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Abstract—In this paper, a comparison of the real-time per-
formances of different algorithms for the estimation of the
concert pitch (tuning frequency or reference frequency) of music
recordings is presented and discussed. The unavailability of
ground-truth datasets makes this kind of evaluation on real
music recordings less trivial than what it may initially appear.
Hence, in this paper we investigate the algorithms best-case
performances using simple generated sounds and than we study
the estimation reliability and the real-time performances using
real world recordings. In particular, we focus on the standard
deviation of the estimation for various length of the signal,
the reliability of the on-line estimation and the computational
complexity.
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I. INTRODUCTION

In several music information retrieval tasks such as melody
extraction, key or chord estimation and other pitch based
feature extraction processes, a quantization of pitch frequency
values to the equal-tempered scale is performed. Usually, the
equal-tempered scale is expressed in a equally spaced integer
values called cents (1) where an equal-tempered semitone
interval corresponds to 100 cents. Although the frequency to
cents mapping is in many cases supposed to be trivial, the
precision of this task relies in the correct estimation of the
tuning (reference) frequency f.¢. This conversion is in fact
computed according the to the equation

¢ = 1200 - log, <ff ) , (1)
ref

where f is the frequency value in Hz and c is the corresponding
value in cents.

In some cases, a 440 Hz frequency for the reference (A4)
pitch is chosen blindly. This assumption is justified by the
fact that this tuning frequency is internationally standardized
[1]. However, for timbre preference or due to instrumentation
issues, the A4 pitch maybe different from 440 Hz. In this
case, a wrong assumption or estimation of concert pitch might
affect the overall performance of a music information retrieval
system [2]. A reference frequency estimation algorithm may
be useful also in a real-time audio processing or monitoring.
For example, as shown in [11], a real-time estimation can be
used to measure the pitch drift of a choral ensemble so that
the singers can be able to take countermeasures. An on-line
reference frequency estimation can be used as a feedback to
automatically control the playing speed of a tape reel player or

a turntable. The term real-time estimation means that a system
must carry out an estimation of f,.; every fixed time interval.
This time interval can be short as one analysis frame or may be
longer (local analysis window) depending on the application.

The estimation of the tuning frequency usually constitutes
a small pre-processing block (or post-processing in some
cases) in the work-flow of larger systems and no specific
evaluation of this block is available in the literature, to the best
of the authors’ knowledge. In [2] the authors discuss some
musical signal characteristics that can negatively influence the
performances of the tuning frequency estimation algorithms,
such as, for example, the deviation of the odd harmonics of
a complex tone from the equal-tempered scale. Here instead,
we study how different algorithms work regardless of the
structure of the analysed audio signal.

In this paper, we compare three methods of tuning fre-
quency estimation that are based on the analysis of spectral
peaks. In Section II we give a brief introduction of the
studied algorithms. In Section III we explain the evaluation
and comparison procedure, and in Section IV we introduce
the two datasets used. Finally, the results are discussed in the
Section V.

II. TUNING FREQUENCY ESTIMATION METHODS

In this paper, we perform an evaluation of a specified class
of estimation algorithms that shares a common pre-processing
step. While other methods are presented in the literature (for
example [2]), we focus our attention on those which requires
a sequence of spectral peaks as inputs. The spectral peaks can
be calculated from the spectrum (windowed FFT) in several
ways [3]. For our evaluation purposes, we have used in this
paper the peak picking algorithm developed in the context of
the Sinusoidal Modelling Synthesis framework (SMS) [4] and
presented in [5]. An estimation of each frequency location
and peak amplitude is calculated by fitting peaks in the
discrete spectrum with a parabola and using the vertex of the
parabola as an estimation of the true non quantized peak. The
output of this peak picking process is the common starting
point shared by all of the three analysed tuning frequency
estimation algorithms. All of the analysed audio pieces are
mono wave files sampled at 22050 Hz. The FFT is calculated
over a window of 8192 samples with an overlap of 75%, that
leads to an hop size of approximately 93 msec. The peak
picking algorithm returns 30 peaks in the range of 50 — 5000
Hz for each analysis window as suggested in [6]. These 30



peaks are sorted from the highest to the lowest peak magnitude.

