipeline) NavP (1D phase) ScaLAPACK(#)

Matrix

order

Block

order

Time

(s)

Speed

up

Time

(s)

Speed

up

Time

(s)

Speed

up

Time

(s)

Speed

up

Time

(s)

Speed

up

1536 128 65.44 1.00 67.22 0.97 27.72 2.36 24.55 2.67 26.80 2.44

2304 128 219.71 1.00 229.45 0.96 91.03 2.41 81.23 2.70 82.83 2.65

3072 128 520.30 1.00 543.91 0.96 205.87 2.53 189.50 2.75 211.45 2.46

4608 128 1934.73 (1745.94*) 1.00 1809.73 0.96 688.18 2.54 653.64 2.67 767.91 2.27

5376 128 3033.92 (2735.69*) 1.00 2926.24 0.93 1151.07 2.38 990.05 2.76 1173.46 2.33

6144 256 5055.93 (4268.16*) 1.00 4697.32 0.91 1811.77 2.36 1554.99 2.74 1984.18 2.15

(*) Obtained from least squared curve fitting and used in calculating speedup.

(#) ScaLAPACK uses a logical LCM hybrid algorithmic blocking technique, not controlled by users [16].

Figure 4.4: Performance on 3 PEs

Table 2. Performance on 8 PEs

Sequential NavP (1D DSC)

Matrix

order

Block

order

Time

(s)

Speed

up

Time

(s)

Speed

up

9216 128 36534.49 (13921.50*) 1.00 14959.42 0.93

(*) Obtained from least squared curve fitting and used in calculating speedup.

Figure 4.5: Performance on 8 PEs

The performance data indicates that the NavP implementation achieves a higher speedup

than the MPI implementation. Some differences between these two implementations are

discussed briefly below. More details can be found in our full-length technical report [45].

1. Communication. We use block algorithms for better cache and communication perfor-

mance. The algo-rithmic blocks of C on a PE can be updated in different orders. In the
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Table 3. Performance on 2× 2 PEs

Sequential MPI (Gentleman) NavP (2D DSC) NavP (2D pipeline) NavP (2D phase) ScaLAPACK(#)

Matrix

order

Block

order

Time

(s)

Speed

up

Time

(s)

Speed

up

Time

(s)

Speed

up

Time

(s)

Speed

up

Time

(s)

Speed

up

Time

(s)

Speed

up

1024 128 19.49 1.00 6.02 3.24 7.63 2.55 5.88 3.31 5.54 3.52 5.23 3.73

2048 128 158.51 1.00 50.99 3.11 50.59 3.13 42.61 3.72 41.54 3.82 45.53 3.48

3072 128 520.30 1.00 157.53 3.30 158.06 3.29 144.09 3.61 137.39 3.79 156.27 3.33

4096 128 1281.58 (1238.21*) 1.00 367.04 3.37 362.73 3.41 328.98 3.76 321.70 3.85 417.83 2.96

5120 128 2727.86 (2373.32*) 1.00 733.91 3.23 792.23 3.00 757.67 3.13 624.87 3.80 907.16 2.62

(*) Obtained from least squared curve fitting and used in calculating speedup.

(#) ScaLAPACK uses a logical LCM hybrid algorithmic blocking technique, not controlled by users [16].

Figure 4.6: Performance on 2*2 PEs

Table 4. Performance on 3× 3 PEs

Sequential MPI (Gentleman) NavP (2D DSC) NavP (2D pipeline) NavP (2D phase) ScaLAPACK(#)

Matrix

order

Block

order

Time

(s)

Speed

up

Time

(s)

Speed

up

Time

(s)

Speed

up

Time

(s)

Speed

up

Time

(s)

Speed

up

Time

(s)

