

Jackson, P. T.G., Nelson, C. , Schiefele, J. and Obara, B. (2015) Runway

Detection in High Resolution Remote Sensing Data. In: 2015 9th

International Symposium on Image and Signal Processing and Analysis

(ISPA), Zagreb, Croatia, 07-09 Sep 2015, pp. 170-175. ISBN

9781467380324 (doi:10.1109/ISPA.2015.7306053)

This is the author’s final accepted version.

There may be differences between this version and the published version.

You are advised to consult the publisher’s version if you wish to cite from

it.

http://eprints.gla.ac.uk/170047/

Deposited on: 03 December 2018

Enlighten – Research publications by members of the University of Glasgow

http://eprints.gla.ac.uk

http://dx.doi.org/10.1109/ISPA.2015.7306053
http://eprints.gla.ac.uk/

Runway Detection in High Resolution Remote
Sensing Data

Philip T.G. Jackson1, Carl J. Nelson1, Jens Schiefele2, and Boguslaw Obara1 ?

1 School of Engineering and Computer Sciences, Durham University, Durham, UK,
2 Jeppesen GmbH, Neu-Isenburg, Germany

Abstract. Runways are vital descriptive features of airports and knowl-
edge of their location is important to many aviation and military appli-
cations. With the recent wide availability of remote sensing data, there
is demand for an automatic process of extracting runway geometry from
satellite imagery. In particular, Very High Resolution (VHR) data makes
it feasible to extract a runway’s area precisely. In this paper we establish a
novel method for accurate and precise extraction of geometric polygons
for an arbitrary number of runways in VHR remote sensing imagery.
Validated results are demonstrated for a dataset of twelve images of six
different airports, at 61 cm resolution from the QuickBird II satellite.

1 Introduction

Modern day airports are complex structures which gradually extend over time:
extensions, repairs and changes to existing features eventually alter the layout of
most airports. For air traffic controllers, surface vehicle operators, security per-
sonnel and many other end users, access to up-to-date information on this layout
is crucial to both safety and operational efficiency. Geographic Information Sys-
tems (GIS) can represent this information as a set of point, line and polygon
objects overlaid on a VHR remote sensing image of an airport. These vector ob-
jects represent runways, taxilines, de-icing pads and other important features.
Updating the GIS data then becomes a matter of comparing new remote sensing
images with old, and with the existing GIS data, to isolate meaningful changes.

Human operators can perform this task by hand but doing so regularly for
hundreds of airports is time consuming and can quickly become error-prone.
This motivates the development of systems that can automate as much of the
process as possible.

Runways are arguably the most prominent characteristic of an airport; this
makes them a good starting candidate for automatic detection in VHR imagery.
This paper introduces a novel algorithm that can accept a VHR remotely sensed
image of an unknown airport as input, and fit a polygon accurately around
each runway. For validation these polygons have been compared with those from
existing GIS data for the airports, provided by Jeppesen.

? Correspondent author: boguslaw.obara@dur.ac.uk

2 Background

2.1 Related Work

Due to its importance in aviation and military operations, there have been several
prior studies on automatic runway detection. Han et al. [5] segmented runways
from low resolution images by using edge geometry to find long, homogeneous
rectangles that were brighter than their surroundings. Tandra et al. [9] produced
an edge detection and thresholding algorithm for use as part of a Foreign Object
Detection (FOD) system. A real-time FOD system was developed by Kinaz et
al. [7], which processes input from an infra-red camera mounted on the front of
a plane; this system used convolution masks and straight line fitting to detect
the runway’s long edges and threshold markings.

Yang et al. [10] proposed a method that employed the Hough Transform (HT)
in conjunction with Otsu thresholding and fractional gradient edge detection to
find runways, but was unable to distinguish between runways and other straight
objects.

These methods take diverse approaches but all share a few common assump-
tions: that the runways are long, straight objects or uniform intensity and that
these criteria distinguish a runway from other features in the image.

Alternatively, Aytekin et al. [1] proposed a texture-based runway detection
algorithm that used the Adaboost machine learning package to identify 32x32
pixel image tiles as runway or non-runway. The algorithm could learn from its
training data which of 137 possible texture features were the most salient indi-
cators, and construct its own classification scheme based on those.