The first type of tuning frequency estimation method makes
use of the pitch histogram (see [7] [8] [6] [9]), and we call
it Hist0I. Here, the width of the histogram bin is 1 cent. The
second tested method is the one presented in [10], which is
based on circular statistics (Circ). The last algorithm [11] uses
a Least-Square optimization of the mapping error to the equal-
tempered scale. From now on we call it L-S

We give now a brief description of these different ap-
proaches.

A. Pitch Histogram

The underlying idea of this type of algorithms is to build
a histogram of the deviations of each spectral peak from the
equal-tempered scale. The deviation in semitones for each peak
frequency f; can be calculated as follows

d, — ci — round(ci)' @
100

From (2), one can see that d € [—0.5,0.5[ due to rounding
operation to the nearest integer. At this point, a histogram
‘H of all deviations d; is computed. Each peak deviation is
weighted by its peak magnitude r; to avoid high impact of
small (noise) peaks. The overall estimated deviation d is the
deviation associated to the histogram bin with the maximum
value

d = arg max(H). 3)

The reference frequency of the entire music piece can be
computed as

Frep = 440 - 215 ()

A fundamental parameter for this algorithm is the his-
togram resolution. Many of this kind of algorithms differ only
in this parameter. In this paper we discuss only the resolutions
of 1 cents.

B. Circular statistics

A different approach for tuning frequency estimation which
makes use of circular statistics was presented in [10]. This
approach is entirely based on the observation that the deviation
d is a periodic measure and not an absolute measure, since it
is a “wrapped around” quantity that should be evaluated from
the nearest 100 cents grid point. Each cent value is mapped
onto a unit circle 100 cents-periodic and represented as an unit
modulus vector as follows

u=1-: ejqﬁ, %)
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For each peak ¢ with a frequency f;, we consider the vector
u; = r;e® where r; is the peak amplitude and then we take

the mean vector @ of all circular quantities u; as follows
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Each peak’s ¢; is weighted by its peak magnitude r; to
avoid high impact of small (noise) peaks. The overall deviation
is then compued from the angle of the resulting vector #, that
is

A 1
d= by arg(d). 9)

The tuning frequency can be finally estimated using (4).

C. Least-Square Estimation

This algorithm uses a Least-Square optimization approach

and is presented in [11]. The aim of this method is to estimate
the reference frequency in real-time, in order to visualize the
evolution of the tuning frequency of a choir ensemble. In
this context, the author of this algorithm has developed an
application that runs on a modern smartphones.
As the choir changes the tuning frequency during singing, the
conductor, with the aid of this application is able to exploit
this variation and can take some countermeasures to correct
the pitch drift.

In a nutshell, this method, at each analysis frame, calculates
an equal-tempered frequency scale values using the previous
estimation of f,.s and updates this estimation minimizing the
average squared error when mapping each peak frequency f;
to the “new” frequency scale.

At first, a deviation in integer semitone index is calculated
at each peak frequency f; as

s; = round [12 -log, (chZ )} , (10)
ref

then the new reference frequency is estimated in a Least-
Square sense using

new __ Zz(fl ! 2%)

_ 2alJir2®) 1

This method can estimate a f..; that goes out of the
bounds f.r + 50 cents. For this reason, the authors of the
L-§ algorithm takes some countermeasures in order to prevent
this issue. First, a Resetr button is present in the real-time
application. Second, the current estimated f,..; is stored a
circular buffer of B estimations, and the new estimated f,.
is taken as the median of this buffer. In our experiments, we
choose B = 20, and if the estimation exceeds the limit of
frey £50 cents, we force f.%" = 440 Hz simulating the reset
button. Further details of this method can be found in [11].



III. EVALUATION STRATEGY

In the literature, some authors use synthesized tones (for
example sinusoids or sawtooth) in order to make an evaluation
of the precision [11]. That can be useful to test if a given
algorithm is sufficiently precise in an ideal case. However,
this kind of signals do not give a fair representation of the
real world recordings and not all of the characteristics of
the tested algorithm can be exploited. Even symbolic music
data such as MIDI files or MusicXML sheets synthesized by a
sequencer, do not provide a valid ground-truth. This is because
the sound banks used by a sequencer (called SoundFonts)
may exhibit an unpredictable detuning. However, synthesized
symbolic music provides a good starting point because we can
make the assumption that all of the synthesized songs shares
the same “detuning behaviour”.

