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Abstract—3D imaging is important for enabling autonomous
operation of smart mobile work machines. Different sensing
techniques have different characteristics, which affect the choice
of sensors for each application. We study the depth resolution of
three different active imaging technologies and stereoscopic
depth estimation with multiple different baselines. We test the
effect of depth measurement abilities in measuring average
depth, angles between planar structures and diameter from logs.
Active sensors show their robustness, while stereoscopic depth
estimation follows the error behavior expected from the theory.
However, in practice we find that the effect of poor depth
resolution can be significantly reduced by averaging over
multiple measurements from different points and using more
sophisticated stereo processing.
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I. INTRODUCTION

Heavy mobile work machines, such as excavators, tractors
and forest harvesters, are becoming increasingly intelligent.
While still far from full autonomy when compared to
autonomous cars, different semi-intelligent features are
starting to appear even in commercially available machines.
In order for the machines to be able to assist the user or to
complete tasks, they must be able to detect their work targets.
In the broad meaning of the term, this is a machine vision task.
However, current commercial machine vision solutions for
determining work targets for grabbing and handling are
mainly based on 2D cameras, optimized lighting conditions
and image matching, such as having a top down view of a
conveyer belt with constant shaped objects at a known
distance. In contrast, mobile work machines operate in
environments, which are not and cannot be designed for
optimal machine vision – the terrain and lighting are
constantly changing and the camera has to be placed on the
machine itself, limiting the available viewpoints. Using 3D
imaging can alleviate these concerns. While the solutions for
the field are not as cost sensitive as in the automotive sector,
the cost of sensors is still an important consideration.

In this work, we experiment with commonly available
sensors and evaluate their suitability for measuring different
metrics from the observed targets. Special attention is paid to
stereo cameras as the most affordable depth measurement
device for dense depth sensing. The distance measurement
resolution of stereo pairs is highly dependent on the distance
between the cameras, i.e. the baseline. The effect of this on the
ability to measure relevant information is quantified.

II. PRIOR WORK

A. Measurement of work targets
The topic of 3D sensing in the context of mobile work

machines has been studied before, but the lack of a common
umbrella term makes it hard to identify comprehensive
surveys. Papers tend to focus on a specific, narrow application
area, such as agriculture or palletizing, or on the more generic
tasks of obstacle detection and navigation in driving. Out of
the common fields,  precision agriculture [1] is one of the
active and most mature fields with works related to 3D
imaging ranging from obstacle avoidance [2] to mapping [3]
and from plant detection [4] to assisting in tool attachment [5].
Another relevant application is automatic palletizing of goods
for storage and transportation, which employs computer
vision in two stages. First, the placing of cargo (e.g. boxes)
onto the pallet [6], and second, finding and lifting the loaded
pallets to be transported by forklifts or other similar. These
tasks do not demand such flexible solutions, since the
environment is typically an indoor setting such as a
warehouse.

Another largely studied area is related to industrial
robotics, but there the typical working distances are much
shorter (up to ~1 meter) and the environments are limited to
factories and assembly lines, so we consider these works to be
not of interest in this application. Conversely, the
reconstruction of forests, mines and agricultural environments
has been studied through photogrammetry from UAVs [5],
where the scale is much larger (upwards ~100 meters). The
range of interest for most work machine applications is in
between – approximately 1 to 10 meters.

B. Stereo resolution
A specific interest for this work is to study the effect of

stereo baseline for the task specific measures. Generic work
on stereo depth resolution has been done [7] and the theory is
well known (as is described in section III.C Metrics). Our
interest is to test the practical implications of the reduced
depth resolution and to quantify the effect.

In [8], the adverse effect of the baseline on the ability to
reconstruct fronto-parallel surfaces was studied. The
conclusion was that larger baselines distort the 3D projection
and make it more difficult to find matching points.



Fig 1. The test scene consisting of a pallet loaded with a small log,
a container with a 90° degree angle and a smooth plane. The
pallet is set on a wheeled platform to allow changing the distance
from the cameras

These tests hint there is also motivation against arbitrarily
increasing the stereo baseline in search for better depth
resolution. Though it is possible, that the limitations reported
could be circumvented by using stereo algorithms, which,
unlike the semi-global matching employed in the study, do not
suffer from getting slanted views of planar structures [9].

