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Abstract—In Music Information Retrieval (MIR) different
approaches in modeling the meter structure of a song have been
proposed and have been proved to be beneficial for the task
of Audio Chord Estimation (ACE). In this paper we propose
a novel approach that integrates the meter and beat informa-
tion into the Hidden Markov Model (HMM) used for Audio
Chord Estimation. In addition to the proposed meter model,
we introduce also a modification in the inference procedure of
the aforementioned Hidden Markov Model, in order to better
capture the temporal correlation between chords progression.
Experimental results show that the proposed approach is effective
as the classical approaches in modeling the meter structure, but
with a substantially reduced model complexity. Moreover, the
proposed two-stage decoding procedure produces a significant
improvement in the chords estimation accuracy.

Keywords—Audio Chord Estimation, Hidden Markov Model,
Music Information Retrieval.

I. INTRODUCTION

The use of HMMs [1] is a common procedure for the task
of Audio Chord Estimation (discussed in Section II) [2].

The basic structure of the HMM we have used for modeling
a chord sequence, was proposed in [3], and is described in
Sec. II. Despite the fact that this HMM is relatively simple, it
has been proved to be effective for the task of Audio Chord
Estimation (ACE) [3]. Recent advances incorporate different
musical facets in a single model, such as the meter, beat and
musical key in order to estimate the progressions [4]-[8]. The
exploitation of the musical context knowledge, instead of the
chord sequence only, has also been proved to be beneficial for
ACE [2].

In order to effectively aggregate different musical facets
in a single model, two main approaches have been proposed
in the related literature. In the first approach, the additional
information is included in a single HMM by extending the state
space of the model, as proposed, for example in [4], where the
meter of the song is jointly modeled with the chord progression
using conditional probabilities and a bigger transition prob-
ability matrix. Another approach consists in using Dynamic
Bayesian Networks (DBN) [5], [6], that can be considered a
generalization of HMMs. DBNs can be seen as a multi-stream
HMM, where each stream models a different musical facet,
and the conditional probabilities define the relation between
them. Practically, any DBN can be equivalently modeled as an
HMM with a very large state space [2]. However, this strategy
implies a slower decoding stage and a less intuitive model
representation.

An HMM is a probabilistic generative model for a sequence
of observed variables O = (O1,0Os,...Or). These observa-
tions, in our case the Pitch Class Profile (PCP) vectors, are
generated from a hidden (i.e., not directly measurable) state
sequence @ = (q1,¢2,-.-qr) (ie., in our case, the played
chords). Each state at a generic time index ¢ is g; € S, where
S = {51, 953,...} is the finite set of all possible states. The
Pitch Class Profile or Chroma Vectors, is a 12 bins, octave-
independent measure of the strength of all possible notes in
the considered audio signal. Each bin represents the energy
of a given Pitch Class (i.e., the 12 notes of the western
chromatic scale) at a given time instant (frame). The PCP
vectors used in this paper are calculated using the Loudness
Based Chromagram' [6], without beat-dependent smoothing.
The hop-size between adjacent frames was set to 93 ms.

In this paper, we propose an extension to the basic model
in order to integrate the beat/meter information without ap-
pending an additional layer to the basic HMM, and without
modeling additional conditional probabilities in the transition
matrix. Furthermore, we propose, a two step approach in
the estimation stage which includes, first, an estimation of
the a-posteriori likelihood of each single chord and, then, a
maximum likelihood estimation of the chord sequence using
the Viterbi algorithm.

The paper is organized as follows. In Sec. II we describe
the details about the HMM, whereas in Sec. III we introduce
the proposed model. Experimental setup, simulation results
and conclusions are given in Sec. IV, Sec. V, and Sec. VI,
respectively.

