Using Fermi architecture knowledge to speed up
CUDA and OpenCL programs

Yuri Torres
Dpto. Informatica,
Univ. Valladolid, Spain
Email: yuri.torres @infor.uva.es

Abstract—The NVIDIA graphics processing units (GPUs) are
playing an important role as general purpose programming
devices. The implementation of parallel codes to exploit the GPU
hardware architecture is a task for experienced programmers.
The threadblock size and shape choice is one of the most
important user decisions when a parallel problem is coded. The
threadblock configuration has a significant impact on the global
performance of the program. While in CUDA parallel program-
ming model it is always necessary to specify the threadblock
size and shape, the OpenCL standard also offers an automatic
mechanism to take this delicate decision.

In this paper we present a study of these criteria for Fermi
architecture, introducing a general approach for threadblock
choice, and showing that there is considerable room for improve-
ment in OpenCL automatic strategy.

Index Terms: GPGPU, automatic code tuning, Fermi,
CUDA, OpenCL

I. INTRODUCTION

Many-core Graphics Processing Units (GPUs) have become
an important computing platform in many scientific fields,
such as intensive-data or biomedical computing. Their main
advantages are their low operational cost, their easy and
friendly programming environments, and a high performance
peak. GPGPU (General Purpose GPU) programming has
been simplified by the introduction of high level data parallel
languages, such as CUDA [1], or OpenCL [2]. However,
maximizing the performance of any parallel problem imple-
mentation requires in depth knowledge about GPU underlying
architecture, as well as an expertise on the use of code tuning
techniques. Therefore, fully exploiting the GPU capabilities is
a tedious task only suited for experienced programmers.

In CUDA, it is always necessary to define a grid of
threadBlocks that are scheduled to the different SMs (Stream
multiprocessors). The choice of the threadblock size and shape
is a very important decision to develop a highly-tuned imple-
mentation of a parallel problem on GPUs. Currently, many
programmers choose the threadblock size and shape by trial
and error. Although there are well-known basic techniques to
eliminate bad candidates, to explore the remaining alternatives
is time-consuming. Moreover, little modifications done to the
code may force to restart the search, and there are no solid
strategies to guide the programmer.

CUDA is not the only alternative for the NVIDIA GPU pro-
gramming. OpenCL standard offers a common programming
API for GPUs of different vendors, hiding many hardware
resource details by the use of abstractions. Therefore, it is
simpler to use, but more difficult to tune for high-performance.

Arturo Gonzalez-Escribano
Dpto. Informatica,
Univ. Valladolid, Spain
Email: arturo@infor.uva.es

Diego R. Llanos
Dpto. Informatica,
Univ. Valladolid, Spain
Email: diego@infor.uva.es

Regarding the threadblock selection, OpenCL offers a mech-
anism to automatically select the threadblock configuration.

In this paper we present a practical study of the Fermi
architecture, focused on how the threadblock parameters and
the use of hardware resources affect performance. Our experi-
mental results show that it is possible to use hardware knowl-
edge to better squeeze the GPU potential, with no need of
time-consuming tests. Many obvious and typical threadblock
configuration strategies, such as choosing square shapes, or
blocks with the maximum number of threads, are not always
appropriate. Moreover, we also show that OpenCL automatic
strategy to select the threadblock is too simplistic, implicating
performance degradations up to 65% in our experiments. We
show how it can be easily improved.

II. NVIDIA FERMI ARCHITECTURE

Fermi is NVIDIA’s latest generation of CUDA architec-
ture [3], released in early 2010. The main characteristics
introduced by this new architecture include double precision
performance, error correction code support, transparent L1/L.2
cache hierarchy, configurable L1 and shared memory, faster
Context Switching, and faster atomic operations. This section
discusses the details of the Fermi architecture that are relevant
for our study of the relation between performance and program
characteristics.

(A) Transparent L1/L2 cache memory. Fermi introduces an
L1/L2 transparent cache memory hierarchy (see Fig. 1). The
programmer can choose between two configurations: 48 KB
of shared memory and 16 KB of L1 cache (default option),
or 16 KB of shared memory and 48 KB of L1 cache. Besides
this, the L1 cache memory can be deactivated by the user at
compilation time.

(B) Threadblocks, Warps and SMs. The number of registers
per multiprocessor in Fermi is 32KB, and the number of
SP (Streaming Processor) per SM (Streaming Multiprocessor)
is 32. The maximum number of threads per threadblock is
doubled, from 512 to 1024, while the maximum number of
threads per SM is 1536. Note that these changes force the
programmer to re-calculate block parameters used in imple-
mentations for previous architectures, in order to maximize the
use of SM resources. When the SMs require more workload,
the threadblocks are dispatched to the SMs in row-major
order [4].

In programs where the computational workload of all
threads is similar (most data parallel programs), the blocks
are scheduled to the SMs at regular intervals. This implies a

Thread

Shared Memory L1 Cache

48 or 16 Kb 4 160r48Kb
A.
L2 Cache
768 Kb
A4 384 bits
DRAM

PO ¢ P11 P2 | P3 I P4 | P5

I 1.5 Gb
256 bytes

Fig. 1. FERMI memory hierarchy (NVidia GTX-480).

high reutilization of data on the L2 cache, that works as a fast
transparent shared memory for all SMs. As the computation
advances at the same pace on each SM, the situation appears
again and again. Moreover, the application can be optimized
through a proper selection of threadblock size and shape.

