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Abstract. Over 186 million cases and 4.0 million deaths from Corona virus were 

reported worldwide as of July 13, 2021. A multinational consensus from the 

Fleischner Society reported that Computerized Tomography (CT) can be utilized 

for the early classification of CT-based Covid-19. However, such diagnosis in-

volves a significant amount of time by radiologists. Automated analysis to clas-

sify Covid-19 disease from lung CT will help save radiologists’ time and effort. 

In this paper, we propose ‘CoviNet Enhanced’, a hybrid approach with a deep 

three-dimensional convolutional neural network (3D-CNN) and support vector 

machines (SVMs) to diagnose Covid-19 in CT images, which is an improved 

version of our previous work ‘CoviNet’ based on only 3D-CNN. The experi-

mental results show the proposed method is highly effective for Covid-19 detec-

tion.  

Keywords: Covid-19 detection, Deep learning, Support vector machines, Tex-

ture analysis, Lung computerized tomography (CT) scan;  

1 Introduction 

The Covid-19 is a highly contagious and virulent disease caused by the Severe Acute 

Respiratory Syndrome - CoronaVirus – 2 (SARS-CoV-2). Over 186 million cases and 

4.0 million deaths were reported worldwide as of July 13, 2021 [1]. A multinational 

consensus from the Fleischner Society reported that Computerized Tomography (CT) 

can be utilized for the early diagnosis of CT-based Covid-19 [2]. CT also has a high 

sensitivity in the classification of the Covid-19 disease [3]. However, this binary clas-

sification task of identifying Covid-19 positive from negative patients from lung CT 

involves a significant amount of radiologists’ time and effort. Thus, it is crucial to de-

velop an automated analysis of CT images to save radiologists’ time in overstretched 

healthcare environments.  

 

In our previous work [4], we implemented the CoviNet, a 3D CNN-based model for 

Covid-19 classification of lung CT images. In this paper, we propose an enhancement 

of this model [4], CoviNet Enhanced using 3D CNN and Leung-Malik (LM) texture 

features [5] additionally. CoviNet Enhanced has a novel conditional majority voting 

algorithm with an ensemble of 3D CNN and SVMs, which provides better classification 

sensitivity and specificity than using the 3D CNN alone [4]. Since the SVM algorithm 

is complementary, this hybrid approach using SVM models and 3D CNN combined via 

conditional majority voting shows superior performance.  
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Contributions of CoviNet Enhanced: To achieve a better classification sensitivity and 

specificity than those of CoviNet: we add 1) Leung-Malik (LM) texture features [5], 2) 

an ensemble classifier comprising a 3D CNN and texture features-based SVMs, and 3) 

conditional majority voting for the final classification.  

 

The remainder of this paper is organized as follows.  Related work is presented in Sec-

tion 2. The proposed method is described in Section 3. In Section 4, we discuss our 

experimental setup and results. Finally, Section 5 presents some concluding remarks. 

 

2 Related Work 

In our previous work [4], we classified the CT images into Covid-19 positive or nega-

tive based on the 3D CNN which comprises 3D filters in convolutional layers to train 

a deep 3D CNN from scratch. This model utilized the 3D CT scan volumes as opposed 

to individual slice-level CT imaging data to come up with the patient-level diagnosis. 

It has a network depth of 16 layers comprising four 3D convolutional layers, four 3D 

max-pooling layers, four 3D batch normalization layers, one global average 3D pooling 

layer, two fully connected dense layers, one dropout layer, and a final softmax layer. 

All four convolutional layers have a kernel size of 3×3×3 but use different numbers of 

kernels at 64, 128, and 256. The RELU activation function is used. The four 3D-max-

pooling layers take a 2×2×2 sliding cube which subsamples the image length, width, 

and depth dimensions and has a stride of 2. To speed up the training of CoviNet, 3D 

batch normalization layers are included after the 3D pooling layers. Then, 3D global 

average pooling takes a 4D input of size length × width × depth × channels (= 

12×12×2×256) and outputs a one-dimensional output of size 256 channels. Next, the 

fully connected layer follows with a dimension of 512 followed by a dropout layer with 

a dropout factor of 0.3 which is introduced to make the model robust to noise. The final 

softmax layer with sigmoid activation outputs the predicted probability of being Covid-

19 positive. Adam optimizer is used with an initial learning rate of 0.001 with an expo-

nential decay rate of 0.96 over 100,000 decay steps.  

