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Abstract—We propose an automated way of determining the
optimal number of low-rank components in dimension reduction
of image data. The method is based on the combination of two-
dimensional principal component analysis and an augmentation
estimator proposed recently in the literature. Intuitively, the main
idea is to combine a scree plot with information extracted from
the eigenvectors of a variation matrix. Simulation studies show
that the method provides accurate estimates and a demonstration
with a finger data set showcases its performance in practice.

Index Terms—augmentation, dimension estimation, dimension
reduction, image data, scree plot

I. INTRODUCTION

A classical problem in image processing is that of low-rank
image reconstruction where the original image is decomposed
into a superposition of several low-rank components. The
process has numerous practical applications, the most well-
known of these perhaps being eigenfaces, see [1], in which a
collection of facial pictures is decomposed using a joint set
of low-rank components. Typically, each low-rank component
represents a particular collection of facial features (face, mouth
and eye shapes, etc.) and the original faces are obtained as
weighted combinations of them. This representation allows,
for example, the generation of artificial faces by choosing
the weights of the components randomly, see [2]. Another
common application, not specific to any type of image data,
is image compression where the least relevant low-rank com-
ponents are discarded to achieve a reduction in size.

A problem shared by all applications of low-rank image
reconstruction is the need to choose a suitable number of low-
rank components. On one hand, we want to retain a large
enough number to not lose any relevant information whereas,
on the other hand, the number of components should be kept
sufficiently small to avoid including noise and redundancies.
In practice, the optimal cut-off point is not known a priori.
Typical solutions involve either rule of thumb where enough
components are selected to reach a pre-specified amount of
“explained variation” [3, Chapter 6] or more involved statisti-
cal procedures [4], [5]. However, these approaches are either
highly subjective or involve strict distributional assumptions,
which hinders their applicability in the context of image data.
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Fig. 1. A collection of images from the fingers data set.

Motivated by the previous, the objective of the current work
is to propose an automatic tool for determining the optimal
number of components. Contrary to eigenfaces and related
similar methods, we do not vectorize the set of images but in-
stead treat them throughout as matrices, such that each element
represents the grayscale intensity of the corresponding pixel.
A similar approach has previously been successfully applied
in the context of image data [6]–[8] where the corresponding
methods are often categorized as tensor decompositions. One
particular consequence of changing the viewpoint from vectors
to matrices is that in the latter the rows and the columns of
the images are compressed separately. Consequently, we need
to determine optimal cut-off points for the rows and columns
separately. While this leads to more involved procedures, it
also gives more information on the compressibility of the data
when compared to the vector approach, which summarizes the
compression using a single number/dimension. As far as we
are aware, automated dimension selection in this context has
been developed earlier only by [9] who use Stein’s unbiased
risk estimation (SURE) for the task.

Our running example in this work will be the fingers data set
available freely in https://www.kaggle.com/koryakinp/fingers
and consisting of 128 × 128 grayscale images of hands with
0-5 fingers extended. For simplicity, we restrict ourselves to
the subset of 3000 pictures depicting either 0 or 5 extended
fingers on left hands. A sample of the included images is
shown in Figure 1. A naive, non-automated way to determine
the dimensionalities of the rows and columns in the data is
to run (2D)2PCA [6], a matrix-version of PCA, to produce a
pair of scree plots, one for the rows and one for the columns,
and search for “elbows” (points where the curves turn flat).

https://www.kaggle.com/koryakinp/fingers
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Fig. 2. The scree plots for the row PCs (left panel) and column PCs (right
panel) extracted from the finger data with (2D)2PCA.

The two plots are given in Figure 2 and clearly show that
no such cut-offs are visible. Hence, Figure 2 on its own
is not sufficient to solve the problem and, to supplement
it, we propose combining it with the information contained
in the eigenvectors produced by (2D)2PCA. This procedure,
proposed originally in [10] for vector-valued data under the
name of “predictor augmentation”, aims to create a “reverse
scree plot” where the curve stays flat until the optimal cut-
off point is reached and increases afterward. The sum of the
“reverse scree plot” and the scree plot is then minimized at
the optimal dimension, enabling its straightforward detection,
both visually and automatically. The resulting (logarithmized)
sum curves for the finger data are shown separately for the
rows and columns in the top left panel of Figure 4 and clearly
indicate that the optimal dimensionality is around (40, 46), see
Section V for more details. A more technical description of
the construction of the curve is given in Section III.