Speed

up

1536 128 65.44 1.00 10.97 5.97 13.66 4.79 9.18 7.13 8.21 7.97 8.08 8.10

2304 128 219.71 1.00 29.95 7.34 39.53 5.56 29.93 7.34 26.74 8.22 29.39 7.48

3072 128 520.30 1.00 82.25 6.33 86.52 6.01 66.94 7.77 62.36 8.34 70.92 7.34

4608 128 1934.73 (1745.94*) 1.00 241.92 7.22 268.41 6.50 220.28 7.93 205.68 8.49 255.87 6.82

5376 128 3033.92 (2735.69*) 1.00 437.27 6.26 421.78 6.49 360.77 7.58 323.67 8.45 398.50 6.86

6144 256 5055.93 (4268.16*) 1.00 637.79 6.69 745.18 5.73 584.85 7.30 510.29 8.36 635.36 6.72

(*) Obtained from least squared curve fitting and used in calculating speedup.

(#) ScaLAPACK uses a logical LCM hybrid algorithmic blocking technique, not controlled by users [16].

Figure 4.7: Performance on 3*3 PEs

case of NavP, the order is not predefined and the CPU cycles are thus efficiently utilized in

computations as the data they need arrives. An efficient run-time task scheduling, handled

by the queuing mechanisms built into the MESSENGERS daemon, is provided to the NavP

programmers. As a result, NavP programmers only need to concern themselves with the two

event handling commands as the interface to the queuing mechanisms that are otherwise

hidden at the system level. It is the NavP view that allows us to focus on describing the

application level computations following their movement and to factor out the functionality

associated with scheduling code that describes behaviors at fixed locations. In MPI, the

situation is quite different. The straightforward way to program the block implementation is

to have a loop over all the algorithmic blocks of C on a PE. The loop introduces an artificial

sequential order to the communications and computations even though they are actually

independent of each other and hence may result in slower performance. Possible ways to

remove the artificial sequencing are proposed [45], but they all require significantly more

programming work.
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2. Cache performance. The NavP and the sequential programs have a similar cache perfor-

mance because in both cases during the execution there is an algorithmic block (of C for

the sequential program and of A for the NavP program, respectively) that would stay in the

cache for the duration of computation using other two algorithmic blocks. In contrast, in

the block-oriented MPI program, triplets of A B C blocks are frequently fresh in the cache,

which leads to less efficient cache use. A simple analysis shows that this cache performance

of NavP can account for as much as a 4over MPI [45].

3. Initial staggering. The NavP program uses reverse staggering for matrices A and B. That

is, the chain of a row or a column is both shifted and reverseordered. In contrast, both

Gentlemans Algorithm and Cannons Algorithm [10] [48] use forward staggering, which only

shifts the positions of the entries without reversing the order. It is shown [45] that reverse

staggering never requires more than two communication phases, while forward staggering

often requires three communication phases. It would be possible to improve the performance

of the MPI code by subtle fine-tuning at a cost of considerably more programming effort.

Nevertheless, the data makes it clear that the NavP program is faster than a straightforward

implementation of Gentlemans Algorithm and competitive with a highly tuned version.

In incremental parallelization, a programmer uses sequential code as the starting point and

introduces parallelism in a step by step fashion, until satisfactory performance is achieved or

a time/resource constraint is reached. Oftentimes, programmers begin with the performance

critical hot spots in a program and gradually parallelize other parts of the program.

Message passing programming is less amenable to incremental parallelization. Transforming

a sequential program into a message-passing one is an abrupt break, since data must be

distributed and code structure is often dramatically changed. This is seen in the matrix

multiplication example one either gets no parallelism at all with the sequential code, or one

gets all parallelism with Gentlemans Algorithm. Going directly from the sequential code to

a parallel algorithm such as Gentlemans Algorithm requires considerable ingenuity. Never-
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theless, message passing programming usually leads to good performance. This phenomenon

can be attributed to the message passing programmers explicit control of data distribution

and careful avoidance of communication contention and extra data movement. In NavP,

the DSC Transformation involves data distribution and insertion of migration statements

(i.e., hop()). The other two code transformations exploit parallelism by decomposing the

long DSC threads and properly managing the synchronization among the shorter threads.