 

In Wang et al.’s DeCovNet [6], a single 3D CNN classifier taking only original CTs as 

input data is implemented for Covid-19 classification into positive and negative classes. 

In DeCovNet, the 3D convolutional layers are followed by 3D Batch Normalization, 

Relu activation, and 3D Pooling layers. There are six 3D convolutional layers. Training 

and testing are done on a proprietary dataset for 100 epochs having an Adam optimizer 

with a constant learning rate of 1x10-5.  

 

Imani et al. [7] first used morphological filters to extract the shape and structural fea-

tures without and with CNN processing. Second, they used Gabor filters to extract tex-

tural features without and with the use of a trained CNN for feature extraction. Then 

they classified the Morphological and Gabor features independently via two separate 

classifiers: Support Vector Machine and Random Forest. For the Morphological model, 

the random forest classifier without CNN performed the best, whereas, for the Gabor 

model, the random forest classifier with trained CNN performed the best. 
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Goncharov et al. [8] proposed a multitask approach to solving the identification and 

segmentation tasks together via a 2D U-Net model which outputs a common interme-

diate feature map that is aggregated into a feature vector via a pyramid pooling layer. 

The classification layers follow the high-resolution upper part of U-Net and comprise 

two fully-connected layers followed by a softmax layer which outputs the probability 

of the input CT volume being Covid-19 positive. 

 

3 Methodology 

The proposed approach consists of four components: 

(1) 3D CNN:  

A 3D CNN having four three-dimensional convolutional kernel layers from our 

previous work [4] is trained from scratch on the augmented CT data. The augmen-

tation details can be found in our previous work [4], and the 3D CNN architecture 

was explained in detail in Section 2. It is a deep model with 17 layers comprising 

four 3D convolutional layers, four 3D max-pooling layers, four 3D batch normal-

ization layers, one global average 3D pooling layer, two fully connected dense lay-

ers, one dropout layer, and a final softmax layer. 3D batch normalization layers 

after the 3D pooling layers help the model learn faster, and the dropout layer con-

tributes to its noise robustness. Early stopping is also invoked if the model loss 

does not reduce over the last five epochs. 

(2) Texture Feature Extraction:  

The LM features have textural, shape, and intensity-based features. LM texture 

features [5] are typically extracted for an image using the 48 LM filters (LM filter 

bank) which are convolved over the entire input image. The LM filter bank (Figure 

1) has a mix of edge, bar, and spot filters at multiple scales and orientations. It has 

a total of 48 filters - 2 Gaussian derivative filters at 6 orientations and 3 scales, 8 

Laplacian of Gaussian filters, and 4 Gaussian filters. 

 

 

Figure 1. LM filter bank with 48 filters [5]. 

 

When we apply the two Gaussian derivative filters at six orientations and three 

scales shown in the first three rows of Figure 1, we have nearly all-black pixels as 

a result since lungs do not have elongated objects. The features which can identify 
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the ground glass opacities and consolidations will be suited for our work. The re-

sults of convolving the 12 filters in the bottom row of Figure 1 are shown in Figure 

2.   

 

      

      

     Figure 2. Results of CT image convolving with the 12 filters in the bottom 

row of Figure 1 (LM37 through LM48) 

 

Intuitively, these are possibly informative features, which can be used for Covid-

19 classification. We create 12 separate SVM models taking one feature at a time 

for all the convolved outputs from the 12 filters. Then, the final feature selection is 

done by selecting the two top-performing LM filters. The selected top-performing 

filters are LM37 and LM41 and the results of convolving these filters with the input 

image are shown in Figure 3. 

 

           

           (a)                                                    (b) 

      Figure 3. Results of CT image convolving with the two best-performing 

LM filters: (a) LM37, and (b) LM41 

 

(3) SVM Models: 

The selected LM texture features, namely the LM37 and LM41, along with the 

original image are classified via three separate SVM classifiers. We use the held-

out test dataset approach [9]. 80:20 split is used for training versus testing. First, 

the original image datasets and the texture feature inputs are resized to 224x224. 