Regarding the dual warp scheduler present in Fermi, each
scheduler has its own instruction dispatch unit (IDU). The
SM executes simultaneously two halves of different warps.
It is important to notice that this may influence the span of
data that is requested to the cache hierarchy at the same time.
Although the SMs have only 16 load/store units, each half
warp issues its memory requests on a different flank, allowing
them to issue up to 32 memory requests on the same cycle,
16 from each half-warp.

(C) Shared memory conflicts and global memory access.
Fermi has 32 shared memory banks. Currently, the global
memory is also distributed on 5 or 6 banks in Fermi. The
memory addresses are scattered across the banks. A frequent
problem in pre-Fermi architectures is the partition camping
problem [4]. This problem arises when concurrent threads
request at the same time memory locations belonging to
different transaction segment in the same data bank. In Fermi,
the problem is alleviated by the L2 cache.

ITII. SELECTING THE THREADBLOCK SIZE AND SHAPE

In this section we present a discussion on how the Fermi
architecture details affect the programmer decisions about
threadblock size and shape. The implication of other con-
figurable parameters, such as deactivating the L1 cache or
modifying its size, are also discussed.

A. Threadblock size

1) Maximize occupancy: One SM can execute two half-
warps at the same time. The warps of several thread blocks
can be queued on the same SM. When the threads of a warp
issue a global memory request, these threads are blocked until
the data arrives from memory. During this high latency time,
other warps in the queue can be scheduled and executed. Thus,
it is important to have enough warps queued in the SM to

hide the global memory latencies by overlapping them with
computation, or with other memory accesses.

The first consideration to maximize Occupancy is to select
a proper block size. In Fermi, the number of threads per
block should be an integer divisor of the maximum number of
threads per SM, and higher than or equal than 192, to allow
to fill up the maximum number of threads per SM with no
more than 8 blocks (1536/8 = 192). These values are 192,
256, 384, 512, and 768.

Finally, in computations that use a grid with a small number
of total threads, it may be beneficial to use very small blocks
to distribute the computational load across the available SMs
in the GPU. For example, to execute 512 threads, using only
one block for all of them forces to execute all the load in one
SM.

2) Coalescing and high ratio of global memory accesses:
Memory Coalescing is a technique used in kernel coding to
force consecutive threads in the same warp to concurrently
request consecutive logical addresses from global memory.
This allows to minimize the number of transaction segments
requested to the global memory. Typically, it is done by
properly associating data elements to thread indexes when
traversing dense data-structures, such as multidimensional
arrays. Classical examples include many dense matrix and
linear algebra operations. Coalescing is particularly important
on codes with a high ratio of global memory accesses. For
this study, we consider high a ratio of one or more memory
accesses per arithmetic operation, omitting the typical compu-
tation of global thread indexes at the start of the kernel.

A common technique to ease the programming of coalescing
is to ensure that the dense data-structures are aligned with the
global memory banks and transfer segments. Thus, arrays with
the last dimension multiple of 32 simplify the programming of
Coalescing. Moreover, to avoid partition camping problems, it
is better to use data structures that are aligned to the number of
global memory controllers or banks on the target architecture.

For kernels with a high-ratio of coalesced global memory
accesses, and considering the block sizes that maximizes
Occupancy, we may expect that the best performance would
be obtained maximizing the number of blocks in any SM,
which means minimizing the threadblock size (192 to keep
maximum Occupancy). The rationale behind this hypothesis
is that programs with continuous accesses to global memory
need at all times 48 warps in an SM to properly hide latencies.
This effect is mainly noticeable on kernels with a short number
of total operations per thread, because the blocks finish, and
need to be replaced, faster.

On the other hand, when the code in the kernel is not
requesting data fast enough to need 48 warps to hide latencies,
we do not need maximum occupancy to obtain the best
performance. Examples are codes with high computational
workload between global memory requests, that are not issued
at the same time. In this situation, the computation of one warp
may hide the latencies of the memory requests of other warps,
and the best performance results could also be obtained with
block sizes that does not maximize Occupancy.

3) Non-coalesced accesses: Codes with non-coalesced
global memory accesses request many different memory trans-

1024
768 W 1.00
512 W 094-075
384 0.67 - 0.50
256 033-0.17
192
128
9%
64
o 48
o 32
24
16
12
8
6
4 | |
3 LR |
2 HE R
1 HEEENR
TN TooNoy RTINS IS
- — N ™M 0 M~ ‘(2

columns

Fig. 2. Maximum Occupancy for different threadblock shapes.

fer segments from the same warp at the same time. The
memory requests are serialized and it is much more difficult to
have a code with enough computational workload, and compu-
tation vs. memory accesses overlapping, to hide such latencies.
Moreover, in these cases, reducing the number of requests has
another beneficial impact on the partition camping problems
that arise in the global memory banks. Thus, reducing the
blocks up to 32 threads, may keep all possible parallelism
(eight blocks with their maximum of 32 threads per block),
minimum global memory bandwidth requested, and minimum
number of bank conflicts.

The global memory bandwidth bottleneck, and the partition
camping problems, may become so expensive that it may even
compensate to reduce the number of active SPs per warp
using blocks with less than 32 threads. However, reducing
it too much may lead to waste parallelism capabilities and to
lose performance. Without using more information about the
architecture details it is difficult to predict the optimum block
size.