II. THE BASIC MODEL

In this model, the set of all possible states includes 12
major chords, 12 minor chords and a no-chord symbol, so that
the cardinality of the state set is |S| = 25. Each observation
O, is related to the “real” underlying state by the emission
probability b;(0;) = P(Oq = S;) that measures the
probability that O; is observed at a given time ¢, when
the actual state is ¢; = S;. It is a common practice for
ACE, to model the emission probability by a 12-dimensional
multivariate Gaussian probability distribution [2] (the PCP has
12 dimensions).

For a first order Markov Chain, the transition between two
consecutive states (i.e., from ¢; and ¢;41) is modeled using
a transition probability matrix. The emission probability, the
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transition probability matrix and the initial state distribution
form the parameter set A of the HMM, which is denoted as

A= (A, pn ). )]

A € RISIXISI is a matrix whose elements
A5 = P(Qt = Sj|Qt—1 = Si)

represents the probability that a chord .S; is followed by chord
S;. The parameter 7w € RISI is the initial distribution, or
prior, p € R12¥ISI and 3 € R12*12xIS| are respectively the
mean vectors and the covariance matrices for a multivariate
(12-dimensional) Gaussian distribution that models the emis-
sion probabilities. Since the process that generates the chord
sequence is assumed to be a stationary Markov Chain, the
transition probabilities a; ; do not depend on the current time
index t. Further details can be found in [1].

A. Setting the model parameters

Several methods to adjust the model parameters
(A,m, u,3) have been proposed in the literature [1].
Each one of these methods try to maximize a given optimality
criterion.

For ACE systems, there are two main classes of techniques,
the Machine Learning approach, (trained, or Data-Driven sys-
tems), and the Expert approach. The former uses a training set
of annotated songs and adjusts the model parameters, whereas
the latter uses the musical knowledge of an human expert
to “manually” tune the system parameters. A combination of
data-driven and expert systems is also possible. An overview of
the commonly used techniques for parameters tuning in ACE
method is provided in [2].

As mentioned in the previous section, the emission prob-
abilities are modeled with a multivariate Gaussian probability
distribution. The mean vectors g and the covariance matrices
3 are trained using a subset of the dataset described in Sec. IV.
More precisely, a 12-dimensional mean vector is calculated for
each of the 25 chord template by averaging the PCP vectors
that belong to the same chord type. Similarly, the covariance
matrices for each chord template, are also estimated from the
PCP vectors. The transition probability matrix A is calculated
by counting the number of transitions between each chord type,
and then is normalized in order to have the sum of the elements
of each row equal to 1. The initial distribution 7r is calculated
by counting the occurrences of each chord type and then is
normalized to obtain a probability distribution.

B. The Decoding Step

The aim of the decoding step (or inference step) of an
HMM is to find the optimal (according to a given criterion)
sequence of states ¢; that best “explains” the observation O;
for t = 1...T. The decoding can be achieved in different
ways [1].

The commonly used decoding procedure in the HMM
based ACE systems is the well known Viterbi algorithm [1],
[9]. Without going into the implementation details, the Viterbi
algorithm finds the best state sequence () that maximizes
P(Q|O,\) (or equivalently P(Q,O|)\)). The result of the

T T T T T T T T

0.5 ® S} §

'\ '\ __ smoothed 51
I |

0.4 R | \ T
R Y K

0.3} N Dl 1A
o P! ot

o2 | s Y
I ! A | ! \ I |

/ | \/ / N A | ! ! \ | \

01k |~ \ ; \ K - \\/ \/ - 4

\ - \

i BEolololEelolololololol RoloNolololol Rololol RolololRololol RololoNKolo)

14 14.5 15 15.5 16 16.5 17 17.5
time (frames)

Fig. . An example of § and its smoothed version 5.

Viterbi algorithm is the maximum likelihood path that is the
maximum likelihood chord sequence given the observation
sequence O and the model parameters .

III. THE PROPOSED MODEL

As already said in Sec. I, the well performing ACE systems
aggregate several musical facets as beat/metric information or
musical key knowledge in a single model in order to better
characterize the harmonic progression of a musical piece and
gain estimation accuracy.