One dataset of synthesized symbolic music (MS2012) is
considered and discussed in Sec. IV. Furthermore, a test using
a generated sawtooth sweep is performed in order to test the
precision of the algorithm for the best-case scenario (no noise,
only one pitch with known frequency). The real-time test are
made using some real world recording.

A. Estimation reliability

In this test we study the reliability of the estimations of
the algorithms.

First, a test with a simple synthetic sound is performed in
order to verify the best-case accuracy of the algorithms. The
synthetic sound is a sawtooth sweep defined as

n[27h(fot + at?)]. (12)

m\
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For a 5 sec. signal sampled at 44100 Hz and a base
frequency fo = 440 Hz, we set « = 5 and the number of
harmonics to H = 45 in order to obtain an aliasing-free test
signal. An estimation of f,..y is calculated for each analysis
frame.

Second, using the dataset described in Sec. IV, we study
the estimation using a varying quantity of analysed signal. This
evaluations points out the ability of the methods to give a
consistent estimation using few data. The real-time constraints
forces the tuning frequency estimation algorithms to give a
value of f,.r using a little portion of data (for example an
audio buffer). If an algorithm gives a consistent estimation
using few data it means that it can be used for a reliable
real-time estimation. The reliability of the reference tuning
estimation is analysed under the hypothesis that for a given
song, the f,.¢ remains constant (global f,.f) over the entire
music piece. Reasonably, a frusted algorithm must carry out
the same f,.; estimation regardless of which part of the song is
examining. In more detail, we analyse the standard deviation of
the estimation for all the songs in the dataset, making N = 50
estimation for each music piece using p% of the song picked
randomly. Let f P _ be the estimated reference frequency
using the p% of the frames of the song s at the extraction

TABLE I: Minimum, Maximum, Average and Total length of the
songs in the datasets in HH:MM:SS format

Dataset min max

MS2012  00:00:08  00:25:34

average total

00:02:46  14:06:16

n € [1...N]. The standard deviation o, is calculated using

E Z n,p globul 2
s=1n=1 refs refS
SN

13)
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The test of o, is performed using both k¥ = 30 and k£ = 5
peaks per frame.

B. Local tuning estimation

In the case which the hypothesis of f,.; = const for a
given song are not satisfied (for example in the choral or a-
cappella exhibitions where a pitch drift is present, or in the tape
or vinyl recording with a non-constant motor rotation of the
playing gear), we need another kind of test. For this purpose
we simulate a real-time reference frequency estimation where
a value of f,.s is carried out each 4 or 2 seconds during the
reproduction of the musical piece. In more detail, we give
a frey estimation every local analysis window that groups
Lyng = 80 or Lyng = 40 analysis frames. Each local window
has a 50% of overlap with the adjacent windows. With this test
we can observe the variation of the tuning frequency along the
time axis of a musical piece.

C. Computation time

Since the test script is written in Matlab code, we use
the Matlab Profiler to calculate the execution time of the
algorithms. The computational complexity of the various im-
plementations of the algorithms may be different using other
programming languages (for example C/C++, ...), especially
for the Hist algorithm. For this reason, our measured execution
time may vary from an implementation to another. However,
since the Circ and L-S methods consist only in a algebraic
calculations (see (9) and (11)), a further optimization in the
computational complexity are not required.

IV. DATA SET

In our evaluation process we use a synthesized symbolic
music dataset (MS2012) for testing the estimation reliability
and computation time. Three real world recordings are con-
sidered for investigate the local tuning estimation behaviour.
Table I shows some statistics about the length of the musical
pieces in the MS2012 dataset.