III. TEST SETUP

For measuring the properties of the sensors, we use a test
scene with several objects, each providing a different variable
to be measured. The scene is placed at varying distances of an
array of sensors, and the relevant metrics are extracted. Some
manual assistance in selecting and segmenting the objects of
interest is used, since creating automatic systems is not the
objective of this work.

A. Test scene
The test scene consists of three objects of interest (Fig 1),

each with a distinct purpose relevant to the context – a plane,
a log and a box. The fronto-parallel plane is 58 x 58 cm and
has a natural wooden texture, which is highly effective for
finding stereo correspondences. The log is a short segment
from a full size log cut by a forest harvester with a radius of
11.8 cm. The box is 42 x 58 x 46 cm with mock shipping labels
taped to the sides for texture to assist the stereo algorithms.

The regions of interest from the plane and the box are
marked with red tape to make sure the measurement areas are
selected consistently throughout different distances. The
clamp across the length of the log achieves the same for the
log.

Fig 2. The sensor array used for testing. On the top, 20 identical
calibrated Basler cameras. Bottom row: Velodyne VLP-16, Basler
ToF, Faro Focus

Table 1. Models and the manufacturer supplied specifications of
the 3D measurement devices used in the experiments

Faro Focus
x130

Velodyne
VLP-16

Basler
Tof640-20gm

Stereo Basler
acA1920-50gm

Working
range 0.6 – 130 m 100 m 13 m ~Inf

Depth
accuracy 2 mm 3 cm 1 cm 1 / distance

FoV 360°x 300° 360° x 30° 57° x 42° 82° x 51°
Resolution
(angular) 0.009° 0.1° / 2.0° 0.09° 0.04°

Resolution 49 600 px 3600 x 16 px 640 x 480 px 1920 x 1200 px
Framerate 5-45 min / scan 20 Hz 20 Hz 50 Hz
Approx.
price 40 000 € 4 000 € 2000 € 2 000 €

B. Used sensors
We employ four different types of 3D sensing devices for

the experiment. The exact models and their specifications are
listed in Table 1 and the sensor configuration is shown in Fig
2. We consider a high-end survey laser scanner Faro Focus
X130 as the best-case sensor. However, it’s operating
principle of a single high accuracy laser beam scanning with
two rotating axes makes it too slow, fragile and expensive for
being deployed in operational use, and therefore the captured
data is used only as a ground truth.

For stereoscopic depth estimation, we use a linear multi-
camera setting originally constructed for horizontal-parallax-
only light field applications. It consists of 20 identical Full HD
resolution industrial cameras and low distortion lenses with 6
mm nominal focal lengths. The cameras are jointly calibrated
for their intrinsic and extrinsic parameters [10]. For extracting
the depth, the first camera from the right and the Nth camera
are consecutively chosen as a stereo pair and rectified. Two
different stereo algorithms are applied on the data: the simple
but fast block matching approach without any attempts at sub-
pixel resolution matching [11] and semi-global matching [12].

As a flash LIDAR (also sometimes referred to as a time-
of-flight camera), we use Tof640-20gm from Basler. This
device suffers from sensitivity to ambient light, making it
difficult to utilize it in outdoor applications. Other devices
with similar characteristics, but with more ambient light
tolerance exists, though.

 As a scanning LIDAR, we use a 16-channel laser scanner
from Velodyne. It is one of the most commonly used LIDARs
in the automotive sector. The single rotating component
makes it prone to vibrations in a demanding environment, but
there are expectations that similarly capable devices with
more robust solid-state designs will emerge in the near future.

C. Metrics
In order to quantify the performance of the different stereo

baselines and sensing devices, we adapt the following metrics.