A. Time-variant transition probability matrix

In order to include the beat/meter information, we first
have to estimate the tuning frequency [10], the bar and beat
positions. For that purpose we use the method proposed in
[11]-[13] and freely available as VAMP plug-in2 for Sonic
Visualizer®. Assuming a standard meter signature (%), the beat
tracker provides the beats position (time-stamp) and the metric
information of each beat within a measure (i.e., the first beat
of a measure is marked with “1”, the second with “2” and so
on until the last beat of the measure, that is “4”).

The output of the beat/meter tracker is used to calculate
the meter index function M, € {0,1,2, 3,4}, where the index
“0” means that no beat is detected at the time ¢. Based on the
assumption that a chord change is more likely to happen at
the beginning of a measure (“17), less likely on “3”, even less
likely on “2” and “4” and very unlikely during off-beat frames
(i.e., meter marked as “0”) [5], we can recompute A at each
time instant ¢ in order to take into account this information.

The elements on the main diagonal of A indicate the
probability to have no transition (i.e., ¢4 = ¢;—1), and the
off-diagonal elements of A give the probability to have a
transition (q¢¢ # ¢:—1). The basic idea is to modulate the
balance within the elements on the main diagonal and the rest
of the matrix in order to modulate the probability of having
(or not) a chord transition between time ¢ — 1 and ¢, using
the beat/meter information provided by the beat tracker. In
that way, the transition matrix is no more time-invariant, but
depends on the meter information at each time instant. Hence,
our model becomes:

2http://vamp-plugins.org/plugin-doc/qm-vamp-plugins.html
3http://www.sonicvisualiser.org/



A= (At77r7l“l’72)' (2)

At this point we define the probability density function of
the transitions given the meter index m; as:

0.01 ifm; =0
0.5 ifm; =1
P(chord_change|m;) = 0.15 if m; =2 3)
020 ifm; =3
0.14 if m; =4

The values in (3) are estimated by counting the chord
transition on each meter index using 50% of the data set
(discussed in Sec. IV). For each meter index, a chord transition
is considered as detected if there is a transition within a grace
time of £2 time frames in order to mitigate the effect of the
errors in the beat tracker stage.

In order to calculate A, that will be used in the decoding
stage, we have to evaluate the weighting coefficient d; at each
time instant:

0; = P(chord_change|m; = M). 4)

Again, in order to take into account the errors in the beat
tracker, we smooth ¢ using a Gaussian kernel with a standard
deviation of 2 frames, obtaining the smoothed weighting
coefficients . An example of § and ¢ is illustrated in Fig.
1.

Now we can calculate A; by first computing the matrix:

W, =(1-0,)D(A)+8D(A), Vt=1...T, (5

where
ai 1 0 0
0 agy - 0
D(a)=1| . SRS ; ©)
0 0 i ;

and D(A) = A — D(A).

In this way we modulate the ratio between the main
diagonal (i.e., probabilities of no transition) and the rest of
the matrix (i.e., probabilities of transition).

Furthermore, we have to normalize W; in order to obtain
again a transition probability matrix A; in the following way:

Wit

A5t = ’
’ > Wit

where w; ;¢ are the elements of W.

Vi, Vit, 7)

See Fig. 2 for an example of two different A;.

Another possible strategy is to estimate 5 different matrices
from the dataset, one for each meter index, and chose the right
one for each time instant during the decoding stage.

— CC#DD#E FF#GG#AA#B cc#dd#e f f ggHtaa#b
(@)

- CC#DD#E FF#GG#AA#B cc#dd#te f ff gg#aa#b
(b)

Fig. 2. Example of transition probability matrix A;: (a) the chord tran-
sition is very unlikely; (b) the chord transition is very likely (note that the
values outside the main diagonal has been equally rescaled for visualization
purposes).



The main disadvantage of this approach is that the amount
of data needed for the storage becomes larger as the number
of possible chords increases. Furthermore, our approach uses a
smoothly-changing transition probability matrix that mitigates
possible estimation errors of the beat tracker. In the following
sub-section, we describe the proposed modifications in the
decoding stage.