The contents of the manuscript are as follows: (2D)2PCA
[6], along with our proposed model, is detailed in Section II.
The proposed augmentation estimator is presented in Sec-
tion III. A simulation study and the finger data example are
presented in Sections IV and V, respectively. Finally, we end
with some discussion in Section VI. Proofs of all technical
results will be given in an extended version of the paper.

II. TWO-DIMENSIONAL PCA

Let X1, . . . ,Xn be our observed set of images, represented
as p1 × p2 matrices. Throughout the paper we assume that
this sample is drawn, independently and identically, from the
model,

X = µ+ U1ZU′2 + ε, (1)

where µ ∈ Rp1×p2 is the mean image, U1 ∈ Rp1×d1 ,
U2 ∈ Rp2×d2 are unknown matrices with orthonormal columns
and Z is a d1×d2 “core image” with zero mean and dimensions
d1 ≤ p1, d2 ≤ p2. Additionally, we make the technical
assumptions that E‖Z‖2 <∞ and that E(ZZ′) and E(Z′Z) are
positive definite matrices. The additive p1×p2 noise matrix ε
is taken to be independent from the core Z and to have a matrix

spherical distribution [11], implying that E(εε′) = σ2Ip1
for

some σ2 ≥ 0.
Model (1) can be thought of as a form of dimension

reduction for the images where, for each original image Xi,
there exists a low-rank latent core image Zi that contains the
signal/information content of the image. This signal is then
contaminated by the noise εi to produce the observed image.
Thus the “true” row and columns dimensions of the images
are d1 and d2, respectively, and our objective is precisely to
determine their values based on the sample X1, . . . ,Xn alone.

The problem of determining the dimension is closely con-
nected to the estimation of the core images and we next briefly
review how (2D)2PCA [6] can be used to carry out the latter
task. Throughout the following, we assume, without loss of
generality, that the random matrix X is centered in the sense
that E(X) = 0 (this is equivalent to having µ = 0 in (1)).
Similarly, for the sample X1, . . . ,Xn, we assume that the
corresponding mean matrix is zero, X̄ := (1/n)

∑n
i=1 Xi = 0.

Finally, we also assume, for the remainder of this section, that
the dimensions d1 and d2 are known.

The (2D)2PCA solution to Model (1) is now found as
V′1XV2 where the p1×d1 matrix V1 contains any d1 eigenvec-
tors of E(XX′) corresponding to its d1 largest eigenvalues and
the p2×d2 matrix V2 contains any d2 eigenvectors of E(X′X)
corresponding to its d2 largest eigenvalues. It can be shown
that V1 equals the matrix U1 in (1) up to post-multiplication
by an orthogonal matrix, and similarly for V2 and U2. Hence,
the (2D)2PCA solution V′1XV2 is equal to the contaminated
core, Z + U′1εU2, up to orthogonal transformations. This
orthogonal ambiguity is usually tolerated in practice but in
case one wants to get rid of it, additional assumptions on the
multiplicities of the eigenvalues of the matrices E(ZZ′) and
E(Z′Z) can be placed. In practice, the matrices E(XX′) and
E(X′X) are unknown and they have to be replaced with their
sample counterparts, (1/n)

∑n
i=1 XiX′i and (1/n)

∑n
i=1 X′iXi,

respectively.

III. AUGMENTATION ESTIMATOR

A. The main idea

We next detail the proposed strategy of estimating the
dimensions d1 and d2. By the symmetry of Model (1), it is
sufficient to focus on d1 only, as d2 can be estimated by apply-
ing the same procedure to the transposed sample, X′1, . . . ,X

′
n.

A naive way of choosing the dimension would be to plot
the eigenvalues of E(XX′) as a scree plot and search for an
“elbow”. As this is often difficult to locate (see Figure 2), our
proposed augmentation estimator supplements the scree plot
with information extracted from the eigenvectors of E(XX′).
More precisely, the augmentation estimator concatenates the
observed X with additional artificial normally distributed rows
that mimic the first and second-moment behavior of the error
ε in Model (1) to produce the augmented observation X∗.
Then the augmented (artificially added) part of the first d1
eigenvectors of E{X∗(X∗)} turns out to be negligible when
compared to the augmented parts of the latter eigenvectors,
allowing us to distinguish between the eigenvectors belonging



to the first d1, significant, eigenvalues and the remaining
ones. This idea is formalized in the following paragraphs. For
more details on the procedure in general, see [10] where the
augmentation estimator was first proposed (in the context of
vector-valued data).