The programmability of NavP is similar to that of HPF in that they both require explicit

control of data distribution and explicit synchronization (through the use of barriers, events,

critical regions, etc. in HPF, and events in NavP). Similar to HPF, synchronization errors

are more likely to happen in NavP than in message passing. Unlike HPF, NavP requires

its programmers to handle details in communication by using agent variables to carry data

around. As a result, the NavP programmers know exactly how much is communicated to

where at what time. NavP composes parallel code from shorter DSC threads, and the par-

allel code is structurally the same as the original sequential code. This property of NavP is

referred to as Algorithmic Integrity [29].

Our NavP matrix multiplication implementation is faster than our MPI code. This is mainly

because the NavP code successfully hides some of the communication overhead using an

efficient but transparent run-time scheduling. This task scheduling functionality is factored

out from the application code under the NavP view and put into the MESSENGERS daemon.

Although it is entirely possible to achieve better task scheduling in the MPI code, with the

MPI environment available today, the code that implements this will have to be developed

for each and every application and will be interleaved with the application code. In this

sense, message passing is harder to use than NavP.
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Chapter 5

Preliminary Extension

5.1 Navigational Programming on Cloud

Fig. 5.1 shows the architecture of Navigational Programming [57]. The physical network

could be computing machines connected with high speed Ethernet or cluster connected with

fiber networks. constitutes the underlying computational processing elements.Superimposed

on the physical layer is the daemon network, which is the NavP runtime system. Each

daemon is responsible for receiving, processing, executing, dispatching, scheduling and syn-

chronizing. In Java version of NavP, JaMes [57] runs on top of JVM. JaMes is a superset

of Java, in that it provides a collection of methods that implement the navigational pro-

gramming model. In addition to the basic capabilities of migration and non-preemptive

scheduling, JaMes extends the basic model by allowing processes to collaborate both locally,

through standard synchronization primitives, and remotely, by two different forms of send

and receive operations.

The logical network is fully connected network on top of the daemon network, which is

an application-specific computation network. NavP applications assume a fully connected

logical network whose size is specified by the application programmer. JaMes maps logical

nodes to daemon node and more than one logical nodes can be mapped to one daemon
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node.This makes NavP programs independent of available physical resources.

To start up the JaMes daemon network, the user first selects the physical nodes on which the

system should run and designates one of these nodes as the master node, the rest being slave

nodes. An application can be injected on any node that is running a daemon. The default is

to choose a daemon on the physical node where the inject command is issued, but this can

be modified by first calling the static method JaMes.setDestination(int dest), which causes

the application to be injected on the node with the given rank. To shut down the JaMes

daemon network, the user issues the shutdown command on the physical machine where the

master node is running. This causes all daemons in the daemon network to stop running.

Migration is implemented by creating a remote object and then invoking a method on the

newly created object This causes a remote object to be created on the destination node.

The destination node specified by giving its rank, and object Class specifies the class of the

object be created. The method is then invoked asynchronously on the destination node, and

execution continues on the current node (similar to a fork). If the current node terminates

(e.g., by reaching the end of the current function) the effect is a hop operation. If the current

node continues executing, the effect is a clone operation.

Events within JaMes are represented by objects of class JMEvent. JaMes provides static

functions to create an event with (JaMes.createJMEvent())

wait on one or more events with (JaMes.waitEvent()),

wait until one of a group of events has been signaled with (JaMes.selectWait())

and signal an event with (JaMes.signalEvent())

When an execution thread is waits for an event that has not yet been signaled it preempts it-

self, thus allowing another execution thread to continue running instead. JaMes also provides
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a function (JaMes.yield()) that causes a process to preempt itself.

