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Abstract—The automatic recognition of a crowd movement
captured by a CCTV camera can be of considerable help to
security forces whose mission is to ensure the safety of people
on the public area. In this context, we propose to fine-tune a
model from the TwoStream Inflated 3D architecture, pre-trained
on the ImageNet and the Kinetics source datasets, to classify
video sequences of crowd movements from the Crowd-11 target
dataset. The evaluation of our model demonstrates its superiority
over the state-of-the-art in terms of classification accuracy.

Index Terms—Video-surveillance, Crowd Behavior Analysis,
Convolutional Neural Networks, Transfer Learning.

I. INTRODUCTION

Either a culmination of a social protest or a cultural event, or
an inevitable consequence of densely populated cities, crowd
movements occur more and more in the public area [1]. The
high frequency of these movements pushes the security forces
to gain more control on them [1], [2]. Recent events have
demonstrated the dangers of an uncontrolled crowd movement:
a mismanaged crowd event can lead to heavy casualties [1].

In order to manage crowd movements, security forces can
rely on the use of video-surveillance cameras [2]–[4]. The
disposal of these cameras should cover a large part of the
public area [5]. Although one of their most common uses is
the acquisition of images that demonstrate criminal activity
and their subsequent use for forensic purposes, the use that
is beginning to be made of them is crowd analysis to predict
abnormal situations [4]. However, despite the abundance of
raw data from video-surveillance cameras, there is no unified
model which can be used in all case-scenarios of crowd
movements. This is due to the paucity of publicly available
annotated datasets [6].

Today, due to its multiple successes, deep learning is trend-
ing in computer vision [7]. Although these methods appeared
more than two decades ago, they are more and more used since
the multiplication of their successes in image classification.
One of the first and most notable success was realized by
AlexNet [8], which achieved considerable performance in
image classification when trained on the ImageNet dataset [9].
Although a part of computer vision, crowd behavior analysis
did not benefit from the popularity of deep learning methods in
computer vision. The scarcity of data and the lawful difficulty
of obtaining them are one of the causes of this delay.

Recently, a team from the CEA (The French Alternative
Energies and Atomic Energy Commission) has created a

dataset called Crowd-11 [10]. This dataset, of over 6,000
video clips, is a major contribution to crowd behavior analysis,
because it describes ten observable crowd movements in the
public area or in large enclosed spaces such as airports
or supermarkets. Successfully developing a statistical model
capable of classifying these movements can be of great help
for the security forces.

In this paper, we applied transfer learning to classify video
sequences of crowd movements. We fine-tuned a model from
the TwoStream Inflated 3D ConvNet (I3D) architecture [6]
that had already been pre-trained on the ImageNet [9] dataset
and the Kinetics [11] action recognition dataset, on what has
been recovered from the Crowd-11 dataset. The fine-tuned
TwoStream-I3D model is compared to a model from the 3D
Convolutional Networks (C3D) architecture [12], which was
pre-trained on the Sports-1m dataset and then fine-tuned on the
same dataset. The rest of this paper is organized as follows:
in Section II-A, we discuss the related work topics covered in
crowd analysis. Afterthat, we present the Crowd-11 dataset in
Section II-B, and then show the difference between the original
dataset and what we could retrieve from it. We introduce
transfer learning for video classification, in Section III, and we
present the architectures for which we applied it. In Section IV,
we explain the different experiments we undertook on Crowd-
11 through k-fold cross validation and discuss the evaluation
results.

II. BACKGROUND

A. Related work

Crowd analysis has been part of computer vision research
for more than two decades. Work in this area is divided into
two broad categories: crowd statistics and crowd behavior
analysis [13]–[15]
Crowd statistics:

• Crowd counting: This subtopic of crowd statistics con-
sists of counting the number of individuals contained
within a crowd in a scene [16].

• Crowd density estimation: Estimating crowd density in a
scene can be of considerable help for crowd management
[17].

Crowd behavior analysis:
• Trajectories analysis: This theme is part of what is

mostly done in crowd behavior analysis [18]. Trajectories
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Fig. 1. Figure obtained from Dupont et al.’s paper illustrating the behavior
of each crowd constituting a class in the Crowd-11 dataset [10].

analysis can be used for group detection [19], anomalous
trajectories detection [20], and future trajectories predic-
tion [21].

• Group detection and behavior analysis: After detecting
groups, some works focus on the recognition of group
actions [22]. Group detection and group behavior analysis
are part of the mesoscopic approaches of crowd analysis,
because a group is halfway between an individual and a
crowd [23].

• Anomaly Detection: Anomaly detection can be done for
any task of crowd analysis [24]. However, as Thida et
al. specify, researchers did not agree on a unanimous
definition of normality [25], because an anomaly in crowd
analysis can range from recognizing abnormal events
such as fights, traffic accidents, forgetting a luggage when
leaving a train station, or witnessing a unusual event such
as a pedestrian walking in the middle of a street.