B. Two-stage Decoding

The classical decoding stage for the HMMs used in ACE
systems follows the method illustrated in Sec. II-B, that is
a maximum likelihood estimation of the chord sequence, or
path, given the observations. The Viterbi algorithm uses the
emission probabilities b;(O;) for each state S; at a given time
t to calculate the forward coefficient

O(t(j) = P(Ol . Ot7qt = Sj|/\)

that are used for the computation of the maximum likelihood
state sequence path [1].

Furthermore, a Maximum-A-Posteriori (MAP) estimation
of the chord sequence can also be performed [1]. The coeffi-
cients ¢ (j) maximize P(q; = S;|O, \), that is the probability
of choosing the states g; that are individually most likely. The
~¢(j) are calculated using the forward-backward procedure [1]
as follows:

at(j)ﬁt(j)
> o()Be(5)

where 5,(j) = P(O41...Or|q. = S, \) are the backward
coefficients. In terms of emission and transition probability,
a(7) and B;(j) are recursively calculated, as in [1], using the
following equations:

Ve (J) = (¥

aip1(f) = lz ai(i)aijt| bj(Ot1), Q)
with Oél(j) = ijj(Ol) and
Bu(i) = Zai,j,tbj(0t+1)5t+1(j)7 (10)
J

with Br(i) = 1, Vi. In our case, the coefficients a; ;
depend on ¢, since A is time-variant.

Usually, when HMMs are used for ACE, the chord se-
quence is assumed to be a Markovian process. In practice a
chord sequence is not, in general, a Markov Chain. That means
that the Viterbi is a sub-optimal estimation for the chords
sequence.

In order to improve the estimation accuracy and better
capturing the temporal behaviour of a chords progression, we
propose a two-stage decoding system.

In the first stage we maximize the probability (MAP) of
choosing the states q; that are individually most likely, given
the sequence of the observation (i.e., maximize
P(q. = ;0. \)).

TABLE 1. EXPERIMENTAL RESULTS. THE ROW “IMPROVEMENT”
SHOWS THE DIFFERENTIAL IMPROVEMENTS BETWEEN EACH ALGORITHM
VARIANT AND THE BASIC ALGORITHM.

Score HMM HMM+B HMM+2S HMM+B+2S
Mirex2010  0.751 0.763 0.763 0.773
Improvem. - 1.2% 1.2% 2.2%

The second stage is the Viterbi algorithm applied to the
coefficients ~;(j) obtained by the previous stage, instead of
the emission probabilities b;(Oy).

IV. EVALUATION

The proposed ACE algorithm has been evaluated using the
same method proposed in [14] with the software MusOOEval-
uator* and the pre-set called Mirex2010, on the same database.
The Mirex2010 evaluation metric calculates a segment-based
score by considering matches between overlapping segments
of the estimated chord sequence and the annotated chord
sequence.

The total score for a given song is evaluated by summing
the length, in seconds, of all the segments that are marked as
correct match, and dividing the result by the total length of the
song. The Mirex2010 pre-set takes into account the differences
between the chord vocabulary of our ACE method and the
chord vocabulary of the annotations. Our method can identify
25 kinds of chords (12 major, 12 minor and 1 no-chord) while
the annotated labels have a wider vocabulary. In order to have
a score that is defined for each segment, MusOOEvaluator
performs a mapping of the annotated labels to the set of the
major and minor chords (i.e., the chord C7 is mapped to
Cmaj, and so on). Furthermore, the Mirex2010 metric does
not take into account the chord inversion. This means that if
the bass note of a chord in the annotation is different from
the estimation, but the chord in its original state is correct,
this evaluation metric marks the estimation as a correct match
(i.e., Cmaj/G is considered equivalent to Cma j).