The following sections illustrates some useful details of the
dataset.
A. MuseScore Symbolic Music Dataset (MS2012)

This dataset in a collection of 306 songs in MIDI and
MusicXML format. All the songs in this dataset are distributed
under free-to-share Creative Commons CCO license and are
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Fig. 1: Frame by frame f,.s estimation of a sawtooth sweep signal.

kindly provided by MuseScore!. The complete dataset with
some user generated metadata is freely available at [13]. For
the evaluation test we have to synthesize symbolic data to a
22050 Hz, 16 bit mono PCM wave file. For this task we have
used an open source software synthesizer named FluidSynth?
with the soundfont named FluidR3.

In Table II the most used musical instruments (using the GM
standard nomenclature) in the dataset are reported. The values
represent the percentages of songs in which an instrument is
used in one or more track of the song.

TABLE II: Instruments (GM names)

Instrument %

Acoustic Grand Piano 26%

String Ensemble 1 19%
Choir Aahs 16%
Flute 15%
Clarinet 14%
French Horn 13%
Trumpet 12%
Trombone 11%
Tuba 10%
Violin 10%
Alto Sax 10%

Acoustic Guitar nylon 9%

V. RESULTS
A. Estimation reliability

As shown in Fig. 1, all the algorithms follow the pitch
drift of the sawtooth sweep signal. Although the Circ and L-S
shows a very close behaviour, a little “delay” on the estimation
with L-S can be seen in this test due to the memory of the
system that takes the previous estimation as a starting point
for the actual estimation. We can also notice the effect of the
quantization in the histogram for the HistOl algorithm.

The estimation reliability of each algorithm is measured
using the standard deviation o, as defined in (13). For each
song we calculate o, over N = 50 estimation using p% of

Thttp://www.musescore.com
Zhttp://www.fluidsynth.org/
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Fig. 2: Reliability of the algorithms on the MS2012 dataset.

the song’s analysis frame. In Fig. 2 the results of this test with
k =5 and 30 peaks per frame are reported.

As we can see in Fig. 2, all of the algorithms have a small
op but only the Circ algorithms gives a reliable estimation
with the MS2012 dataset with small amount of data. Since the
minimum audible pitch difference is 3 — 4 cents [14] and in
the neighbourhood of 440 Hz an interval of +4 cents means
a difference of about +1 Hz, we can see that only the Circ
algorithm guarantees (on average) an inaudible estimation
error even using a very little portion of of the song.

Another fact is that the estimation using only k¥ = 5
peaks is more reliable with respect to the estimation using
k = 30 peaks, especially for the L-S algorithm. Using few
peaks, whereas they are ranked using their magnitude, the first
considered peaks are the most salient spectral peaks. The L-
S algorithm is the only one that does not take into account
the peaks magnitude, hence it treats all peaks with the same
weight. In this way, also the small magnitude noise peaks have
the same impact of the true spectral peaks. For that reason, the
L-S method works better when only the first prominent peaks
are considered in the estimation task.

However, the result of L-S can be misleading. Although
the deviation remains small, the Fig. 2 show that the standard
deviation of the estimation of the L-S is bigger than the
other algorithms. This fact suggest that the Circ is far more
reliable than L-S and HistOl. As we will see in the following
Section, this consideration is true for the HistOl but not for
the L-S. In fact, the L-S algorithm is not well suited for a
global f,.f estimation because the only link with the previous
frames estimations is the f,..; estimated at the time instant
immediately preceding the actual estimation. For that reason,
only the last portion of the data contributes effectively to the
estimation of the f,..s. As an example, if a song with a constant
frey exhibit a detuning in the last seconds of the songs, the
global f,.s estimation using L-S can be dramatically wrong.
In the next Section we will show that the L-S is well suited to
the real-time f,..y estimation.
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The Beatles

35 T T
- e - Hist01

301 Circular| i
— 25f LS f
= ?
S 20f / |
= !
g ]
£ 15 ! 1
; 1
3 108, 1 il
=t 1
£ 1o
.§ 5 ‘l b
B9 g 4

1
-5 té é & (5 -
710 L L L L L
0 20 40 60 80 100 120

Local Estimation Window 50% overlap, LW"d = 80 frames, 4 sec.