In Model (1), we have E(XX′) = U1E(ZZ′)U′1 + E(εε′)
where E(εε′) = σ2Ip1

for some σ2 ≥ 0. Consequently,
the rank of E(XX′) − σ2Ip1

is precisely the dimension d1
we aim to estimate. Let now, for r > 0, XS ∈ Rr×p2

be a random matrix with independent N (0, σ2/p2)-elements,
implying that E(XS) = 0 and E(XSX′S) = σ2Ir. The
augmented observation is then defined as the (p1 + r) × p2
matrix X∗ = (X′,X′S)′ and satisfies,

E{X∗(X∗)′} =

(
U1E(ZZ′)U′1 0

0 0

)
+ σ2Ip1+r.

If we now define M∗ := E{X∗(X∗)′} − σ2Ip1+r, then it is
evident that M∗ and M0 = U1E(ZZ′)U′1 are of the same rank
and also have the same positive eigenvalues.

Denote next the eigenvalues of E(ZZ′) by λ1 ≥ λ2 ≥
· · · ≥ λd1

> 0 and let the (p1 + r)-dimensional vector
β∗i = (β′i,β

′
i,S)′, i = 1, . . . , p1 +r, be any eigenvector of M∗

corresponding to its ith eigenvalue. We call the r-dimensional
subvector βi,S the augmented part (subvector) of the ith eigen-
vector. Then, for i ≤ d1, M∗β∗i = (U1E(ZZ′)U′1β

′
i, 0
′)′ =

λi(β
′
i,β
′
i,S)′, implying that βi,S = 0 for i = 1, . . . d1.

Observe also that the same does not hold for the later
eigenvectors. This specific structure of the augmentation parts
will below be used to formulate the augmentation estimator.
However, prior to that, we first discuss the estimation of the
unknown noise variance σ2 that plays a crucial part in the
above construction.

B. Estimation of noise variance σ2

In the vector setting, [10] used the median of the eigenvalues
of the sample covariance matrix as an estimate for σ2, under
the assumption that at least half of the components are noise. A
similar approach can be applied in our setting: Let σ̂2

1 ≥ · · · ≥
σ̂2
p1

be the eigenvalues of (1/n)
∑n

i=1 XiX′i and, analogously,
denote the eigenvalues of E(XX′) by σ2

1 ≥ · · · ≥ σ2
p1

. Then
(σ2

1 , . . . , σ
2
p1

) = (λ1 + σ2, . . . , λd1 + σ2, σ2, . . . , σ2) which,
together with the fact that σ̂2

i serve as estimators of σ2
i , implies

that we can estimate σ2 as the median σ̂2 := med{σ̂2
1 , . . . , σ̂

2
p}

as long as the assumption d1 < p1/2 is fulfilled. However,
since our overall objective is to estimate both d1 and d2, under
this approach one would have to assume both d1 < p1/2 and
d2 < p2/2, which can be seen as somewhat strict, restricting
the core image to be at most one-fourth of the original image
in size (in terms of the amount of pixels). We next weaken this
assumption by using simultaneously information from both the
rows and the columns of the noise matrix ε.

Observe that as ε follows a matrix spherical distribution, so
does ε′, implying that E(ε′ε) = (σ′)2Ip2

, for some (σ′)2 > 0.
More precisely, for any i = 1, . . . , p1 and j = 1, . . . , p2,

p2∑
k=1

E(ε2ik) = σ2,

p1∑
k=1

E(ε2kj) = (σ′)2. (2)

By summing the first expression of (2) over i = 1, . . . , p1
and the second one over j = 1, . . . , p2, one obtains p1σ2 =
p2(σ′)2, implying that

σ2 =
p2
p1

(σ′)2. (3)

We next use the identity (3) to obtain a pooled es-
timator for the variance σ2. For the ordered eigenval-
ues σ2

1 , . . . , σ
2
p1

and (σ′1)2, . . . , (σ′p2
)2 of the matrices

E(XX′) and E(X′X), respectively, we define the set S :=
{σ2

1 , . . . , σ
2
p1
, p2

p1
(σ′1)2, . . . , p2

p1
(σ′p2

)2}. We also define its sam-
ple counterpart Ŝ := {σ̂2

1 , . . . , σ̂
2
p1
, p2

p1
(σ̂′1)2, . . . , p2

p1
(σ̂′p2

)2},
where σ̂2

1 , . . . , σ̂
2
p1

and (σ̂′1)2, . . . , (σ̂′p2
)2 are the eigenvalues

of the matrices (1/n)
∑n

i=1 XiX′i and (1/n)
∑n

i=1 X′iXi, re-
spectively.