In general, codes with scatter accesses benefit from deacti-
vating the L1, since the transaction segment size is reduced,
thus alleviating bottlenecks.

B. Shape in several dimensions

Figure 2 shows the Occupancy obtained for different combi-
nations of threadblock shape dimensions, when the code does
not exhaust SM resources (registers and shared memory). The
block shapes with the same block size, that also maximize
Occupancy, are linked by a gray line. Besides the effect of
Occupancy, the chosen shape has also a significant impact on
coalescing, partition camping, and memory bottlenecks.

In programs with good Coalescing, the best performance
results will be obtained with shapes with no less than 32
columns. One warp should request 32 contiguous elements to
reduce the total memory bandwith. With perfect Coalescing,
the first half-warp request 16 elements, obtaining a full cache
line with 32 elements: The 16 elements requested by the first

half-warp, and 16 more elements which are needed by the
second half-warp. Thus, the second half-warp finds all needed
elements in the cache, skipping the global memory latency.

In Fermi, we may find 320 or 380 consecutive elements
spread across the full span of the five or six memory banks.
Thus, perfectly coalesced codes using a threadblock shape with
that amount of columns, minimize the global memory bank
conflicts. Reducing the number of columns to increment the
number of rows immediately derives in an increment of these
conflicts, and in performance degradation.

C. Tuning techniques and threadblock size and shape

Some of the common code tuning strategies [1] heavily
interact with, or are dependent on, the chosen block size
and shape. Although it may seem intuitive to first choose
the block shape, and then apply the other tuning techniques,
some of them may need specific block sizes or shapes to
exploit their potential. For example, the CUBLAS optimized
matrix operations [5] uses specific block shapes to improve
performance while keeping correctness. It is an open question
when, and where, it is possible to isolate the threadblock
configuration from the application of other tuning techniques.

D. Threadblock size and shape in OpenCL

OpenCL [2] (Open Computing Language) is an open
royalty-free standard for general purpose parallel programming
across CPUs, GPUs, and other processors. It provides develop-
ers with a portable and efficient software to manipulate these
heterogeneous processing platforms.

OpenCL provides a mechanism to select manually the
threadblock shape. The behaviour of programs when using
the CUDA driver on OpenCL are similar to direct CUDA
programming. The effects discussed on previous sections are
dependent on the hardware architecture, and thus, they will
affect performance in the same way.

OpenCL includes a convenient mechanism to automatically
select the threadblock shape, letting the programmer to skip
this decision. However, our study on the use of this OpenCL
automatic mechanism shows that it is focused on using the
maximum number of threads per block (1024 on Fermi). Based
on the previous discussion, the reader may expect that other
smaller block sizes will lead to better performance. In Sec. VII
we present specific experimental results.

I'V. DESIGN OF EXPERIMENTS

In this section we introduce the design of experiments to
verify the previously presented hypotheses and deductions
derived from the architecture observation. We will run different
benchmarks on a Fermi architecture platform. We have se-
lected real applications and kernels, as well as synthetic codes,
to isolate and test different application features. Kernels used
are intentionally simple, to minimize the interactions among
different hardware effects, such as coalesced vs. scattered
accesses, different ratios of workload vs. number of memory
accesses, cache reutilization, etc.

The algorithms and coding ideas of some of the bench-
marks are obtained from examples included in the CUDA and
OpenCL SDK, or well-known linear algebra libraries, such as

CUBLAS [5] and MAGMA [6]. The original codes cannot
be directly used in our study because their optimizations and
tuning strategies are dependent on specific threadblock sizes
and shapes. For example, the threadblock sizes for the basic
matrix multiplication on CUBLAS and MAGMA libraries
is fixed to 512 and 256 respectively. We have adapted and
simplified the codes to make them completely independent
of the threadblock shape. We avoid the use of sophisticated
tuning techniques to isolate the different effects of the block
shape on each benchmark.

Although we focus on 1- and 2-dimensional problems, re-
sults can be extrapolated to 3-dimensional cases. The programs
have been tested for different combinations of square- and
rectangular-shaped threadblocks. We use shapes with a number
of rows or columns which are powers of 2, or powers of
2 multiplied by 3. This include all the combinations that
maximize Occupancy.

The experiments have been conducted with 1- and 2-
dimensional arrays, using integer and float elements. In this
work we present results for the integer arrays experiments.
As the storage size of both types is the same, the effects on
the memory hierarchy are similar. Float arrays experiments
simply present slightly higher execution times due to the extra
computation cost associated to the floating point operations.
The 1-dimensional benchmark repeats 16 times a reduction of
an input vector with 1023 k-elements. Therefore, we can use
blocks with eight or more threads, generating grids with no
more than the maximum number of blocks allowed in CUDA
for any dimension (65535). For the 2-dimensional benchmarks
we use input matrices of 6144 rows and columns. The size
chosen has several advantages. First, this size is small enough
to allocate up to three matrices in the global memory of the
GPU device. Second, this size also ensures that not all blocks
can be executed at the same time, and therefore most of them
are queued. In this way, this size mimics the behavior of bigger
matrices, as long as data is aligned in the same way. Moreover,
the dimensions of the matrices are multiples of: (1) all the
block-shape dimensions tested; and (2) the number of global
memory banks in our test platform (described below). Thus,
matrix accesses on any threadblock are always aligned with
the matrix storage, generating the same access pattern.