The Covid-19 CT images with Covid-19 positive or negative physician-provided 

labels are fed into the first SVM model. The Leung-Malik feature LM41 is used to 

build the second SVM model. The Leung Malik feature LM37 is used to build the 
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third SVM model. For the SVM, we perform a grid search for the parameter values 

of 'C' of 1, 10, 100, 1000, with a linear kernel for efficiency, and with gamma 

values of 0.001 and 0.0001 with the Radial Basis Function kernel. We then get the 

predicted class for each image in the test dataset. This is repeated over the five 

folds. 

(4) Ensemble of 3D CNNs and SVMs 

We found that the 3D CNN predictions have a positive class probability that varies 

for each input ranging from 0.1% to 99.9%. For some inputs, our 3D CNN does 

have an uncertain prediction with Covid-19 positive class probability values (be-

tween 46% and 54%). In such cases, our 3D CNN is not very confident about the 

prediction. To improve the predictions for this range, we use conditional majority 

voting to combine the predicted outputs of the 3D CNN with the three SVMs.  

 

When the original 3D CNN’s prediction has a probability in a certain range i.e., 

between the low threshold (ThLow: 46% in our case) and the high threshold (ThHigh: 

54% in our case), then the model uses the LM Texture-features’ SVM model pre-

dictions along with 3D CNN via majority voting to make the final classification. 

When the original 3D CNN’s prediction has a probability smaller than the low 

threshold (ThLow: 46% in our case) or larger than the high threshold (ThHigh: 54% 

in our case), only the 3D CNN’s output makes the final classification. These prob-

ability threshold values were determined by experiments and fine-tuned on the val-

idation dataset. This gives the final predicted classification of Covid-19 positive or 

Covid-19 negative. The model performance is evaluated based on comparing this 

final prediction on held-out test data with the ground truth labels. The detailed ar-

chitecture of CoviNet Enhanced is shown in Figure 4. The conditional majority 

voting algorithm is showcased in Figure 5. 

 

 

Figure 4. Ensemble classifier of 3D CNNs and Support Vector Machines 

based on texture features. 
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Algorithm 1 Conditional Majority Voting Rule for Classification 

Inputs: 3D CNN’s positive class probability (C), first SVM’s positive class proba-

bility (S1), second SVM’s positive class probability (S2),  third SVM’s positive class 

probability (S3) 

 

if 0.46 < C < 0.54 then  

‘final predicted positive class probability’ ← (C+S1+S2+S3)/4  

else  

‘final predicted positive class probability’ ← C 

end if 

Figure 5. Algorithm for conditional majority voting rule for classification. 

 

4 Experiments and Results 

CoviNet Enhanced was implemented in ‘jupyter-notebook’ using python’s ‘tensor-

flow’, ‘keras’, and other libraries [9, 10, 11, 12, 13]. The pre-processing of the data was 

done using the ‘nibabel’ library for medical image processing which can read the CT 

volume data provided in .nii format [14]. Data augmentation was performed on the 

entire dataset using the ‘scipy’ and ‘ndimage’ libraries. The augmentation details can 

be found in our previous work [4].  

 

The dataset was split 80:20 for training and validation, and each patient’s images are 

either entirely in the training dataset or entirely in the validation dataset. Five-folds are 

used for cross-validation as discussed earlier. Adam optimizer with an exponentially 

decaying learning rate and an initial learning rate of 0.0001 with a decay rate of 0.96, 

and with  100,000 decay steps was used. The training was done with an upper limit of 

100 epochs with an early stopping criterion based on validation accuracy not improving 

over the next five epochs. 

 

We trained and evaluated our CoviNet Enhanced model’s performance on UCSD-AI4H 

[15], MosMed [16], and MosMed_selected on lung CT datasets described in Tables 1, 

2, and 3 respectively. Since the MosMed dataset in Table 2 is very large, we selected 

some of them for faster evaluations, which is shown in Table 3. 

Table 1. UCSD-AI4H dataset [15] 

Class Training Validation 

Covid-19 Positive 172 patients 

279 images 

41 patients 

70 images 

Covid-19 Negative 140 patients 

317 images 

31 patients 

80 images 
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Table 2. MosMed dataset. 