Remark 1. To clarify the scaling constant p2/p1, consider a
scenario where the entries of ε are uncorrelated and have zero
mean and variance δ2 > 0. Then, E(εε′) =

∑p2

i=1 δ
2Ip1

=
p2δ

2Ip1
. Similarly, E(ε′ε) = p1δ

2Ip2
, showing that the noise

variance accumulates with the number of columns.

The median of the set Ŝ is now a natural estimator of σ2

under the assumption that

d1 + d2 <
p1 + p2

2
. (4)

Obviously, also other quantiles of the set Ŝ can be used to
estimate σ2 (assuming that suitable analogues for (4) hold),
see the following lemma. For example, in the simulation study,
we will use min{Ŝ} which requires minimal assumptions but,
as a downside, has a strong downward bias.

Lemma 1. Let σ̂2
q be the qth quantile of Ŝ and σ̄2

q be mean
of those elements of Ŝ that are smaller than or equal to σ̂2

q .
i) If d1 + d2 < (1 − q) ∗ (p1 + p2), then σ̂2

q and σ̄2
q

are consistent estimators of σ2. Especially, under (4),
med{Ŝ} and σ̄2

0.5 are consistent estimators of σ2.
ii) If d1 + d2 < p1 + p2, then min{Ŝ} is a consistent

estimator of σ2.

C. Augmentation estimator

We are now equipped to define the augmentation estimator.
Let X1,S , . . . ,Xn,S be a sample of i.i.d. r× p2 matrices with
elements drawn from the standard normal distribution N (0, 1).
Define the augmented observations as the (p1+r)×p2 matrices
X∗i := (X′i, σ̂X′i,S)′, i = 1, . . . , n, where σ̂2 is one of the
estimates of the noise variance σ2 defined earlier. A sample
estimate M̂

∗
of the matrix M∗ is then obtained as

M̂
∗

=
1

n

n∑
i=1

X∗i X∗i
′ − σ̂2Ip1+r,

whose first p1 eigenvectors we denote in the following by
β̂
∗
1, . . . , β̂

∗
p1

.
Mimicking [10], we define the normalized scree plot curve,

Φn : {0, 1, . . . , p1} → R, Φn(k) = λ̂k+1/

(
k+1∑
i=1

λ̂i + 1

)
,



where (λ̂1, . . . , λ̂p1) := (σ̂2
1 − σ̂2, . . . , σ̂2

p1
− σ̂2) are the

eigenvalues of the matrix (1/n)
∑n

i=1 XiX′i − σ̂2Ip1 and
we define λ̂p1+1 := 0. However, as the values σ̂2

i − σ̂2

are not necessarily non-negative (unlike their population
counterparts), we suggest instead using λ̂i = max{σ̂2

i −σ̂2, 0},
i = 1, . . . , p1, but with caution as very negative values of
σ̂2
i − σ̂2 can indicate that the noise variance σ2 is not properly

estimated, which can happen, e.g., if assumption (4) does not
hold. The normalization adjustment in the eigenvalue function
Φn is done, as in the bootstrap ladle estimator [12], to ensure
robustness with respect to scaling of the data, whereas the
constant 1 in the denominator is used for stabilization in
the extreme case of noise only, that is, when d1 = 0 [10].
The constant 1 also enhances the decreasing pattern of the
eigenvalue function, especially in settings with small sample
sizes where the (d+ 1)st eigenvalue might not be very small.

In order to stabilize the final estimate, we conduct the
augmentation procedure independently s times and compute
the eigenvectors of M̂

∗
for each replicate. For j = 1, . . . , s,

we denote by β̂
j

k,S the augmentation subvector of the kth
eigenvector of the matrix M̂

∗
in the jth replicate. The full

eigenvector information is captured by the function,

fn : {0, 1, . . . , p1} → R, fn(k) =
1

s

s∑
j=1

‖β̂j
k,S‖

2,

where β̂j
0,S := 0 . We then finally combine the eigenvalue

information in Φn and the eigenvector information in fn to
form the function gn : {0, 1, . . . , p1} → R,

gn(k) =

k∑
i=0

{fn(k) + Φn(k)} , (5)

and take our estimate d̂1 of the dimension d1 to be the
minimizer of gn. This choice is intuitively clear as, assuming
that d1 > 0, for any k < d1 the eigenvalue part Φn(k)
of (5) is large while the eigenvector part fn(k) is small. For
k > d1, the opposite happens and the eigenvalue part is small
while the eigenvector part is large. Whereas, at the correct
dimension k = d1 both parts are small, implying that the
sum curve gn is (at the population level) minimized precisely
at k = d1. Furthermore, in the extreme noise case where
d1 = 0, the eigenvalue part in (5) is always negligible, while
the eigenvector part is always large, except in the case k = 0,
in which case it vanishes, again causing the minimum to occur
at k = 0.