Fig. 4: Local tuning estimation of “Variations 16-20” in J.S. Bach,
Goldberg Variations, BWV 988, played by Wanda Landowska, Paris
(1933), CD version of 78 rpm recording

B. Local tuning estimation results

For the local tuning estimation performances evaluation,
each algorithm is “forced” to give a f,.s estimation every
L,nq analysis frame simulating a real-time behaviour. For the
firsts two testing songs, we use a local analysis window of
length L,,,q = 80 frames. This means that an estimation
is carried out every 4 seconds. In this test we measure the
deviation in cents between the estimate tuning frequency and
a reference of 440 Hz.

In Figure 3 and 4 the local estimation performances of the
algorithms is reported. In order to get a more stable reference
frequency estimation, we use k = 5 peaks per frame. In more
detail, in Figure 3 we show the local estimation results for a
constant reference tuning song Let It Be performed by The
Beatles that we assume to have a constant f,..¢, while in
Figure 4 we show how the algorithms behaves when a pitch
drift occurs during the reproduction. This particular recording
comes from a remastered CD version of an old (1933) 78 rpm
vinyl recording of classical music.

In both cases, the Circ method gives a less “shaky” estimation
with respect to the others.

The L-S algorithm seems to have a more stable estimation
compared with the HistOl. In this case, the L-S method
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Fig. 5: Local tuning estimation of Choir performance used in [11]

TABLE III: Average execution time per song

Algorithm Average Time (s)
Circular 0.19
Hist01 2.63
L-S 1.15

can exploit better his “recursive” attitude since the previous
estimation is the starting point for the next f,..; evaluation in
order to make a consistent estimation.

In Figure 5, we show the results of the estimation with
the same choir ensembles recording used in the evaluation test
in [11] and setting L,,q = 40 frames (2 seconds) in order
to use roughly the same window length used for the tests in
[11]. The performance suffers of a gradual pitch falling that
exceeds one semitone from the starting tuning frequency. In
that case, the Circ and L-S algorithms perform quite well and
shows a similar behaviour. For this reason, this two algorithms
are more suitable for the real-time frequency estimation than
the HistOl.

C. Execution Time

The last evaluation test considers the computation time
required for each algorithm. This test was performed using the
Matlab Profiler utility on the f éObal estimation of all the 3060
songs in the MS2012 dataset with & = 30 peaks per frame.
Only a relative evaluation is given here since the algorithms
optimization in terms of computation efficiency is not the goal
of this paper. We think that a further improvement on the
absolute execution time may be possible, for example, using a
C/C++ implementation of the methods. The average execution
time in seconds are reported in Table III. The test are made on
a 64 bit GNU/Linux equipped laptop, with 4 GB of RAM and
an Intel i5 M 430 CPU at 2.27 GHz without parallel Matlab
optimization.

As we can see in Table III, all of the algorithms are fast
enough to run also in real-time. The L-S has been designed
to be real-time even in a computationally limited environment
such as modern smartphones. In our test, however, the best
performing algorithm in terms of computational cost is the
Circ.



VI. CONCLUSIONS

The lack of scientific ground-truth makes the evaluation of
the precision of the tuning frequency estimation algorithms a
non trivial task. However, under certain hypothesis as shown
in Sec. III, we were able to study the behaviour of the various
tested algorithms. As mentioned in the Sec. V-C, from the point
of view of the computational complexity, all of the studied
algorithms can satisfy the real-time constraint. Nevertheless,
as seen in Sec. V-A, only Circ algorithm gives a reliable
estimation using few data. Furthermore, the presence of a
median filter on a data buffer and the dependency of the result
from the previous estimation, introduces a sort of delay in the
L-S estimation.

The number of peaks per frame k is not a fundamental
parameter for the Circ and HistOI methods, while the L-S
algorithm can benefit from using few peaks. However, in the
computational cost optimization point of view, using few peaks
means less computation time. In our tests we demonstrate that
k = b5 peaks per frame are sufficient for all of estimation
task presented here. Moreover, our tests show that the Circ
algorithm outperforms the other ones in terms of reliability.
For the real-time adaptability to reference frequency changes
the Circ and the L-S shows comparable results and both are
well suited for this task.

Furthermore, our tests show that L-S gives worst results
for the global f,.; estimation compared against the other two
algorithms.
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