Data transfer between executing threads running on different nodes takes two forms. One

form corresponds to a conventional send-receive operation. The sender issues the command:

JaMes.send(int dest, String mailboxName, Object data)

This causes the data to be placed in a mailbox on the remote machine. The receiver on the

target machine issues the command

JMEvent JaMes.receive(String mailboxName, JMDataHandler dataHandler);

The handler specifies the name of a class that implements the JMDataHandler interface.

This interface consists of a single method, handleShipment(), which contains user-provided

code for unpacking the data. The data parameter on the send command consists of one

or more objects. The receive command is non-blocking, but it returns an event on which

the receiving thread can wait if it chooses to do so. This event will be signaled when the

unpacking of the data is complete. The second form does not require an explicit matching

receive. Instead, the receiving thread makes a single call, using the following syntax:

JMEvent JaMes.persistentReceive(String mailboxName, JMDataHandler dataHandler);

With this form, the mailbox is persistent in that multiple sends can be issued to it. The

persistent receive command specifies the data handler that will be used to unpack data each

time it arrives at the mailbox. It is the responsibility of the application programmer to

synchronize the execution thread that is using the data with the data handler thread that

is unpacking the data. To facilitate this synchronization, an event is returned by the call to

the persistent receive function.

Therefore, the Java version of Navigational Programming, JaMes, has the characteristics

of supporting heterogeneous infrastructure (software heterogeneous and hardware heteroge-
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neous), and NavP applications are totally independent of available underlaying computation

resources. On the Cloud, the physical nodes are no longer physical, but they are virtual

nodes.

0 0 2 1 1 2 3 

0 1 2 3 4 5 6 

Logical/Application 

Network 

Daemon Network 

Physical Network 

Figure 5.1: Navigational Programming Architecture

5.2 Investigation and Future Improvement

There are a number of commercial cloud providers such as: AmazonEC2, Microsoft Azure

[7], Google Cloud [19], Rackspace [50] and Salesforce Service Cloud [55]. We investigates

running NavP on Cloud with EC2 (Amazon Elastic Compute Cloud)[4]. Amazon EC2

provides resource management tool to configure computing instances, to allow users to setup

customized instances, such as identifying the security group, and allow customers to create

multiple instances with the same characteristics just once.

All the instances are created from US East (N. Virginia) data center of Amazon. Fig. 5.1

shows the preliminary performance results.
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Number of Array size Speedup with Speedup with
Nodes UCI Linux Amazon EC2 Cloud

3 5040 × 5040 1.367048 1.888784
4 5040 × 5040 1.44899 2.012114
5 5040 × 5040 1.593074 1.870056
6 5040 × 5040 1.296688 2.191897
7 5040 × 5040 1.458795 1.670094
8 5040 × 5040 1.337289 1.421071

Table 5.1: ADI Performance on Cloud

This investigation is for proof-of-concept that NavP runs on cloud and provides an promising

methodology for HPC applications. In order to make NavP an programming methodology

for scientific applications on Cloud efficiently, we have to do a few improvements in near

future.

First, we will improve the deployment of JaMes and Applications, to make it fully automat-

ical deployment. There are two tasks we will address, one is the automated tools to setup

Cloud environment and take cares of all of the steps required by Cloud provides, the other

one is detecting the right set of instances, with have both the good quality of computing

performance and relatively even and fast interconnect communication.Especially, for com-

munication intensive scientific applications, the allocating or selecting the right set of virtual

nodes have a great influential effect on overall speedup performance.

Second, since the diversity of latency and bandwidth, the network cost model needs to be

improved to adapt the cloud environment. As [17] [70] observe, The network environment

on Cloud is different from the network structure with cluster. On Cloud, the network

infrastructure is hierarchic, a tree topology, machines are first grouped into racks, and then

racks are connected with high speed switchers. The interesting of tree structure is that the

bandwidth is not uniform, depends on the switching network between machines. Also, as [25]

finds out that there is a strong bound between communication time and overall performance

on EC2 resources, and application with intensive global communication are affected the
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most.