The experiments have been run on an Nvidia GeForce GTX
480 device. The host machine is an Intel(R) Core(TM) i7 CPU
960 3.20GHz, 64 bits compatible, with a global memory of
6 GB DDR3. It runs an UBUNTU desktop 10.10 (64 bits)
operative system. The programs have been developed using
CUDA and OpenCL. The CUDA driver used was the version
included in the 4.0 toolkit. All benchmarks were also executed
with both OpenCL 1.0 and 1.1, with the same performance
for both versions. We measure performance considering only
the total execution times of the kernel functions in the GPU.
We skip initialization, and CPU-GPU communication times.
Our results are the mean of the measures of three or more
executions.

V. BENCHMARKS

In this section we describe the criteria to select and/or design
the different benchmarks.

A. Coalesced accesses

1) Vector reduction: We use a reimplementation of one of
the CUDA SDK examples modified to simplify the change
of threadblock shape. The kernel is launched in several syn-
chronized stages. On each stage each thread reduces two
contiguous data elements, storing the result in a properly
compacted ancillary data structure, used as input for the next
stage. Thus, each thread issues two contiguous read requests to
global memory, in two consecutive load operations. After the
single arithmetic operation, each full warp writes the results in
a single global memory transaction segment of 128 KB. The
number of blocks is divided by two on each stage. The main
code execute the kernel 16 times to generate enough load to
obtain stable results.

2) Adaptive-block vector reduction: In Sec. III-Al we
remarked that executing a small amount of threads in the
whole GPU can benefit more from using many small blocks
than a single bigger one, in order to spread the workload
and exploit more parallelism on the SMs. Taking into account
these observations, we have introduced an improvement on
the vector reduction code. The first stages are computed with
a fixed block size. When we need less than 15 blocks (the
number of SMs in our GPU testing device) to process the
data, we divided the threadblock size to increase the number of
blocks and the potential parallelism. This improvement is done
on stages with low workload. We expect a slight performance
improvement, noticeable for small input data sets.

3) Matrix addition: We also test a matrix addition (C =
A+ B) algorithm. Each thread is associated with a particular
matrix position. This implies three global memory accesses per
thread (two reads and one write). It presents a full coalesced
memory access pattern, with no reutilization of the same
matrix elements by other threads.

4) Overloaded kernel: We have generated a synthetic pro-
gram based on the matrix addition code. It simply adds an
arbitrary number of dummy arithmetic operations (10 000) to
the original single addition after loading the two elements. This
code keeps the matrix addition access pattern, but introduce
an overload between the load and the store global memory
accesses.

5) Overlapped memory accesses kernel: We propose an-
other modification to the matrix addition code to force dif-
ferent warps in the same block to issue load global memory
operations at different times. There is a maximum of 48 warps
in a SM. We use the warp number to select the exact amount
of dummy arithmetic operations carried out before the loads
(warpld x 1000), and between the loads and stores ((48 -
warpld) x 1000). We have tested that 1000 dummy arithmetic
operations take more time than the global memory latency.
Thus, we completely overlap the communication latencies
of the load operations with computation across the different
warps.

6) Matrix multiplication: We have coded two versions of
matrix multiplication (C' = A x B) which are independent
of the block size and shape. A naive matrix multiplication
and an iterative block-products matrix multiplication. The first
one is very simple and straightforward for a non-experienced
programmer. There are reutilization of data between threads

in the same block at different stages of the dot product. This
benchmark is interesting due to the relationship of the reuti-
lization of caches with the coalesced memory access pattern.
We also consider a second, more sophisticated implementation
using iterative block products.

B. Non-coalesced accesses

1) Regularly-scattered accesses: This synthetic benchmark
is designed to create a simple scattered access pattern in which
each thread requests a different memory transfer segment.
Each thread accesses to a single matrix element. The position
is computed multiplying the column index of the thread by
the maximum size of a transfer segment (32 elements). The
obtained value is modified with a simple arithmetic operation
and copied into the same element to reuse the same transfer
segment. Only one single arithmetic operation is issued on
each thread.

2) Random accesses: This benchmark is a modified version
of the previous one. Each thread copies one value from a
random position of one matrix, in the same random position
of another matrix. The workload associated with computing
the random indexes is higher than in the previous benchmark,
and comprises around 20 arithmetic operations. Two memory
transfer segments are requested per thread, one per each matrix
access. The random indexes force most threads to request
elements on different transfer segments, with little or no reuse
of transaction segments. This benchmark simulates random
scattered accesses that typically appears in graph traversing
algorithms, or codes for other sparse data structures.

VI. EXPERIMENTAL RESULTS

In this section we present the results obtained by our
experiments for both, CUDA and OpenCL implementations,
and discuss their relation with the Fermi architecture details
commented in previous sections. We first describe the results
obtained with CUDA, and then, we discuss the differences
with OpenCL.

A. Coalesced global memory accesses

1) Small kernels with no data reutilization: Table 1(A)
shows the execution times of the matrix addition benchmark
for different shapes. The results for the block sizes that
maximizes Occupancy are presented in boldface. The table
skips the first columns where the warps are with at least three
quarters of their threads idle, and the execution times grow
quickly.