Crowd analysis can rely on the manual extraction of visual
cues. Most of this extraction is discussed in several reviews
[13]–[15], [26]. The extraction of visual cues can refer to
the computation of optical flow in a video clip, or contours
detection, the detection of points/regions of interest in a single
frame that can lead to pedestrian detection. Following this,
an extraction of the different trajectories in a scene. More
recently, this task, often subject to a number of omissions,
has started being delegated to deep neural networks, because
they are often able to spot significant visual cues better than
hand-crafted methods [27].

B. The Crowd-11 dataset

Created by the CEA-LIST team [10], this fully annotated
dataset contains more than 6,000 video clips. Video clips have
variable resolutions ranging from 220×400 to 700×1250, and
are based on a multitude of pre-existing sources. The videos
are classified in 11 categories illustrated in the figure 1.

In what follows, we describe the behaviors corresponding
to the 11 classes contained in the Crowd-11 dataset:

0) Gas Free : Individuals walking in all directions without
encountering obstacles.

1) Gas Jammed: Congested Crowd.

2) Laminar Flow: Crowd walking in one direction.
3) Turbulent Flow: Crowd walking in a single direction

and disturbed by an individual crossing the crowd in the
opposed direction.

4) Crossing Flows: Two crowds crossing each other.
5) Merging Flows: Two converging crowds.
6) Diverging Flow: A crowd that splits into two crowds.
7) Static Calm: A crowd of static and calm individuals.
8) Static Agitated: A crowd of static, but agitated individ-

uals.
9) Interacting Crowd: Two opposed crowds. This class

contains violent scenes.
10) No Crowd: No human presence in the scene.

The videos originate mainly from three video hosting web-
sites which are Youtube, Pond51, and GettyImages2. The rest
comes from the following datasets: UMN SocialForce, Ago-
raSet, PETS-2009, Violent-Flows, Hockey Fights and Movies,
WWW Crowd, CUHK Crowd, and Shanghai WorldExpo’10
Crowd. Most of these datasets are publicly available and easily
accessible. However, we could not get videos from WWW
Crowd, CUHK Crowd, and Shanghai WorldExpo’10 Crowd.
Because of this, we were unable to retrieve the Crowd-11
dataset in its entirety. We could obtain approximately 90% of
the original dataset. The distribution of the retrieved clips for
each class, displayed in the comparative table I, shows that
we did not endure a major loss of videos from the original
dataset.

Label Class name #clips (original) #clips obtained
0 Gas Free 529 477
1 Gas Jammed 520 508
2 Laminar Flow 1304 1189
3 Turbulent Flow 892 862
4 Crossing Flows 763 717
5 Merging Flow 295 267
6 Diverging Flow 184 189
7 Static Calm 737 686
8 Static Agitated 410 351
9 Interacting Crowd 248 153

10 No Crowd 390 370

TABLE I
COMPARISON BETWEEN THE NUMBER OF CLIPS PER-CLASS OF ORIGINAL

CROWD-11 AND OURS.

III. TRANSFER LEARNING

Most of the time, transfer learning for the classification
of video clips has been applied for action recognition in
individual scenes [6], [12]. In this situation, the purpose is
to transfer the knowledge learned from a source dataset to a
target dataset belonging to the same topic. Dupont et al. [10]
applied this operation by transferring the features that a model
learned from an action recognition source dataset to a target
dataset of crowd movements. The purpose of transfer learning
is to transmit the features learned by a model from a source
dataset to a target dataset [28].

1Pond5: https://www.pond5.com/
2GettyImages: https://www.gettyimages.com/
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A. Implemented architectures

We selected three models to fine-tune from two ar-
chitectures: C3D and TwoStream-I3D. The choice of the
TwoStream-I3D architecture is mainly motivated by the good
results that its models obtain compared to the C3D models
when they perform action recognition in individual scenes on
the UCF-101 and HMDB-51 datasets [6]. As the CEA team
obtained their best results with the C3D architecture, its choice
in our experiments is natural since we were not able to retrieve
the Crowd-11 data set in its entirety. A pre-trained C3D model
on Sports-1m got its best results when classifying Crowd-
11 videos [10]. Therefore, this model represents for us the
baseline result to improve during our experiments.

1) 3D Convolutional Neural Network: We decided to re-
implement a version of the 3D Convolutional Neural Networks
that correspond to the architecture described in [12]. The C3D
architecture consists of 5 3D Convolutional layers. Each these
layers is followed by a three-dimensional max pooling layer.
These 5 first layers are then followed by 3 fully connected
layers. The last layer has a softmax classification output made
up of 11 classes.