Third, due to performance variation of virtual nodes, Feedback mechanism will play more

roles on detecting the slow nodes, monitoring the application programs real run on Cloud

both with computational spending and communication cost. Since some Cloud provider,

such as Amazon EC2, offers a feature of launching a snapshot (Images) and can be deployed

to other instances no matter the same type or different types. JaMes could do realloca-

tion/redeployment certain daemon node on the virtual node without applications’ awareness.

More, JaMes will optimize its synchronization mechanism to reduce the overhead.
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Chapter 6

Related Work/Literature Review

6.1 Distributed Parallel Programming

Message Passing Interface (MPI) [35] [8] is the widely used standard for high-performance

parallel programming. In concept, MPI is very simple because it could just includes a small

number of primitives used directly by programmers. MPI-2 was released in 2000, adding few

additional features such as one-sided communication based on remote memory access, parallel

I/O. MPI-2.1 (2008) and MPI-2.2 (2009) were released with some corrections to the standard

and small features. MPI-3 (2012) added several new features to MPI, such as new one sided

functions and semantics, nonblocking collective communication, neighborhood collectives,

MPI tool interface, improvements in Language Bindings, fault tolerance/resiliency. MPI

just offers a standard communication interface and several high performance implementations

such as MPICH [36] and OpenMPI [37] are implemented following the standards.

Important considerations while using MPI : ”All parallelism is explicit: the programmer is

responsible for correctly identifying parallelism and implementing parallel algorithms using

MPI constructs” [8]. The programmer must restructure any given sequential algorithm to

make it work in a distributed memory environment by using MPI primitives.
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NavP provides a different view of distributed computation from the classical SPMD (Single

Program Multiple Data) view. The SPMD MPI view describes distributed computations at

stationary locations, while the NavP view describes a computation following the movement

of its locus. The NavP view changes the way distributed parallel programs are composed

and provides some new benefits.

Although MPI grows with continues improvement and standards, its fundamental principles

is not changed. basic use of MPI could be simplified down to six primitives, with MPI Send()

and MPI Recv() being mostly used.

In NavP code, a programmer inserts navigational commands, i.e., hop() statements, to

migrate the computation locus in order to access remotely distributed data and spread out

computations. Small data is carried by the moving computation in agent variables, which

are private to a computation thread and available to the thread wherever it migrates. Large

data that stays on a computer is held in node variables that are resident on a particular PE

(processing element) and are shared by all computation threads currently on that PE. The

cost of a hop() is essentially the cost of moving the data stored in agent variables plus a small

amount of state data. Although the state of the computation is moved on each hop, the code

is not moved. The synchronization among different migrating computations is done through

events (signalEvent() and waitEvent()). A programmer can inject, or spawn, a migrating

thread at command line. The injection of a thread can also be done by another thread,

called a spawner. All injections happen locally (i.e., a thread can spawn another thread only

on the node on which it currently resides).

Navigational Programming (NavP) offers a different approach to generating a distributed

parallel program from a sequential one, in that the transformation occurs incrementally and

produces an executable program at each stage. It has two major advantages for distributed

parallel programming:Incremental parallelism which it has a executable programs in the

process of parallelizing from sequence code and increasing speedup performance, and Incre-
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mental performance improvement, which is a closed-loop system to feedback and control the

speedup in next run. The feedback mechanism provides performance evaluations, including

speedup and load balance, that can be used to adjust the output of the preceding steps.
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6.2 Parallelizing Compilers

Parallelizing compilers target to parallel the programs fully and automatically. There are

many existing high performance parallelizing compilers, such as SUIF [66], Parascope [27].

Many of of them are targeted at shared memory machines, and some compilers targets

distributed memory computers. The techniques these compilers applied ranging from loop

parallelization to complex inter-procedural analysis.