2.2 Limitations of Traditional Methods

Very high resolution images of entire airports (and their surroundings) present
challenges not fully addressed in the above papers. Unlike in the case of FOD
systems, which monitor a single runway, an unknown number of runways are
present in remote sensing images, along with many irrelevant features such as
roads and residential areas. In lower resolution data, runways can appear as
bright rectangles, surrounded by largely flat terrain; however, in the case of
VHR remote sensing imagery, the background becomes much more complex. We
also find that runways may be brighter or darker than their surroundings, or
even change intensity along their length if different materials have been used for
construction or parts of the runway have been renewed or extended. This makes
intensity thresholding, as relied on in several previous studies (e.g. [5] [10] [3]),
difficult to apply to these images.

The most obvious distinguishing feature of runways is that they are generally
the longest, straightest objects present in an airport. The HT is the most obvious
approach to extracting such an object, and has been applied to runway detection
in the past [3]. The standard HT method [6] identifies the most prominent lines
in an image by means of exhaustive search through a ”Hough space”, consisting
of all possible straight lines subject to some quantisation in their parameters.

Fig. 1: Standard Hough Transform calculated from a Canny edge map of Kaunas
International Airport. Lines are drawn preferentially through trees, since they
produce many edge pixels in high resolution data.

These parameters, typically, are the line’s closest approach to the origin, ρ, and
the angle between the line’s normal vector and the x-axis, θ. Since the standard
HT detects straight lines rather than rectangles of non-zero width, the simplest
application to runway detection is to produce a binary edge map, for example
from the Canny [2] algorithm, and run the HT on that. In theory the HT will
extract from it the long edges of the runways, as they should form the most
prominent lines in the image.

This naive approach is severely limited, ultimately as the HT works by choos-
ing the lines which pass through the most edge pixels. The dominant detected
signals are often not runway edges, for several reasons:

– Many other objects in the image, such as taxiways, roads, tire marks down
the centre of many runways and runway markings themselves, present com-
peting edge pixels,

– The edges of runways are usually broken by adjoining taxiways, reducing
number of edge pixels they produce in the edge map,

– Regions, which in lower resolution data may appear flat, such as trees and
residential areas, produce many edge pixels in VHR data. Lines crossing
these regions may intersect more edge pixels than lines along any runway
edge, causing the HT to preferentially return these meaningless lines (see
Figure 1).

A core limitation of the standard HT is that it is unable to automatically
detect the number of lines; in general one must request at least as many lines
as are present in the image. This is difficult in the case of previously unseen (or
altered since last inspection) airports that may contain multiple runways.

3 Method

Our solution is a way of circumventing the problems caused by image complexity,
so that the HT can be used to precisely locate the long edges of the runways. It
begins by identifying the rough location of each runway in the image, in terms
of its central axis line (in parametric ρ, θ form). To identify these central runway
axes, we exploit the only property which is unique to and ubiquitous among
all runways, namely, that they contain many runway markings, e.g. centre-line
markings (Figure 3). These markings are white, elongated shapes on a dark
background, easily detectable and with a well defined direction which is parallel
to the runway. They can be extracted by searching the edge map for elongated
loops of edges (as shown in Figure 2b). These objects are found by taking a
Canny edge map [2] and removing from it all connected components that do
not satisfy certain criteria (Figure, 2), in such a way that the only remaining
components are elongated loops.

We begin by filtering components with too many or too few pixels. We found
that fixed upper and lower bounds were sufficient for our dataset, in which
there is negligible variation in both image resolution and the physical size of the
markings. We then filter out components with too low an eccentricity, i.e. keeping
long, thin elements, and finally remove components that are not closed loops.
Roughly 20% of the remaining components correspond to runway markings.