The table confirms the expected results, as previously dis-
cussed in section III: (1) The best performance is obtained
with block sizes that maximize Occupancy; (2) considering the
maximum Occupancy block sizes, diagonals of smaller blocks
present better performance, with the optimum in blocks of 192
threads; (3) blocks with 48 columns, or less than 32 columns,
perform really bad due to the lose of coalescing; and (4) blocks
with more columns and less rows, imply less conflicts when
accessing the global memory banks.

Table II(A) shows the execution times of the vector reduc-
tion benchmark. For the vector sizes chosen, we cannot choose
blocks sizes below 32, due to the maximum number of blocks

per dimension in CUDA. Having similar properties than the
matrix addition, the effects observed are similar, and the best
performance is found in 192 threads per block. Our results
indicate that the adaptive-block vector reduction improves the
performance only for small input data sets. For example, 3%
to 4% for 1023 k-elements. This techniques have more impact
of computations with a higher workload per thread.

As expected, for coalesced codes without data reutilization,
deactivating the L1 cache does not affect performance. There
are four more transaction segment requests, but the segments
are four times smaller. The final global memory bandwith does
not significantly change.

2) Higher loaded kernels: Table I(B) shows the execution
times of the overloaded kernel. As expected for high loaded
coalesced codes, with no data reutilization across threads, and
low number of memory accesses comparing with arithmetic
operations, the results indicate that any shape that maximizes
occupancy produces a similar performance. Blocks with very
few columns that prevents coalescing have a very small effect
on total performance because the extra cost of global memory
accesses are hidden by the big computation costs. The effect
of the faster replacement of ending warps when smaller blocks
finish, is negligible comparing with the overall computation. In
this code, all warps begin executing the load accesses at almost
the same time. Thus, latencies are not really well hidden across
the warps of a block.

3) Hiding global memory latencies: Table 1(C) shows the
execution times of the overlapped memory accesses kernel.
Recall that this benchmark ensures that the latencies of global
memory loads on any warp are completely overlapped with
the computation of other warps in the block. We observe
that the best performance is obtained for blocks with less
than 192 threads. As expected, in this type of code maximum
Occupancy is not needed to hide latencies, because they are
hidden by the computation overlap.

4) Intensive data reutilization: Table II(B) shows the ex-
ecution times of the naive matrix multiplication code. The
tables for this benchmark skip all the columns where the
warps have idle threads and the execution time explodes.
Due to the high reutilization of data, bigger block sizes have
more opportunities to reuse the cache lines. Thus, the best
performance results are found for the biggest block size that
maximizes Occupancy (768). For a given block size, we also
observe a trend that lead to obtain better performance results
when using a shape with more columns and less rows. As
commented in Sect. III-B, blocks with more columns, up
to 384 (due to the 6 global memory banks on our device)
reduce the number of bank conflicts. It also impacts on the
reutilization and trashing of the L1 cache due to the algorithm
properties. Table III shows the number of L1 cache misses as
reported by the visual profiler included in the CUDA toolkit.
For maximum Occupancy we observe a clear correlation of
L1 and L2 cache misses and performance. Blocks with one
row have no opportunity to exploit any reutilization of data
on the second matrix. Thus, they produce many more cache
misses and its performance is degraded. The best performance
is found for the shape 2x384. Increasing the L1 cache size to
48 KB, reduces cache misses and produces an improvement