Class Train Validation Test Totals 

Covid-19 

Positive 

582 patients 

14,681 images 

102 patients 

2,573 images 

172 patients 

4,339 images 

856 patients 

21,593 images 

Covid-19 

Negative 

173 patients 

4,321 images 

30 patients 

749 images 

51 patients 

1,337 images 

254 patients 

6,407 images 

Overall 
755 patients 

19,002 images 

132 patients 

3,322 images 

223 patients 

5,676 images 

1,110 patients 

28,000 images 

 

Table 3. MosMed_selected dataset 

Class Train Validation 

Covid-19 Positive 138 patients 

3,385 images 

34 patients 

860 images 

Covid-19 Negative 203 patients 

5,305 images 

51 patients 

1,337 images 

 

 

The various performance metrics to evaluate our model’s performance are accuracy, 

sensitivity (recall), specificity, precision, F-score, and Matthew’s correlation coeffi-

cient (MCC) [17]. These metrics are defined as follows in equations (1), (2), (3), (4), 

(5) and (6): 

Accuracy =  
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
                              (1) 

Sensitivity (Recall) =  
(𝑇𝑃)

(𝑇𝑃+ 𝐹𝑁)
                                       (2) 

Specificity =  
(𝑇𝑁)

(𝑇𝑁+ 𝐹𝑃)
                                                (3) 

Precision =  
(𝑇𝑃)

(𝑇𝑃+ 𝐹𝑃)
                                                (4) 

F1  =  
(2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
  =  

(2 × 𝑇𝑃)

(2 × 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁)
  (5) 

MCC = 
(TP×TN - FP×FN)

√((TP + FP)(TP + FN)(TN + FP)(TN + FN))
 (6) 

where TP, TN, FP, and FN stand for Covid-19 positive patients predicted as Covid-19 

positive, Covid-19 negative patients predicted as Covid-19 negative, Covid-19 negative 

patients predicted as Covid-19 positive, and Covid-19 positive patients predicted as 

Covid-19 negative, respectively. 

 

To perform a fair comparison against previously published work, we also re-imple-

mented Wang et al.’s DeCovNet [6] on the three datasets in this paper. We trained and 

evaluated Wang et al.’s DeCovNet [6] model’s performance on UCSD-AI4H [15], 
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MosMed [16], and MosMed_selected on lung CT datasets described in Tables 1, 2,  and 

3 respectively.  

 

On the UCSD-AI4H dataset, the performance comparison of CoviNet Enhanced with 

previously published works, namely, Wang et al.’s DeCovNet [6], Imani et al.’s Gabor, 

and Morphological models [7] is shown in Table 4. For Imani’s Gabor model, the ran-

dom forest classifier with CNN feature extraction was used, and for Imani’s Morpho-

logical model, the random forest classifier alone was used. Imani et al.’s [7] also used 

the UCSD-AI4H dataset for their Covid-19 classification from CT, so we report their 

best-performing results (for Gabor and Morphological models) directly from their pa-

per. 

 

Among all the four models shown in Table 4, CoviNet Enhanced exhibited the highest 

F1-score of 0.930 and the MCC of 0.842 on the UCSD-AI4H dataset. Further, CoviNet 

Enhanced showed significantly superior performance than the next best-performing 

model, Wang et al.’s DeCovNet [6], which had an F1-score of 0.861, and an MCC of 

0.717.  

 

Table 4. Performance Comparison between CoviNet Enhanced and other pub-

lished works on the UCSD-AI4H dataset (Table 1). 

Model Accuracy Precision Sensiti

vity 

Specificity F1-

score 

MCC 

Wang et al.’s     

DeCovNet [6] 

85.5% 91.9% 80.9% 91.2% 0.861 0.717 

Imani’s Gabor [7] 76.7% - - - 0.743 - 

Imani’s           

Morphological [7] 

75.3% - - - 0.753 - 

CoviNet            

Enhanced 

92.2% 93.0% 93.0% 91.2% 0.930 0.842 

 

On the MosMed dataset, the performance comparison of CoviNet Enhanced with Wang 

et al.’s DeCovNet [6] is shown in Table 5. Among the two models shown in Table 5, 

CoviNet Enhanced exhibited the highest F1-score of 0.774 and the MCC of 0.608 on 

the MosMed_selected dataset. Further, CoviNet Enhanced showed significantly supe-

rior performance than the next best-performing model, Wang et al.’s DeCovNet [6], 

which had an F1-score of 0.652, and MCC of 0.353.  

 

The reason for CoviNet Enhanced’s superior performance over DeCovNet is the en-

semble approach which leverages the complementary texture features based SVM mod-

els when 3D CNN is less confident in its prediction.  