IV. SIMULATION STUDY

The following simulations and data analysis were conducted
using R [13] together with the packages ICtest [14], MixMa-
trix [15] and tensorBSS [16].

Following [11], we denote by Np1,p2(µ,Σ1,Σ2) the matrix
variate normal distribution with dimensions p1 and p2, p1 ×
p2 location µ and row and column shape matrices Σ1 and

Algorithm 1: Augmentation estimator for d1.
Input: X1, . . .Xn ∈ Rp1×p2 centered realizations of a

zero-mean matrix from Model (1);

1 Set the row dimension r > 0;
2 Set the number of augmented replicates s > 0;
3 Calculate M̂1 = 1

n

∑n
i=1 XiX′i;

4 Calculate M̂2 = 1
n

∑n
i=1 X′iXi;

5 Calculate the estimate of the noise variance based on
{σ̂2

1 , . . . , σ̂
2
p,

p2

p1
(σ̂′1)2, . . . , p2

p1
(σ̂′p2

)2)}, the pooled set
of scaled eigenvalues of M̂1 and M̂2. E.g.
σ̂2 = med(σ̂2

1 , . . . , σ̂
2
p,

p2

p1
(σ̂′1)2, . . . , p2

p1
(σ̂′p2

)2).
6 Compute λ̂i = max{σ̂2

i − σ̂2, 0};
7 for i← 1 to n, j ← 1 to s do
8 Generate an r× p2 matrix Xj

i,S , with entries drawn
i.i.d. from N (0, 1) and define the augmented ith
observation as

Xj∗
i = (X′i, σ̂Xj

i,S

′
)
′

9 for j ← 1 to s do
10 Compute the eigendecomposition of the jth

replicated matrix

M̂
j∗

=
1

n

n∑
i=1

Xj∗
i Xj∗

i

′
− σ̂2Ip1+r.

11 Let β̂
j

k,S be the augmentation subvector of M̂
j∗

belonging to the k-th eigenvalue;
12 The objective function is

gn(k) =

k∑
i=0

{fn(k) + Φn(k)} ,

where β̂
j

0,S = 0 and λ̂p1+1 = 0;
13 Return d̂1 = argmin{gn(k) : k = 0, . . . , p1};

Σ2, respectively. Similarly Tp1,p2
(µ,Σ1,Σ2, df) denotes the

matrix variate t-distribution with degrees of freedom df .
The four models considered in the simulation study are:

1) X = U1ZtU′2 + εt, 2) X = U1ZtU′2 + εN ,

3) X = U1ZNU′2 + εt, 4) X = U1ZNU′2 + εN ,

where Zt ∼ T3,5(0,Σ1,Σ2, 5), εt ∼ 1√
20
T5,15(0, I5, I15, 5),

ZN ∼ N3,5(0, 1√
3
Σ1,

1√
3
Σ2), εN ∼ 1√

20∗3N5,15(0, I5, I15).
The column shape matrix Σ1 is of the form V ′1D1V 1, where
V 1 is a random orthogonal matrix and D1 = diag(10, 10, 3),
and, similarly, Σ2 = V ′2D2V 2, where V 2 is a random
orthogonal matrix and D2 = 1√

64∗3diag(1, 2, 3, 5, 5). The
mixing matrices U1 ∈ R5×3 and U2 ∈ R15×5 are taken to
be the first 3 and 5 columns of randomly generated orthog-
onal matrices in R5×5 and R15×15, respectively. Thus in all
four models, E(ZZ ′) ≈ diag(0.46, 0.46, 0.14), E(Z ′Z) ≈
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Fig. 3. Frequencies of estimated latent dimensions in Model 3 based on 1000 repetitions. The true latent dimensions are d1 = 3, d2 = 5. Note that for ladle
(method boot) the estimates are the same for all s.

diag(0.33, 0.33, 0.20, 0.13, 0.07), E(εε′) = (1/4)I5 and
E(ε′ε) = (1/12) I15.