(A) Matrix Addition: Execution Times
Columns
Rows 8 12 16 24 32 48 64 96 128 192 256 384 512 768 1024
128 9,01
96 6,35
64 549 5,48 5,78
48 5,24 5,60 4,00
32 4,86 4,80 3,36 3,88 4.23
24 4,70 4,68 3,28 4,17 3,07
16 5,05 4,43 3,23 3.45 3.04 3.38 4,14
12 542 4,58 3,28 3,55 3,02 343 3,05
8 6,05 4,97 3,42 341 2,96 3,05 2,95 BN 4,45
6 7,18 5,52 3,87 3,53 2,95 3,06 2,94 3,46 3,19
4 9,70 6,73 5,06 3,92 3,11 3,10 2,90 3,00 3,05 3,19 4,44
3 11,94 8,48 6,16 4,64 3.53 3,12 2,89 2,96 2,95 3.35 3,18
2 16,43 11,43 8,55 6,12 4,54 3,68 3,08 293 293 295 2,96 2,99 3,95
1 29,97 20,24 15,16 10,51 7.74 5.73 4,40 3,49 3,08 2.89 2.89 291 2,94 3,01 3.94
(B) Overloaded Kernel: Execution Times
Columns
Rows 8 12 16 24 32 48 64 96 128 192 256 384 512 768 1024
128 1353
96 1351
64 1349 1350 1351
48 1349 1351 1350
32 1349 1349 1349 1349 1350
24 1349 1349 1349 1349 1348
16 1349 1349 1349 1349 1349 1349 350
12 1349 1499 1349 1349 1348 1349 1348
8 1352 1349 1349 1349 1349 1349 1349 1348 1350
6 1802 1799 1349 1499 1349 1349 1348 1349 1348
4 2322 1803 1352 1349 1349 1349 1349 1349 1349 1348 1350
3 3096 2403 1802 1799 1349 1499 1349 1349 1349 1349 1348
2 4648 3099 2325 1803 1352 1349 1349 1349 1349 1349 1349 1348 1350
1 9286 6195 4645 3099 2325 1803 1352 1349 1349 1349 1349 1348 1349 1348 1350
(C) Overlapped Memory Access Kernel: Execution Times
Columns
Rows 8 12 16 24 32 48 64 96 128 192 256 384 512 768 1024
128 901
96 873
64 851 872 895
48 841 851 873
32 831 840 850 873 896
24 827 835 841 849 873
16 822 828 831 842 852 873 896
12 819 915 828 834 842 847 873
8 828 819 824 828 832 842 851 873 896
6 1103 1092 819 914 828 834 842 848 873
4 1438 1104 828 819 823 828 832 842 851 873 896
3 1916 1469 1103 1092 818 914 828 834 842 848 873
2 2871 1915 1436 1103 828 819 823 828 831 842 852 873 896
1 5741 3828 2871 1915 1437 1103 828 818 823 828 832 842 852 873 896
(D) Regularly-scattered: Execution Times
Columns
Rows 8 12 16 24 32 48 64 96 128 192 256 384 512 768 1024
128 12,82
96 12,68
64 12,58 12,60 12,63
48 12,44 12,47 12,51
32 12,29 12,34 12,33 12,39 12,33
24 12,13 12,18 12,16 12,17 12,19
16 11,89 11,99 11,98 12,01 12,00 12,05 11,93
12 11,63 11,78 11,83 11,87 11,86 11,81 11,88
8 11,25 11,41 11,53 11,71 11,74 11,73 11,71 11,75 11,65
6 10,89 11,15 11,28 11,50 11,63 11,65 11,63 11,54 11,67
4 11,53 11,52 11,52 11,16 11,31 .57 11,55 11,53 11,52 11,52 11,28
3 10,28 10,42 10,56 10,95 11,08 11,36 11,45 11,48 11,46 11,31 11,44
2 10,23 9.99 10,06 10,53 10,67 11,01 11,14 11,39 11,41 11,38 11,35 MLE5 10,92
1 12,80 11,42 10,02 9,79 9,91 10,43 10,54 10,88 11,09 11,34 11,35 11,31 11,24 11,24 11,15
(E) Regularly-scattered without L1 cache: Execution Times
Columns
Rows 8 12 16 24 32 48 64 96 128 192 256 384 512 768 1024
128 10,49
96 10,38
64 10,27 10,04 10,22
48 10,09 9.78 10,07
32 9,90 9,73 9,86 9,89 9,68
24 9,61 9,48 9,58 9,59 9,52
16 9,13 9,20 9,33 9,38 9,27 9.36 9,06
12 8,57 8,88 9,06 9,12 9,05 8,96 9,02
8 7,19 8,02 8,42 8,89 8,85 8,90 8,80 8,85 8,63
6 7,10 7,50 7,79 8,41 8,65 8,70 8,63 8,44 8,69
4 8,29 8,30 8.31 7.60 7.85 8,29 8,37 8,34 8,34 8.30 7.83
3 6,97 6,58 6,63 721 725 8,02 8,14 8,14 8,16 7.84 8,05
2 7.94 6,79 6,44 6,61 6.59 7.17 722 7.84 7,86 7,82 7,80 7.86 7,30
1 10,91 8,78 7,64 6,64 6,29 6,42 6,42 6,73 7,13 7,74 7.69 7.67 748 7,62 7,34
TABLE I

EXECUTION TIMES FOR BENCHMARKS CONSIDERED (PART 1). TIME IN MILLISECONDS.

of performance between 0.3% to 7.5% for block sizes with
maximum Occupancy.

The iterative block-products version performs worse than
the naive implementation for the same shapes. The naive
version achieves better reutilization of data, as all warps work
on the same parts of the first matrix during the dot product
evolution. Naive multiplication algorithm is more suitable for
multi- or many-cores architectures with cache hierarchies.

B. Non-coalesced accesses

1) Regularly-scattered accesses: Table I(D) shows the ex-
ecution times of regularly-scattered accesses benchmark. As
discussed in section III-A3, this type of code does not need to
maximize Occupancy, due to the big amount of simultaneous
memory requests which latencies cannot be hidden. Moreover,
reducing the number of threads per block also alleviates
the global memory bandwith bottleneck. We observe that

(A) Vector reduction
Columns
Rows 32 | 48 | 64 | 96 | 128 192 | 256 | 384 | 512 | 768 1024
1 11087 | 09048 | 07893 | 06852 | 06582 | 06268 | 06358 | 06312 | 06330 | 06635 | 07885
(B) Naive Matrix Multiplication
Columns
Rows 32 48 64 96 128 192 256 384 512 768 1024
32 6441
24 5842
16 5218 6094 6579
12 5121 6478 5979
8 4982 5862 5265 5479 6470
6 4860 5775 5293 5940 5457
4 6177 4746 4855 4898 4915 4743 6066
3 7960 5918 4653 4928 4649 5421 4520
2 11890 8121 6103 4415 4339 4325 4450 4288 6172
1 23730 16086 12073 8399 6967 5855 5866 5909 6120 5951 7223
(C) Random access
Columns
Rows 32 48 64 96 128 192 256 384 512 768 1024
32 *
24 347,27
16 388,41 345,63 *
12 33481 367.85 347,79
8 330,47 332,90 388,28 347,56 *
6 324,86 325,46 334,77 369,78 347,23
4 325,50 347,18 330,47 334,99 388,41 347,18 *
3 328,07 35741 324,82 327.35 334,75 369.59 347,30
2 370,40 326,11 325,48 324,88 33043 33472 388,42 347,17 *
1 634,43 490,32 370,41 328,04 32547 324,82 330,43 334.80 388,49 347.45 *
TABLE I

EXECUTION TIMES FOR BENCHMARKS CONSIDERED (PART 2). TIME IN MILLISECONDS.