1) Theoretical depth resolution
The theoretical upper bound of a stereo pair can be derived

from the geometrical relations between the two cameras and
can be found stated in many sources, such as [13]. Since the
derivation offers some insight into the cause of the resolution
problem, we present it here briefly. The fundamental relation
between the different stereo parameters is



Fig 3. Theoretical maximum error in depth with the specifications
of two Basler acA1920-50gm with 6mm lenses given different
assumptions on the resolvability of disparity (݀߂)

ݖ  = ௕௙
ௗ
, (1) 

where b is the baseline between cameras, f the focal length of
the cameras, d the disparity between the cameras for a point,
and z the metric depth. The disparity can be detected only up
to a certain resolution, which in turn depends on the algorithm
and assumptions made. A straightforward viewpoint is that
since the scene is sampled by its pixels, the location of a point
can be only determined within one pixel. A more optimistic
view is that one can assume certain characteristics about the
smoothness of the sampled colours. Thus, fitting functions of
varying degrees as a part of the matching process can help in
locating a point at resolutions higher than one pixel [14].
Therefore, varying opinions on the achievable disparity
estimation resolution exist.

The maximum depth error we are looking for is the
difference between the true value z௧ and the measured value
z௠,

 Δݖ = ௧ݖ − ௠ݖ = ௕௙
ௗ
− ௕௙

ௗା୼ௗ
. (2) 

To discover the depth error as a function of depth, we
insert Eq. (1) back into the relation, and get

Δݖ = ୸మ୼ௗ
௕௙ା௭୼ௗ

 . (3) 

For example, on a stereo pair of two Full HD resolution
cameras with 6 mm nominal focal length optics separated by
a 20 cm baseline, the error rate follows the curves presented
in Fig 3.

2) Metric depth and planar smoothness
The scene contains a large, smooth planar structure

roughly orthogonal to the surface. We segment out the plane
as indicated by the marked ROI and orient it to align with the
XY-plane using Principal Component Analysis on the high
quality laser scan from Faro. From the selected points, we
compute the values of interest: mean and standard deviation.

3) Angle between container sides
From the box, we select the area marked by tape. Planes

are fit on the sides of the box using M-estimator Sample
Consensus (M-SAC) as implemented in Matlab, and the angle
between them is measured. The expectation is for the corner
to be 90 degrees, and any variations from that are attributed to
sensing errors.

Fig 4. Mean distance and standard deviation using the active
sensors

4) Log diameter
From the log, we select the area limited by the clamp and

the end of the log. The aim is to measure the circumference of
the log based on the reconstructed points on the visible arc of
the cylindrical shape. First, a simple background removal is
done using distance based clustering.  Non-linear optimization
is applied to orient the length of the log with the y-axis, i.e.
finding a pose for the log that minimizes surface normals with
vertical components. The points are projected to the XZ-plane
and a circle is fitted on them using Direct least-squares fitting
[15] with M-SAC. To minimize the effect of the inherent M-
SAC randomness, the circle is detected in 100 iterations and
averaged to find the final estimate.

IV. ANALYSIS OF RESULTS

In the experiments, we captured the tests scene described
in section III  using the four different sensors. The cart was
gradually moved further away from the sensors at 0.5 m
increments from 2 to 10 meters and captured at each position.
The distance increments were verified using a laser
measurement tool pointed at the large planar structure,
reported as the ‘scene distance’ axis in the figures. The
following details the extracted measurements as described in
section III.C.

A. Metric depth
The metric depth measurements (Fig 4) using the active

sensors are highly robust. The average distances as measured
from the wooden plane are consistent between all devices and
the incremental motion of the cart. When looking at the spread
of values through standard deviation, Faro remains consistent
throughout the measuring scale. The ToF camera starts
diverging slightly at the farther end of the scale. The Velodyne
appears to suffer from the relatively small amount of points
hitting each objects, making it prone to outliers.