Once the closed loops have been found, they can be used to populate an
accumulator array analogous to the edge pixel-based accumulator array as used
in the HT. However, they differ in that since runway markings have both a well
defined direction and position, they can each lie along only one line, and hence
cast a vote towards exactly one accumulator cell. The parameters of this line are
given by,

θ =
(
φ− π

2

)
mod

π

2
and

ρ = x cos θ + y sin θ,

where φ is the angle the loop makes with the x-axis, and (x, y) are the coordinates
of the loop’s centroid. In this way, edge loops from the same runway will all
increase the same accumulator cell, resulting in one clear peak per runway. The
row and column indices of this peak in the accumulator array correspond to the
runway’s rho and theta parameters, respectively. To find the peaks, the transform
space is thresholded at a fixed, empirical value of eight, i.e. at least eight markings
must be found along the same line for a runway to be detected. This low threshold
is possible because edge loops from runways will be be clustered at the same
location in the transform space, while non-runway signals will be spread almost

Fig. 2: A runway region from the Canny edge map, showing (a) original edges and
(b) elongated loops left after connected component filtering. The arrow indicates
a marking which was not detected, due to a small break in the edge loop.

Fig. 3: At high resolutions, more detail becomes visible on a runway. For the
purposes of our algorithm, we define the edges of the runway by its side-stripes,
rather than its shoulder edges. Our algorithm also utilises threshold markings to
delimit the ends of the runway, since they become discernible in VHR images.

randomly. Although, as shown in Figure 2, some markings are not detected, the
runway peaks are still clearly distinguishable due to the low background noise.

(a) (b)

(c) (d)

Fig. 4: Overview of the runway segmentation process. In (a), the region of interest
- found by broadening the runway’s axis line - is highlighted. In (b), a standard
HT finds the long edges of the runway, displayed in red; the axis line is displayed
in blue. In (c) and (d), the threshold markings have been found and the runway
region capped to produce a rectangular polygon.

Once these lines are extracted, a region of interest can be produced for each
runway by broadening the line into a strip. Since our dataset has constant reso-
lution and little variation in the physical width of the runways, a constant strip
width of 300 pixels was found to work on all images. The standard HT is then
applied within this region to locate the long edges (see Figure 4). By restricting
the HT to consider only edge pixels from within the region of interest, we remove
the majority of the non-runway edge pixels and make the runway edges appear
far more prominent in the Hough space. This also reduces running time for the
operation, since fewer pixels must be processed.

Since we define the boundary of the runway as the white side-stripes rather
than, for example, the outer edges of its shoulders (see Figure 3), we use the
result of a local mean threshold as the input to the HT, rather than an edge
map. The local mean threshold responds well to the white objects on a dark
background, and responds less strongly to the edges of bright regions. In this
way we ensure the HT detects specifically the white side-stripes, rather than any
other long edges.

Due to the length of runway edges in VHR data (at least 3000 pixels in our
dataset), an angular resolution of one sixteenth of a degree is used in the HT to
allow the lines to fit closely along the full length of the runway.

Having extracted the runway’s long edges, it is still necessary to find the
threshold markings that terminate the runway (see Figure 3). These markings
are distinctive in that they are periodic: normally 4-16 (depending on width)
[4] white stripes of even spacing and thickness. Our algorithm identifies these
markings by analysing independently all columns of pixels from the strip, each of
which is a cross-section through the runway. Columns are classified as threshold
or non-threshold; the classification requires three criteria to be met:

– Brightness: thresholds are marked in white paint, therefore a column that
runs across one must have a greater mean intensity than that of the whole
strip.

– Periodicity: threshold markings are stripes that repeat at a regular frequency
(see Figure 3). As such, a clear frequency peak should be found in the col-
umn’s Fourier transform.

– Number of stripes: threshold markings consist of 4-16 white stripes. In a
single column, this appears as 4-16 intensity peaks. We count these by per-
forming a local mean threshold within the column, and counting the number
of connected components that appear. Only columns with the appropriate
number of stripes for their width are classified as threshold; this allows for
some noise and or clustering of signals.

Once the columns have been classified, the threshold markings will appear as
large contiguous groups of threshold marked columns, the outer edges of which
mark the boundaries of the runway.

4 Results

Our dataset consists of six bi-temporal pairs of images from the QuickBird II
satellite, with a panchromatic resolution of 61 cm. These images vary in size from
around 25-200 megapixels. Figure 5 presents the algorithm’s output on three of
six airports from the input dataset, provided by Jeppesen. In some cases the
airport itself comprises only a small proportion of the total original image area.