Columns
Rows 32 48 64 96 128 192 256 384 512 768 1024
32 30
24 344
16 352 568 38
12 362 257 342
8 357 625 366 331 64
6 357 580 372 196 306
4 201 610 334 354 300 256 124
3 177 379 291 313 264 166 190
2 200 343 253 277 255 250 249 246 245
1 366 603 437 490 513 529 520 509 504 496 488

TABLE III
NAIVE MATRIX MULTIPLICATION. L1 CACHE MISSES.

the best performance is obtained for blocks with only 24
threads (shapes with 1x24, or 2x 12 threads). As reasoned in
section III-A3, having even some idle SPs per warp is com-
pensated by the reduction of the memory bandwith bottleneck,
and the bank conflicts.

Table I(E) shows the execution of this benchmark with L1
cache deactivated. As expected, the smaller memory transac-
tion segments have a big impact on performance, obtaining
improvements in the range of 20% to 40% for block sizes of
16 or more threads. Reducing the transfer segments alleviate
the global memory bandwith problem up to the point that it
is not needed to have idle SPs, and the best block size moves
from 24 to 32 threads per block (warps with all threads active).

2) Random accesses: Table II(C) shows the execution times
of the random accesses code. This program uses many registers
for the computation of the random indexes. Thus, the Occu-
pancy is reduced for all shapes. The cells with a star indicate
block sizes that cannot be execute due to an exhaustion of
resources that leads to Occupancy zero.

This program has a medium ratio of global memory accesses
per arithmetic operations (2 global memory accesses vs. 20
arithmetic operations). This load is not enough to eliminate
the effect of improving performance when reducing the block
size, up to 192 for maximum Occupancy. As expected, the
improvement is less noticeable than in kernels with lower
workload. For this type of codes, the block size is the key
decision. The shape is not relevant due to the random access
pattern used on each thread, that distributes global memory

accesses across global memory banks.

The medium workload on the threads helps to hide the
global memory access latencies when the L1 is active. Al-
though this code has a non-coalescent pattern, the deactivation
of L1 cache only improves the performance slightly (less than
1% for any shape).

VII. OPENCL RESULTS

All the results obtained with OpenCL 1.0 and 1.1 con-
sistently show the same effects discussed for the CUDA
results. OpenCL introduces a performance penalty on the
Fermi architecture tested, due to the OpenCL abstraction layer.

We have tested the mechanism provided by OpenCL to
select automatically the block size and shape. For all our
benchmarks, the results indicate that this mechanism systemat-
ically chooses threadblock sizes of 1024 threads, maximizing
the number of threads per block. However, due to the Fermi
architecture particular features, this block size does not max-
imize Occupancy, Thus, the performance obtained with this
mechanism is always far from the optimum, with performance
degradations between 28% and 65% in our benchmarks.

This technique can easily be improved using a simple and
conservative strategy, selecting blocks of 768 threads for big
kernels, and 192 for small ones. More sophisticated techniques
can be devised using code analysis to detect other code
features, such as coalescing vs. scattered accesses, ratio of
global memory accesses, total workload, etc.

VIII. RELATED WORK

The most appropriate and common code tuning strategy is
to choose the threadblock that maximize the SM Occupancy in
order to reduce the memory latencies when accessing global
device memory [1]. The authors focus on block shapes that
simplify the programming task, such as square shapes, or
dimensions that are power of two. They do not explore the
relationships between the threadblock size and shape and
the underlying performance impact on the hardware resource
utilization. The work by Wynters [7] shows a naive matrix

multiplication implementation where several threadblock sizes
are tested on pre-Fermi architecture. However, the threadblock
shapes are not considered. The authors in works like [8]-
[11] use advanced compilation techniques to transform high-
level constructors into optimized CUDA code. However, these
frameworks use automatic optimizations that only take into
account the pre-Fermi state-of-art tuning techniques. A simple
performance model is introduced in [12]. Nevertheless, none
of these works relate their results to the critical choice of size
and shape of threadblock. In [13] the authors show several
global memory access strategies in an attempt to maximize the
Coalescing factor, as well as other common tuning strategies.
This work is developed on pre-Fermi architecture and does not
consider global programming parameters, such as L1 cache
configurations and threadblock size and size choice. In [14]
the authors show how to use the GeForce 8800 NVIDIA
hardware resource in order to improve the SM Occupancy.
A brief discussion about the different tuning strategies is also
included. These studies are focused on pre-Fermi architectures.
In [15], [16] the authors show several interesting metrics
related to hardware architecture. The authors use these metrics
in an attempt to predict the performance of CUDA kernel
codes once the block shape is manually chosen. In addition,
the Ocelot’s transaction infrastructure is presented where sev-
eral optimization are automatized on PTX (Parallel Thread
Execution) low-level code. Focusing on Fermi, in [17] the
authors show how the cache memory hierarchy helps to take
advantage of data locality significantly improving the global
performance. However, taking into account the cache hierarchy
leads to a very complicated performance prediction model.
They do not consider the effects of the block size and shape.