Then, for each of the four models, 1000 data sets of size
n = 1000 were created and the dimensions d1 and d2 were
estimated using all possible combinations of s ∈ {1, 10, 50}
and r ∈ {1, 5, 10}. To estimate σ2, the following three
approaches were used (i) mean rule: the mean of the 50%
smallest values of Ŝ, (ii) median rule: the median of Ŝ and
(iii) last rule: the minimum of Ŝ. To evaluate the cost of
estimating σ2, we also used (iv) the true value, i.e. treat it as
known. As an alternative strategy to exploit the information
in the variation of the eigenvectors, we also derived a matrix
version of the so-called ladle estimator that was suggested for
vector data in [12]. The method is based on bootstrapping
and we refer to it in the following as the boot rule and the
corresponding dimension estimates are based on m = 200
bootstrap estimates. We also evaluated whether the SURE es-
timates of [9] could be included. However, this turned out to be
infeasible due to computational complexity (note that SURE
goes through all possible combinations of the dimensions d1
and d2). To illustrate this, a small timing comparison for
10 repetitions from Model 3 was performed on an i7-8565U
processor with 1.80GHz and 16GB RAM. Table IV contains
the median computation time in seconds when the median rule
was used to estimate σ2 in the augmentation estimator. In this
small scale example, SURE is already 50 times slower when
compared to the bootstrap-based ladle with 200 bootstrap
repetitions, which in turn is slower than any of the considered
augmentation-based estimators. However, we have to point out
that in all cases where we computed the SURE estimate (the
10 timing comparisons and a batch of 100 additional test runs),
it returned the correct dimensions for the core matrix. Due to

TABLE I
MEDIAN COMPUTATION TIME (SECONDS) OF 10 REPETITIONS FOR

R5×15-MATRICES.

Method r s Time

Augmentation

1 1 0.09
1 10 0.14

10 1 0.44
10 50 4.79

Boot 6.05
SURE 300.20

space constraints, Figure 3 gives only the estimated row and
column dimensions for Model 3. However, the performance
was in all four models quite similar, and the estimation appears
to be, as expected, most difficult when the noise follows the
spherical t-distribution. Figure 3 shows that the row dimension
is easier to estimate, which is due to the smallest eigenvalue
of E(ZZ′) being much larger than the smallest eigenvalue of
E(Z′Z). In general, all methods seemed to overestimate rather
than underestimate the latent dimensions. This is favorable
when compared to the alternative, as no important signal
information is lost. Moreover, using only the last element
of Ŝ to estimate σ2 is clearly the worst strategy whereas
median seems to be the best. The median-based augmentation
is in general the best performing method, outperforming both
the bootstrap-based ladle and strangely even the augmentation
strategy when the true σ2 value is used. For the augmentation-
based estimator, it seems better to use large values for s
and r and the choice of s seems to have a larger impact
when compared to r. To conclude, based on simulations,
the augmented estimator performs superbly, especially when
considering its computational simplicity.
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Fig. 4. Logarithmized objective function for the augmented ladle estimator
using r = 26 augmented components. The objective function is essentially a
combination of the augmented norms curve and the scaled eigenvalues curve.

V. EXAMPLE

For the 3000 128 × 128 finger images, we decided to use
r = p1/5 ≈ 26 as recommended in [10] and s = 100 and
estimate σ2 using the median rule. Figure 4 visualizes the
different parts of the augmented estimator on a logarithmic
scale. The figure clearly shows that the eigenvalues alone
and the information from the eigenvectors alone are not very
helpful in choosing the dimensions for each mode. However
combing the two criteria gives a clear minimum at (40,46)
which can be easily picked in an automated way. To evaluate
if these dimensions are reasonable, we randomly select a
hand showing no fingers and a hand showing all fingers
and reconstruct the images based on different numbers of
latent components. The reconstructed images together with the
original images are presented in Figure 5. These figures reveal
that using fewer components than our optimal ones yields
blurry images while larger numbers do not yield a significant
improvement, indicating that (40,46) would be a good core
dimension for the compression.

VI. DISCUSSION

Estimating the number of latent components in matrix-
valued PCA in an automated and computationally efficient way
has not been possible so far. We extended the augmentation-
based estimator from [10] to this setting and demonstrated
its excellent performance for both simulated and real data.
In future work, we will derive the theoretical properties of
the augmented estimator and extend it to the general tensorial
PCA case (known, for example, as tPCA [17]) to also cover,
e.g., colored images and video data.

Fig. 5. Dimension reduction for two specific images. From left to right,
the images have been reconstructed using (5,5), (25,25), (40,46) and (60,60)
components. The rightmost hands correspond to the original images.
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