The ACE algorithm has been tested in four variants,
namely: the basic model (HMM), the time variant model
with the beat/meter information (HMM+B), the basic model
with two-stage decoding (HMM+2S), and the combination of
the beat/meter model plus the proposed two-stage decoding
(HMM+B+28S).

During the training step of our algorithm, we have used
the 60% of the dataset, and the results reported in the Tab. I
are evaluated using the remaining 40% of the dataset.

The proposed algorithm has been tested on a set of 176
hand-labelled Beatles songs. The chord annotations are part of
the Isophonics® dataset provided by Queen Mary University of
London [15]. We have selected these songs in order to be able
to compare the performance of the proposed algorithm with
the state of the art on the same dataset.

V. EXPERIMENTAL RESULTS

As we can see in Tab. I, each of the proposed variants gives
an improvement with respect to the base-line. As for other

“https://github.com/jpauwels/MusOOEvaluator
Shttp://www.isophonics.net/datasets



methods [4], [5], the meter/beat knowledge has been proven
to be beneficial for ACE task. The method proposed in [4]
combines the beat/meter information using an advanced model
of the rhythm that considers the standard meter signature % in
combination with the % meter at two different metrical level:
the tactus and the tatum. The level called tactus (beat) is the
most salient (in terms of psychoacoustics) metrical level, that
corresponds to the foot-tapping rate. The level fatum is the

smallest metrical subdivision (atom) of the tactus [4].

The metrical analysis is done on a beat-averaged chro-
magram and the meter/beat information are integrated in the
HMM obtaining a large transition probability matrix. The
accuracy result of [4] without the meter information is 0.688
while the accuracy with the meter information and a tactus
analysis is 0.704, and with fatum analysis is 0.728 that gives,
respectively, a differential improvement of 1.6% and 4%.

The work presented in [5] models the metric position in a
DBN. The chromagram used is beat-averaged. The conditional
probabilities to have a chord transition given the metric posi-
tion is modeled similarly to our approach (3), but instead of
calculating a time-variant transition matrix, they incorporate
the metric structure in a separate stream of the DBN. The
accuracy result of [5] without the meter information is 0.663
while the accuracy with the meter information is 0.674 that
gives an improvement of 1.1%.

The relative improvements of these two algorithms are
comparable with the one obtained by our proposal, except
for [4] with tatum analysis that showed a greater performance
benefit. This suggests that incorporating the meter information
can be effectively achieved using different strategies.

Moreover, the advantage of our proposed method is that it
is possible to add the meter structure information to the model
without increasing the number of the states of the model or
using the multi-stream approach of the DBNs. Furthermore,
a more accurate meter analysis that considers also different
meter signatures (i.e., %), like in [4], would be beneficial and
is subject of further developments.

The proposed two-stage decoding offers a better discrimi-
native performance over the single Viterbi decoding for ACE
that uses HMM. Intuitively, if a chord sequence is a Markov
process, there should be no improvement in performances,
since the Viterbi decoder is already a maximum likelihood path
estimation. This suggests that in practice, a chord sequence can
be effectively modeled with a HMM (or DBN), but the nature
of a chord sequence is not a Markov Chain in general. For
this reason a two-stage decoding procedure can help in better
capturing the temporal behaviour of a chord progression.

VI. CONCLUSIONS

In this paper we have proposed a new approach for
modeling the beat/meter structure of a song in the context of
the Audio Chord Estimation that implies the introduction of
a time-variant transition probability matrix. Furthermore, we
have proposed a two-stage decoding procedure that helps in
capturing the temporal behaviour of chords sequences.

In addition, our approach to the metric structure modeling
simplifies the training and the decoding stage with respect to
other approaches that involve the use of a bigger HMM or
DBN that increase the state space in order to define several
conditional probabilities.

Experimental results show that the proposed framework
is effective as the classical approaches in modeling the meter
structure, but with a substantially reduced model complexity.
Moreover, the two-stage decoding procedure produces a
significant improvement in the chords estimation accuracy.
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