As we have already mentioned, the CEA team gets their best
performance with C3D after pre-training the model on Sports-
1m [29]. The Sports-1m dataset is a dataset that contains 1
million videos from Youtube classified in 487 categories. Each
category contains approximately 1,000 to 3,000 videos per
class.

2) Two-Stream Inflated 3D Neural Network: Carreira and
Zisserman propose the Two-Stream Inflated 3D ConvNets
architecture [6]. This architecture was used to learn action
recognition in individual scenes, where it obtained very good
results compared to C3D. We use it to learn crowd movements
recognition.

Carreira and Zisserman pre-trained a TwoStream-I3D model
on Kinetics [11] and ImageNet [9]. By testing this model
on the UCF-101 and HMDB-51 datasets, they significantly
outperformed the performance of the pre-trained C3D models
on Sports-1m [6]. In our situation, we decided to transfer the
learned features of an RGB stream of the I3D architecture on
the Kinetics and ImageNet source datasets to the Crowd-11
target dataset. We did the same for the TwoStream-I3D model
by transferring the learned features of the RGB stream and the
optical flow stream of the architecture to the target dataset.
We extracted the optical flow of each video clip using the
TV-L1 algorithm [30]. The architecture from which we derive
I3D and TwoStream-I3D models is illustrated in Figure 2. It
consists of two layers of three-dimensional (3D) convolutional
layers supplemented by batch normalization layers, each of
which is followed by a 3D max pooling layer. This bedrock is
followed by a series of nine Inception modules whose internal
characteristics vary slightly from one module to another. At the
end, the output of the last Inception module is passed through
a 3D average pooling layer, before going through a softmax
output layer for the classification into 11 classes.

IV. EXPERIMENTS ON CROWD-11
In the experiments that we undertook, we decided for each

architecture to fine-tune a pre-trained model and to train a
model from scratch on Crowd-11. In the case of the C3D
pretrained model, the pretraining was performed on the Sports-
1m dataset. In the case of the I3D streams, the pretraining
was performed on ImageNet and then on respectively the
RGB version of Kinetics for the RGB stream and the optical
flow version of Kinetics for the optical flow stream. Inspired
by the training setting found on Tran et al. and Carreira et
al. for respectively the C3D and the TwoStream-I3D models
[6], [12], we chose the Stochastic Gradient Descent (SGD)
as an optimization function, and fixed the learning rate (LR)
to 0.003. The chosen loss function for these experiments is
the categorical cross-entropy. In order to be very close to the
training setup of C3D when trained from scratch or fine-tuned
on Crowd-11 by Dupont et al. [10], we reproduced the LR
gradual decrease by dividing it by 10 each 4 epochs. However,
we did not follow this same policy for I3D and TwoStream-
I3D. We chose to decrease the LR by 10 when the loss on the
validation set did not improve. During the training phase, the
number of epochs was fixed to 40 for C3D models, and 30 for
the others, so as to maximize the opportunity of C3D models
to get better scores. A model is produced at the end of each
epoch. At the end of the training phase, we chose to keep the
model that minimizes the loss function at the validation phase.
When we applied fine-tuning, we did not freeze any layer of
our models. We decided to avoid doing so, because the source
datasets on which our models were pre-trained on differ a lot
from the target dataset we intended to learn. Consequently, we
were moved by the idea to backpropagate the training updates
on all the weights of the networks we train. Contrary to Dupont
et al. we did not apply data augmentation to train any of these
models. Knowing that data augmentation is a regularization
method, we wanted to observe to what extent our models could
overfit the dataset [31]. Furthermore, we wanted to determine
which classes could undermine the learning ability of our
models, without reducing this issue using data augmentation.
As we intend to use all the possible ways to augment our
video data, we leave this question to a future work.

A. 5-fold cross validation :

Our version of Crowd-11 is made up of 1641 scenes.
These scenes are split into 5769 video clips. To avoid scenes
overlapping between folds, we kept all the clips from the same
scene in the same fold. When we select a scene to add to any
fold, our selection maintains a quantity of clips per class that
is proportionately similar between all the folds with respect to
the original quantities displayed in Table I. To train or fine-tune
our models, we applied the 5-fold stratified cross validation.
We divided the dataset into 5 proportionate similar folds in
terms of the contained classes. For each iteration of cross
validation, we chose 3 folds to form the training set, one for the
validation set and a last one for the test set. At each iteration
of cross validation, the test set changes. The validation set is
chosen randomly among the 4 remaining folds. As we applied
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Fig. 2. Illustration of the Inflated 3D architecture. Conv3D BN refers to the 3D convolutional layer followed by a batch normalization layer. Inception refers
to an Inception module. AvgPool3D is a 3D average pooling layer.