 

On the MosMed_selected dataset, the performance comparison of CoviNet Enhanced 

with Goncharov et al.’s [8] model is shown in Table 6. Goncharov et al.’s [8] also used 

this same dataset, so the results are reported directly from their paper. CoviNet En-

hanced exhibited the highest F1-score of 0.957 and the MCC of 0.926.  
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Table 5. Performance Comparison between CoviNet Enhanced and the other pub-

lished work on MosMed dataset (Table 2). 

Model Accuracy Precision Sensitivity Specificity F1-

score 

MCC 

Wang et al.’s 

DeCovNet [6] 

66.8% 74.1% 58.3% 76.7% 0.652 0.353 

CoviNet    

Enhanced 

80.8% 75.7% 79.1% 82.0% 0.774 0.608 

 
Further, CoviNet Enhanced showed significantly superior performance than the next 

best model, Goncharov et al.’s multitasksp1 U-Net [8], which had an F1-score of 0.827, 

and MCC of 0.770. Goncharov et al's method involved multitask learning by jointly 

learning to classify and segment, and it was very slow to train versus our relatively 

more efficient CoviNet Enhanced 3D CNN classification. 

 

Table 6. Performance Comparison between CoviNet Enhanced and Goncharov et 

al. [8] on MosMed_selected dataset (Table 3). 

Model Accuracy Preci-

sion 

Sensitiv-

ity 

Specific-

ity 

F1-

score 

MCC 

Goncharov et 

al. multitask-

sp1 U-Net [8] 

89.4% 72.1% 96.9% 86.8% 0.827 0.770 

CoviNet      

Enhanced 

96.4% 94.3% 97.1% 95.9% 0.957 0.926 

 

The performance comparison of CoviNet [4] (our previous work) and CoviNet En-

hanced is shown in Table 7. On the UCSD-AI4H dataset, CoviNet Enhanced outper-

forms the CoviNet by 1.3% on Sensitivity, 32.9% on Specificity, 0.144 on F1-score, 

and 0.312 on MCC. Notably, CoviNet Enhanced has the highest F1-score and MCC 

score at 0.930 and 0.842 respectively versus CoviNet’s F1-score and MCC of 0.786 

and 0.530. On the MosMed_selected dataset, CoviNet Enhanced outperforms the 

CoviNet by 3.7% on Specificity, 0.027 on F1-score, and 0.044 on MCC as shown in 

Table 7. Notably, CoviNet Enhanced has a higher F1-score and MCC score at 0.957 

and 0.926 respectively versus CoviNet’s F1-score and MCC of 0.930 and 0.882.  

 

We now show the result of feeding the entire 3D volume of a patient’s CT compares 

with utilizing each image in isolation using the same 3D CNN CoviNet Enhanced ap-

proach. The proposed CoviNet Enhanced model’s 3D CNN component takes only 3D 

CT volumes since the 3D CNN processes the entire 3D volume together and makes 

predictions at volume level only. Note that the SVMs take image-level data and the 

SVM predictions are averaged for the images constituting a volume to get the final 

volume level predictions. To get image-level results from 3D CNN, we provided input 

as a single CT slice duplicated five times to make volume data for feeding to the 3D 

CNN. Table 8 shows the image-level and patient-level metrics of the CoviNet En-

hanced model on the UCSD-AI4H dataset.  
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Table 7. Performance Comparison between CoviNet and CoviNet Enhanced on 

UCSD-AI4H (Table 1) and MosMed_selected (Table 3). 

Model/Data Accuracy Precision Sensitivity Specificity F1-

score 

MCC 

CoviNet 

/UCSDAI4H 

75.0% 68.7% 91.7% 58.3% 0.786 0.530 

CoviNet  

Enhanced/ 

UCSD-AI4H 

92.2% 93.0% 93.0% 91.2% 0.930 0.842 

CoviNet 

/MosMed_se

lected 

94.1% 89.2% 97.1% 92.2% 0.930 0.882 

CoviNet  

Enhanced/ 

MosMed_se-

lected 

96.4% 94.3% 97.1% 95.9% 0.957 0.926 

 

 

Table 8. Image-level and patient-level metrics of CoviNet Enhanced. 