Although these compilers work comparatively well for regular applications, when meeting

irregular application, these compiler can only handle limited patterns. Manuel Arenaz [6]

addresses the automatic generation of parallel code in the scope of complex loop nests where

today’s parallelizing compilers fail. These examples focus on complex loops that contain

computational kernels frequently found in real codes, namely, irregular assignment and con-

secutively written array.

Large number of parallelizing compilers focus on fine-grain parabolization such as loop trans-

formation by exploring data parallelism transferring sequential loops to parallel loops.

Jingling Xue works proposed loop transformations and computing distribution first and Xue

[68] , discussed the problem of the choice of the tiling parameters to solve the communication-

minimal tiling optimally.

Du [11] proposed coarse-grained pipelined parallelism, the processing associated with an

application is carried out in several stages. These stages are executed on a pipeline of

computing units.

In contrast, NavP is a manual programming approach allows its programmers to exploit

coarse level parallelism and develop irregular applications. A NavP program can also utilize

parallelizing compilers and enjoy a speedup on every computer node. We believe that ex-

ploiting the relationship between the NavP view (including the NavP code transformations)
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and building parallelizing compilers is likely to be an important research direction in the

near future.

To break the program into subcomputations we rely on the well-known techniques of tiling

[23, 24, 52, 67, 68].

6.3 Cloud Computing

As Cloud computing provides a virtual and elastic infrastructure computing resources on

demand, it attracts researchers to investigate the feasibility of running scientific high per-

formance computing on Cloud [63] [38] [25] [22] [51] [3].

Luo [33] observes some Cloud system platforms have heterogeneous compute environments

likelike AWS EC2 that provides both Intel Xeon and AMD Opteron while others have varying

generations of CPUs.

Jackson [25] compares the cloud systems with real cluster by running HPC scientific appli-

cations. It indicates that the speed of interconnected networks is the major factor to affect

overall performance.

Strazdins [61] evaluates the performance results for for a set of benchmark kernels (OSU MPI

micro-benchmark, the NASA NAS macro-benchmarks and two large scientific application in

climate and biology science). It finds out that communication bound applications, especially

those which used short messages, needs to handle the disadvantage of interconnection on

Cloud.

Roloff [54] compares different Cloud services of Rackspace, Azure, Amazon and a cluster in

terms of deployment, performance and cost-efficiency, and provides comprehensive analysis

of the above three important aspects, by running a set of well-known HPC benchmarks. The
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analysis shows that Cloud computing provides a viable infrastructure for running HPC appli-

cations, although it has some disadvantages in the deployment. For a number of benchmarks,

the cloud infrastructure offers a higher performance and cost efficiency than the cluster. up

to 27% and 41%, respectively. In terms of efficiency, it calculates by taking account of two

factors: performance and cost.

Fan [14] investigates the communication intensive applications with Message Passing Inter-

face (MPI), which is greatly affected by the network connections between the selected nodes,

proposes clustering-based method to select cloud nodes for deploying MPI programs with

communicate intensive applications, validates by deploying several well-known MPI pro-

grams on a real-world cloud. Moreover, Fan [13] proposes an automatic topology detection

method,and a deployment method based on the topology information, that can improve the

performance of a scientific application and validates with large scale real-world experiments.

Cloud computing provides a virtual infrastructure which hides the network topology and

underlying computation resources. Gong [70] exams the network performance of Amazon

EC2 and points out significant network performance unevenness (i.e., the performance varies

significantly for different virtual machine pairs). Also, it observes that network performance

of two virtual machines in Amazon is not symmetric, the communication cost of A to B

might be varied from B to A on Cloud. Then, it proposes a network performance hierarchy

to capture the network performance based on latency and bandwidth matrices.

Li [32] proposes an adaptive resource allocation algorithm for the cloud system by updating

the actual task executions.

Hormozi [12] investigates using the machine learning methods to allocate and manage re-

sources automatically, rely on machine learning techniques to efficiently decide the amount

of resources necessary for the service.