Model Training condition Accuracy
C3D ours Scratch 31.9%
C3D Dupont et al. Scratch 46.9%
C3D ours Pretrained 58.4%
C3D Dupont et al. Pretrained 61.6%

TABLE II
COMPARISON BETWEEN OUR C3D AND DUPONT ET AL. [10]

Architecture Training Mean Min Max
I3D Scratch 47.4% 40.1% 54.5%
C3D Scratch 31.9% 28.9% 36.2%
TwoStream I3D Scratch 47.8% 44% 52.5%
I3D Pretrained 59% 56.7% 60.1%
C3D Pretrained 58.4% 57.6% 60.1%
TwoStream I3D Pretrained 68% 66.2% 70.6%

TABLE III
ACCURACY FOR 5-FOLD CROSS VALIDATION.

5-fold cross validation for each of our three models during
the two prior training conditions : training from scratch, fine-
tuning on top of a pre-trained model; we went through 30
training phases3.

B. Discussion of the obtained results

From the boxplots illustrated in Figure 4, the variability
of the models trained from scratch on Crowd-11 are less
stable than those which were fine-tuned on the same dataset.
According to the results displayed on Table II, we observe
that C3D trained from scratch on Crowd-11 does not perform
as well as Dupont et al.’s trained model. This may be due to
the lack of information we have on the training setup they
used to train their model, the slight difference between our
two datasets, and the fact that we do not use video data
augmentation. According to the results displayed on Table III,
we find that the C3D and I3D models obtain almost the same
results when classifying the video clips of the test set. C3D is

3The source code of this project is available here : https://github.com/MounirB/
Crowd-movements-classification

exceeded with a margin of 0.6% by the I3D model. This slight
difference in performance can be explained by the fact that
the C3D architecture has 78 million parameters to train while
the I3D architecture has 12 million parameters as well as a
deep architecture. Moreover, we observe that the TwoStream-
I3D model leverages favorably the use of optical flow in the
fine-tuning phase. This is not totally demonstrated when it is
trained from scratch. Compared to other models, TwoStream-
I3D obtains the best results. From the confusion matrices
displayed on Figure 3, we observe that the overall accuracy
of each model suffers from almost the same categories where
their score is at its lowest. Those categories whose id labels
range from 3 to 6, are respectively the Turbulent Flow, the
Crossing Flows, the Merging Flow, and the Diverging Flow.
We observe that the clips belonging to those classes, including
the Laminar Flow class, are frequently mixed up with each
other. While the Laminar Flow class does not suffer a lot from
this confusion because the crowd follows a unique direction,
the multiple key transitions that are illustrated in the four other
classes can confuse the classification function. For instance,
we observe that the Merging Flow class is not confused with
the Diverging Flow class which demonstrates that the classifi-
cation function learns well how to differentiate between these
two behaviors. However, both of these classes are frequently
confused with the Crossing Flows. When a crowd crosses with
an other one, both of merging and diverging behaviors are
observed. Furthermore, while the Crossing Flows is illustrated
by ≈ 850 clips, the Merging Flow and the Diverging Flow
classes are illustrated by ≈ 200 video clips each (as illustrated
in Table I). This situation can lead to two classes being
encompassed by a more global one like the Crossing Flows
class.

V. CONCLUSION AND PERSPECTIVES

In this work, we investigated the ability of the TwoStream-
Inflated 3D to benefit from its pretraining on the Kinetics
and the ImageNet datasets to classify crowd behaviors on the

https://github.com/MounirB/Crowd-movements-classification
https://github.com/MounirB/Crowd-movements-classification
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Fig. 3. Confusion matrices of the pretrained models computed following the 5-fold cross-validation.

Fig. 4. Results obtained following the 5-fold cross validation step applied on
Crowd-11 for each model.

Crowd-11 dataset. After transferring the weights learnt from
its source datasets to the target dataset, the yielded model
outperforms the state-of-the-art on Crowd-11 by a consequent
margin of ≈ 10% accuracy. However, the obtained score
cannot be considered as a precise decision tool for crowd
management. On the basis of the results we have obtained, we
intend to see to what extent we can improve them by testing
the following methods:

• Applying video data augmentation;
• Augmenting the defective classes of the Crowd-11 dataset

by adding video clips to them;
• Testing the models resulting from the Temporal 3D Con-

vNets (T3D) [32] and ActionVLAD [33] architectures,
because the models from these architectures obtain scores
exceeding 90% accuracy on the UCF-101 and HMDB-51
datasets;

• Modification of the Inflated 3D architecture via:

– The addition of new Inception modules;

– The hybridization of the I3D architecture with one
of the two T3D or ActionVLAD architectures.

• Taking into account inputs from a preprocessing step,
like the improved Dense Trajectories (iDT) [34], before
proceeding to the training of models.
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