CoviNet Enhanced Accuracy Precision Sensitivity Specificity F1-score MCC 

Patient-Level 

(3D volume-level) 

92.2% 93.0% 93.0% 91.2% 0.930 0.842 

Image-Level 72.1% 100.0% 60.0% 100.0% 0.750 0.559 

 

As shown in Table 8, CoviNet Enhanced patient-level outperforms the CoviNet En-

hanced Image-Level by 33.0% on Sensitivity, 0.180 on F1-score, and 0.283 on MCC 

although it does have an 8.8% lower Specificity. The increased sensitivity of the 

CoviNet Enhanced patient-level model versus the image-level model is much higher 

than the lowered specificity. CoviNet Enhanced patient-level has a higher F1-score and 

MCC score at 0.930 and 0.842 versus the CoviNet Enhanced image-level model with 

an F1-score and MCC of 0.750 and 0.559, respectively.  

 

The results show the power of learning from the sequential nature of the consecutive 

slices in a CT volume. If the disease prediction is uncertain in one slice, the correspond-

ing slices in the vicinity will help provide greater context and help improve the perfor-

mance. Even noisy pixels occurring due to random noise will not occur in the same 

place in consecutive slices, so the model will become more robust to noise and be able 

to learn better. Therefore, learning from 3D volumes is better, in that the model learns 

from not only the spatial dimension but also the depth dimension. 

 

We now compare the 3D CoviNet Enhanced model with a comparable 2D model. For 

the CNN part of the CoviNet Enhanced model, the 3D input CT volumes, 3D convolu-

tional, and 3D pooling layers are replaced by 2D CT input images, 2D convolutional, 

and 2D pooling layers, respectively. The 3D layers of the 3D CNN have 4 dimensions 

of length×width×depth×channels, but the corresponding 2D layers of the 2D CNN have 
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3 dimensions of length×width×channels only. The SVM portion of the CoviNet En-

hanced model remains unchanged. Table 9 shows the CoviNet Enhanced’s performance 

on UCSD-AI4H with 3D CNN versus 2D CNN in which 3D CNN is around 10 to 20% 

better on the various performance measures than 2D CNN. 

 

Table 9. Performance of CoviNet Enhanced on UCSD-AI4H with 3D versus 2D CNN 

Model Accuracy Precision Sensitivity Specificity F1-score MCC 

2D 

CNN 

77.10% 76.67% 73.64% 80.13% 0.750 0.541 

3D 

CNN 

92.2% 93.0% 93.0% 91.2% 0.930 0.842 

 

5 Concluding Remarks 

Automated Covid-19 diagnosis via deep learning on lung CT is highly sensitive in de-

tecting Covid-19 disease-induced pneumonic changes [18]. The proposed CoviNet En-

hanced model with a hybrid approach is an excellent diagnostic model for Covid-19 

diagnosis for lung CT as it exhibits not only high sensitivity but also high specificity. 

It achieved the higher performance because it utilizes both a deep 3D convolutional 

neural network and Leung-Malik texture features-based SVMs. It outperforms the 

CoviNet, our previous work [4] because of the hybrid approach and our novel condi-

tional majority voting ensemble approach. In the instances where the 3D CNN is un-

certain about its Covid-19 prediction, the texture features-based SVMs help to comple-

ment the 3D CNN. The SVM is a non-neural network method and hence it serves as a 

complementary technique to the 3D CNN. This hybrid approach of deep learning with 

textural features and conditional majority voting helps to overcome the weakness of the 

3D CNN alone. The experimental results show the proposed method is highly effective 

for Covid-19 detection.  

 

Our approach will not only save the radiologist’s time but also improve the diagnostic 

performance in terms of much higher sensitivity and similar specificity. Our model 

achieved its best sensitivity of 97.1% and a specificity of 95.9%. In comparison, a ra-

diologists’ performance study in differentiating Covid-19 from other viral pneumonia 

reported that the median values of sensitivity and specificity were 83% (ranging 67%-

97%) and 96.5% (ranging 7%-100%), respectively [19]. 

 

For future work, to further improve the model performance, a larger and higher resolu-

tion dataset should be leveraged which will allow for reliable training of a deeper and 

more complex model. A temporal study of how the Covid-19 disease manifestation 

changes would also be helpful. The three-way classification to distinguish non-viral or 

bacterial pneumonia from Covid-19 also merits further research. 
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