Pawar [46] proposes an dynamic resource allocation algorithm to take account of preemptive
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task execution and multiple SLA parameters such as memory, network bandwidth, and

required CPU time.
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Chapter 7

Conclusion

7.1 Contribution

There are five major contributions of this dissertation.

1. This thesis presents a new methodology for incremental parallelism and incremental

performance improvement. The methodology takes advantage of threads that are able

to migrate through the network and thus are able to follow distributed data. This

allows the data to be partitioned and distributed first, which guarantees that elements

that are used together in a computation are collocated on the same node. Next, the

loops in the code are tiled to minimize migration among nodes. After deciding on the

location at which each loop is to execute, the necessary migration and remote access

statements are inserted to make the code executable. This process is repeated based

on feedback obtained from the execution, which may improve the overall performance

by suggesting a different data distribution or a different coarseness of tiling.

2. We illustrate the truly incremental procedure in the context of matrix multiplication to

show that each step represents a functioning program and every intermediate program

is an improvement over its predecessor.As a result, no abrupt change in code will
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happen between any consecutive steps;Every intermediate program is an improvement

from its predecessor. If program development is limited by time or resources, any one

of the intermediate programs can be taken as production code;Our final stage is similar

to the classical Gentlemans Algorithm, The well-known message passing solution to

the same problem. However, one either gets no parallelism at all with the sequential

code, or one gets all parallelism with Gentlemans Algorithm. We also show the brief

comparison of the two implementations and performance comparison to demonstrate

the advantages of our methodology.

3. We use a case study of ADI, which is an abstraction of a method for solving a 2-

dimensional heat equation and has characteristics of extensive both data communica-

tion and data computation, also strong data dependencies, to demonstrate incremen-

tal performance improvement. It starts with two data distribution patterns, builds

the Weighted Dependence Graph which captures the essential dependency. We apply

transitive reduction to the Weighted Dependence graph and apply heuristic bottom up

approach to create create execution threads, and based on the feedback, we go back

and change some decisions made during the earlier code transformation and placement

phase or to change the data distribution. The implementation are built both on cluster

and cloud environment.

4. A simulation tool is developed to execute a discrete-event simulation of the simplified

Weighted Dependence Graph. These evaluations include the Total execution time,

speedup, the idle time, the efficiency ratio, and load imbalance, and serve as guide to

improve the respective transformations.

5. Examined/Investigated of Navigational Programming on cloud with ADI application

and points out the future work to improve: a) auto deployment b) topology analysis/

Network cost analysis c) Feedback to dynamic reallocation/deployment (migrate node

d) Improve efficiency of synchronization
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7.2 Future Works

The long-term goal of the feedback loop is to be able to periodically improve the performance

of the actual program by adjusting its current data distribution and level of parallelism at

runtime based on information gathered automatically from the instrumented program.

One promising extension of our method is to eliminate the simulator and instead use the

actual program. The feedback mechanism would then monitor the performance of the code,

suggest a new data distribution and/or a new tiling strategy, and at some point cut over to

the new code. This would represent incremental parallelism in the fullest sense of the phrase:

a working program continually improving itself as it performs its task. The major challenges

here are to efficiently gather runtime performance data and to manage the transition from

the old program to the new program.

NavP is an promising methodology that will be applied on Cloud computing for scientific high

performance computing. In order to make NavP an programming methodology run on Cloud

efficiently, we have to do a few improvements in near future. 1) automatical deployment based

on both the good quality of computing performance and interconnect communication cost; 2)

improvement of communication cost model to reflect of topology analysis on Cloud; 3) Due to

Feedback Mechanism’s control return, reallocation/redeployment of certain daemon node on

the virtual node without applications’ awareness; 4) JaMes will optimize its synchronization

mechanism to reduce the overhead, such as wait/signal and send/recevive mechanism.
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