Between all twelve images, there are 26 runways, all but two of which are de-
tected by the algorithm. In practice, the algorithm’s accuracy is found to depend
on the clarity of threshold markings - if they are too faint due to weathering then
they will not be conclusively detected, and the runway’s existence will not be
reported. This issue is clearly shown in Figure 6, the sixth airport, where the
runway marking are dulled by apparent weathering. These issues might be par-
tially mitigated by using some pre-processing, such as histogram equalisation.
All images have been processed appropriately for presentation.

(a) Istanbul (????) (b) Istanbul (????)

(c) Bahrain (May 2011) (d) Bahrain (April 2014)

(e) Moscow (August 2011) (f) Moscow (July 2014)

Fig. 5: The algorithm’s output for six representative images from of our sample
dataset, provided by Jeppesen. These images have been cropped to focus on the
runway region, which can be a small proportion of the original images. The green
boxes show the ground truth (from pre-existing GIS data) for the two runways
which were not detected.

(a) (b)

Fig. 6: Heavily eroded threshold markings caused by taxiing planes lead to the
runways remaining undetected.

Table 1: Jaccard indices, comparing detected runway polygons with those marked
by human experts.

Airport Runways Detected Jaccard Index

Kaunas (2008) 1 of 1 0.978

Kaunas (2009) 1 of 1 0.980

Bahrain (2011) 2 of 2 0.976

Bahrain (2014) 2 of 2 0.969

Hong Kong (2008) 2 of 2 0.974

Hong Kong (2014) 2 of 2 0.978

Moscow (2011) 2 of 2 0.969

Moscow (2014) 2 of 2 0.970

Helsinki (2008) 3 of 3 0.967

Helsinki (2014) 3 of 3 0.974

Istanbul (2006) 1 of 3 0.954

Istanbul (???) 3 of 3 0.968

5 Conclusion

An algorithm for the precise detection of runways from VHR remote sensing
data is presented. We find regions of interest by observing features that are
not discernible in lower resolution imagery, and produce vector polygons that
precisely fit the runway area. Accurate results with a zero false-positive rate are
demonstrated in our testing dataset. The algorithm is robust against variations in
runway intensity and outline shape due to adjoining taxiways and other artefacts,
and against the presence of large tire marks down the runway centre. It can detect
a variable number of runways, and does not return false-positives by confusing
runways with taxiways or other background features such as roads.

The vector objects which are produced will make it simple to compare runway
areas in multi-temporal data, provided the image pairs can be co-registered, a
challenge we are currently focussed on. In addition, a number of performance
improvements can be made. For instance, although finding edge loops has proven
the most effective way of detecting runway markings so far, it is a lengthy process,
and could potentially be replaced by a local thresholding operation, a selection
of which are listed in chapter eight of [8].

Acknowledgments

This research was supported by Jeppesen, a Boeing Company; grant number
RF081BO.

References

1. Aytekin, O., Zongur, U., Halici, U.: Texture-based airport runway detection. Geo-
science and Remote Sensing Letters, IEEE 10(3), 471–475 (May 2013)

2. Canny, J.: A computational approach to edge detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence 8(6), 679–698 (1986)

3. Di, N., Zhu, M., Wang, Y.: Real time method for airport runway detection in aerial
images. In: Audio, Language and Image Processing, 2008. pp. 563–567 (July 2008)

4. Federal Aviation Administration: Aeronautical Information Manual, chap. 2.3
(2014)

5. Han, J., Guo, L., Bao, Y.: A method of automatic finding airport runways in aerial
images. In: Signal Processing, 2002 6th International Conference on. vol. 1, pp.
731–734 (Aug 2002)

6. Hough, P.V.C.: Method and means for recognizing complex patterns (1962)
7. Kniaz, V.: A fast recognition algorithm for detection of foreign 3d objects on a

runway. In: PCV14. pp. 151–156 (2014)
8. Sezgin, M., Sankur, B.: Survey over image thresholding techniques and quantita-

tive performance evaluation. Journal of Electronic Imaging 13(1), 146–168 (2004),
http://dx.doi.org/10.1117/1.1631315

9. Tandra, S., Rahman, Z.: Robust edge-detection algorithm for runway edge detec-
tion. In: Proc. SPIE. vol. 6813 (2008)

10. Yang, Z., Zhou, J., Lang, F.: Detection algorithm of airport runway in remote sens-
ing images. TELKOMNIKA Indonesian Journal of Electrical Engineering 12(4),
2776–2783 (2014)