IX. CONCLUSIONS

One of the most important decisions when programming a
GPU is to choose global programming parameters, such as
threadblock size and shape, in order to achieve the highest
performance. However, these parameters are usually chosen
by a trial-and-error process.

The choice of global parameters are closely related to the
particular parallel problem implementation. We show in this
paper that a combined analysis of the knowledge of a specific
GPU card architecture, and code features such as the type
of global memory access pattern (coalesced vs. scatter), the
total workload per thread, the ratio of global memory read-
write operations, can significantly help to choose important
programming parameters, such as threadblock shape and L1
cache memory configuration.

While OpenCL introduces a mechanism to automatically
select the appropriate threadblock size and shape, our results
show that its current strategy is far from optimum, with per-
formance degradation of up to 65% in our benchmarks. Using
architecture knowledge to choose an appropriate block shape

for each particular application leads to important performance
benefits.

ACKNOWLEDGEMENTS

This research is partly supported by the Ministerio de In-
dustria, Spain (CENIT OCEANLIDER), MICINN (Spain) and

the European Union FEDER (CAPAP-H3 network TIN2010-
12011-E, TIN2011-25639), and the HPC-EUROPA2 project
(project number: 228398) with the support of the European
Commission - Capacities Area - Research Infrastructures Ini-
tiative.

REFERENCES

[1] D. B. Kirk and W. W. Hwu, Programming Massively Parallel Proces-
sors: A Hands-on Approach. Morgan Kaufmann, Feb. 2010.

[2] J. Stone, D. Gohara, and G. Shi, “Opencl: A parallel programming
standard for heterogeneous computing systems,” Computing in Science
Engineering, vol. 12, no. 3, pp. 66 =73, may 2010.

[3] NVIDIA, “Whitepaper: NVIDIA’s next generation CUDA com-
pute architecture: Fermi,” 2010, http://www.nvidia.com/object/fermi_
architecture.html,Last visit: Nov, 2010.

[4] P. M. Greg Ruetsch, “Nvidia optimizing matrix transpose in cuda,”
http://developer.download.nvidia.com/compute/cuda/3_0/sdk/website/
CUDA/website/C/src/transposeNew/doc/Matrix Transpose.pdf, Jun.
2010, Last visit: Dec 2, 2010.

[S] NVIDIA, CUDA CUBLAS Library, 2010.

[6] R. Nath, S. Tomov, and J. Dongarra, “An improved magma gemm
for fermi graphics processing units,” Int. J. High Perform. Comput.
Appl., vol. 24, pp. 511-515, November 2010. [Online]. Available:
http://dx.doi.org/10.1177/1094342010385729

[71 E. Wynters, “Parallel processing on nvidia graphics processing units
using cuda,” J. Comput. Small Coll., vol. 26, pp. 58-66, January 2011.

[8] A. Leung, N. Vasilache, B. Meister, M. M. Baskaran, D. Wohlford,
C. Bastoul, and R. Lethin, “A mapping path for multi-GPGPU acceler-
ated computers from a portable high level programming abstraction,” in
Proc. GPGPU'’10, Pittsburgh, PA, USA, Mar. 2010, pp. 51-61.

[91 M. Wolfe, “Implementing the PGI accelerator model,” in Proc.
GPGPU’10, Pittsburg, PA, USA, 2010, pp. 43-50.

[10] Y. Yang, P. Xiang, J. Kong, and H. Zhou, “An optimizing compiler
for GPGPU programs with input-data sharing,” in Proc. PPoPP 10,
Bangalore, India, 2010, pp. 343-344.

[11] M. Baskaran, J. Ramanujam, and P. Sadayappan, “Automatic C-to-
CUDA Code Generation for Affine Programs,” in Compiler Construc-
tion, ser. Lecture Notes in Computer Science, R. Gupta, Ed. Berlin,
Heidelberg: Springer Berlin / Heidelberg, 2010, vol. 6011, ch. 14, pp.
244-263.

[12] D. Schaa, “Modeling execution and predicting performance in multi-
GPU environments,” in Electrical and Computer Engineering Master’s
Theses. Boston, Mass: Department of Electrical and Computer Engi-
neering, Northeastern University, 2009.

[13] E. Z. Zhang, Y. Jiang, Z. Guo, K. Tian, and X. Shen, “On-the-fly
elimination of dynamic irregularities for gpu computing,” in "ASPLOS’
11. New York, NY, USA: ACM, 2011, pp. 369-380.

[14] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk,
and W. W. Hwu, “Optimization principles and application performance
evaluation of a multithreaded GPU using CUDA,” in Proc. PPoPP 08,
Salt Lake City, UT, USA, 2008, pp. 73-82.

[15] A. Kerr, G. Diamos, and S. Yalamanchili, “Modeling GPU-CPU work-
loads and systems,” in Proc. GPGPU’ 10, Pittsburg, PA, USA, Apr. 2010.

[16] N. Farooqui, A. Kerr, G. Diamos, S. Yalamanchili, and K. Schwan,
“A framework for dynamically instrumenting gpu compute applications
within gpu ocelot,” in "GPGPU-4". New York, NY, USA: ACM, 2011,
pp. 9:1-9:9.

[17] C. Z. Xiang Cui, Yifeng Chen and H. Mei, “Auto-tuning dense matrix
multiplication for GPGPU with cache,” in Proc. ICPADS’2010, Shang-
hai, China, Dec. 2010, pp. 237-242.