In Fig 5, the same measurement is done using Block
Matching stereo on the varying baselines of the multi-camera
rig. Though the expectation is for the depth resolution to
degrade as the distance increases, the averaging over the
whole plane keeps the mean value constrained and it starts
diverging only at the far end with the smallest baselines. The
standard deviation tells that the individual measurement
points do increase, and the spread (error) is bigger for smaller
baselines. The same can be seen in Fig 6 for all baselines.
Furthermore, the spread starts to increase for close distances
with larger baselines, confirming the findings from  [8].
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Fig 5. Distance measured by Block Matching stereo

Fig 6. Standard deviation of the distance measurements from all
evaluated stereo baselines for Block Matching stereo

Fig 7. Distance measured by Semiglobal Matching

For the somewhat more advanced version of stereo depth
estimation, Semi-Global Matching, there is even less
degradation of quality even with small baselines (Fig 7),
with all baselines agreeing on the depths. The spread of the
values is also almost an order of magnitude less. This is no
surprise, since the algorithm intentionally tries to find
consistent depth maps by propagating disparity estimates
over the image.

Fig 8. Measured angle between container sides using active sensors

B. Angle between container sides

When measuring the angle between the sides of the
container Fig 8, Faro performs consistently, but both
Velodyne and the ToF are starting to have some difficulties.
Especially the sparse sampling of points for Velodyne makes
it difficult to find the planes, often having only a dozen or so
points hitting the container.

For BM stereo (Fig 9), the angle is being found reasonably
(considering an error below 5 degrees reasonable) for
distances up to 5 meters, after which the performance starts to
degrade. Larger baselines improve the situation, but good
results are not achieved even then. SGM performs slightly
better with short baseline and large distance, but there is no
significant differences.

C. Log diameter
Faro is again reliable in measuring the log at all distances

(Fig 11). The ToF starts to under-estimate the radius as the
distance increases. As the log segment is fairly short,
Velodyne has again problems in catching enough points from
it at longer distances.

The radius measurement using Block Matching stereo in
Fig 13 follows the same general trend in the depth error. Until
5 meters, any baseline is able to measure the objects
reasonably. When the distance increases, the circular shape is
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Fig 9. Measured angle between container sides using BM stereo



no longer detected at all (baselines shorter than 50 cm), or the
error grows steeply to the point of being unusable. No increase
in baseline helps in accurately measuring the distance. The
limiting factor is likely the spatial resolution, as the log is
reconstructed as a plane instead of a cylindrical shape. This
can clearly be seen in Fig 10, where the XY-projection of far-
away targets is essentially a line. Interestingly, the supposedly
better SGM stereo has worse performance in measuring the
radii. This can be attributed to the tendency of SGM to adjust
depth estimates based on consistency more so than BM simply
aggregating with local windows, losing the needed detail for
accurate measurements.

V. CONCLUSIONS

The performed experiments highlight the capabilities of
different techniques for different tasks. Despite the
underwhelming theoretical depth resolution of stereo, it can
actually be used reliably for measurement of distances given
that the measured target surface can be identified. The
distribution of the depth ranging error appears to be
symmetric, allowing it to be averaged out with relative ease.
For most tasks, the cut-off distance for reliable operation (with
the tested optics and resolution) seems to be around 5 meters
for the best performing baseline.

For tasks requiring identification from the reconstructed
scene (in this paper, measuring the angle of the container
corner and log radius), the stereo depth resolution really is an
issue. This limits the usability of stereo in so-called RGB-D
approaches, where classification or segmentation of
performed on the combination of colour and geometry. If such
processing is intended, it may be justified to use active sensing
to have a more robust reconstruction.

We also confirm the compromise in increasing the stereo
baseline. While the increase in baseline increases depth
resolution at a distance, there is also a reason not to increase it
arbitrarily. When the baseline increases too much, the
perspective distortion of nearby objects makes reconstructing
them by finding correspondences more difficult.

The crucial factor for using stereo as a depth measurement
tool is in distinguishing between measuring a distance to a
known object, and identifying an object based on the
measured geometry. For instance, if a cargo container can be
identified based on its colour information from a 2D image,
its distance can be measured using a stereo camera setup to a
precision much higher than implied by the theoretical limits.
On the other hand, it may not be the best idea to use stereo to
analyse trees for harvesting from afar, since the ability to
measure the shape is questionable.

Fig 13. Measured log radius using block matching stereo
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Fig 10. XY-projections of the surface reconstruction of the log at
different distances and baselines, demonstrating the challenge in
detecting and measuring the circle and its radius
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Fig 11. Measured log radius using active sensors

Fig 12. Measured log radius using SGM stereo
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