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Abstract—3D meshes have gained significant interest in com-
puter vision community due to their use in several applications
such as virtual reality, gaming, heritage preservation, etc. How-
ever these 3D contents might be altered in the pre-processing
steps like acquisition, compression or denoising. In this context,
visual quality assessment algorithms can be used to quantify
the amount of distorsions that affect a 3D mesh and hence
degrade its visual rendering. We introduce a no-reference mesh
quality assessment index based on deep convolutional features
named DCFQI (Deep Convolutional Features Quality Index).
Leveraging the power of deep learning, particularly transfer
learning, allows the proposed approach to score visual quality
without the need of reference content, hence emulating the human
vision. By rendering a 3D mesh into 2D views and patches, a pre-
trained convolutional neural network is used to automatically
extract deep features from the latters. The obtained features
are used in a Multi Layer Perceptron (MLP) to predict the
objective quality score. Two learning strategies are presented
and compared for blind quality estimation. Obtained results in
terms of correlation with subjective human scores of quality
demonstrate the superiority of the proposed index over existing
methods.

Index Terms—3D mesh, Visual Quality Assessment, Convolu-
tional Neural Network, Deep learning, Transfert Learning.

I. INTRODUCTION

Perceptual visual quality assessment of 3D meshes, known
as 3D Mesh Visual Quality Assessment (MVQA), has gained
significant interest in recent years due to the widespread use
of 3D models in various applications, ranging from computer
graphics to virtual reality, augmented reality, 3D printing,
industrial design, engineering, and cultural heritage preserva-
tion. As 3D meshes usually undergo different lossy geometry
processing operations, distortions can occur, impacting their
visual quality and possibly the performance of computer
vision applications. While subjective visual quality assessment
by human observers is a reliable method, it is expensive,
laborious, and time-consuming [1] Objective visual quality
assessment methods offer a viable solution to these challenges.
They can be categorized based on the availability of a ref-
erence object. Full-Reference (FR) methods require a com-
plete reference, No-Reference (NR) or Blind methods do not
have any reference information, and Reduced-Reference (RR)
methods have partial reference information, such as extracted
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features. Existing perceptually driven methods predominantly
focus on FR [2]–[5] and RR methods [6], [7] to evaluate
perceived quality. However, in practical scenarios, a reference
is not always available, necessitating the development of no-
reference methods.

Recently, CNNs (Convolutional Neural Networks) have
been widely adopted for NR MVQA [8]–[10]. However, pro-
cessing meshes directly with CNNs is challenging due to their
complex polygon-based structure and the reliance of CNNs
on Euclidean discrete convolutions. In order to address this
limitation and to mimic the subjective evaluation performed by
the human visual system, we propose the following solution:
we generate 2D projections of each mesh from multiple
viewpoints and divide these projected images into overlapping
patches to preserve edge information.

Next, while many state-of-the-art approaches are patch-
based, we aim in this study to introduce a protocol that
incorporates both views and patches. We independently fed the
extracted patches and rendered views into a pre-trained CNN
for feature extraction. To predict the visual quality score, we
employ an additional MLP (Multi-Layer Perceptron). Finally,
we compute the quality score of a mesh by aggregating the
scores obtained from the images at the patch or view levels.

The structure of this paper is outlined as follows. Section II
provides a description of the data preparation and the proposed
method. Section III describes the experimental setup, including
details about the database used, the validation protocol and a
comparative discussion of the results. Finally, we conclude
with remarks and perspectives on the topic.

II. DEEP CONVOLUTIONAL FEATURES QUALITY INDEX

A. Flowchart

Given a 3D mesh whose visual quality has to be evaluated,
the proposed approach renders several 2D projection views
by varying the point of view around the mesh. The obtained
2D views are normalized and cropped in order to minimize the
amount of white background in the image. The obtained views
can be subsequently divided into four overlapping patches.
Each 2D view (or each patch extracted from the 2D views)
is fed to a pre-trained convolutional network (VGG 16) [11]
in order to obtain a feature vector as the default densely
connected classifier is removed from the neural network.
Consequently, this feature vector is used to estimate the



view or patch quality. As each 3D mesh Mi is described
as a set of rendered 2D views or patches, we average the
obtained objective quality scores to quantify the final 3D mesh
visual quality. In the sequel, we will describe the process of
preparing our two databases (view and patch). We will begin
by rendering the 3D meshes, followed by the patching of the
corresponding 2D views.

B. 3D mesh rendering

As alluded above, our approach considers 2D rendered
views and 2D patches of a 3D mesh in order to assess the
percieved quality of a 3D mesh. Given a database of N 3D
meshes, the goal is to render each 3D mesh Mi,i∈[0,N [ in
order to obtain 2D views/patches at different viewing angles.
To ensure that each mesh is positioned in a similar way in
the rendered views, its centroid is placed at the origin of the
coordinate system. This enables to have comparable renderings
for all the meshes, which is mandatory to predict reliable
quality scores from the extracted features representing the
views/patches.

a) 2D views: A 3D mesh Mi is rendered from 11
viewpoints by systematically changing the azimuth (θa) and
elevation (θe) angles by π

3 (60 degrees) for each viewpoint.
Figure 1 illustrates this process.

Fig. 1. Illustrating camera position in the rendering process: Azimuth angle
(θa) in the horizontal plane with z = 0 and Elevation angle (θe) from the
xy plane with y = 0.

The Elevation angle is fixed to 0 degree while varying the
Azimuth (and vice versa) for capturing the views, ensuring
smooth transitions. The camera position and the distance to
object are manually fixed to ensure that the object appears
close to the camera, hence maximizing finest details and
visibility. This process allows us to create a comprehensive
dataset of 2D views, showcasing various perspectives and
important object details. An example of the resulting rendered
2D views of the Armadillo 3D mesh from the Liris/Epfl
General Purpose datase [1] can be seen in Figure 2.

b) 2D views optimization and decomposition: The result-
ing rendered views have a large resolution of 1024 × 1024.
This size was fixed to capture discriminating details of prime
importance for visual quality assessment. However, these
images also contain a significant amount of white background.
To minimize the impact of the white background, useless for
quality assessment, we crop and resize the images to include
only the mesh bounding box, effectively removing most of

Fig. 2. Armadillo’s 11 rendered views: the views in the first row are obtained
by fixing θe = 0 and graduating θa by 60 degrees at a time. We switch this
process in the second row.

the surrounding white background. As this cropping operation
depends on the mesh bounding box size, the resulting images’
sizes can be different. To avoid this, we resize all the images
to 512× 512.

If the 2D views are interesting to capture the details from 3D
meshes, only 11×N views are obtained. Such number of views
might be not sufficient to leverage the power of deep learning
architectures. To cope with this, four overlapped patches are
extracted from each 2D views. In contrast to the approach of
[10] that extract very small patches of 32 × 32, we consider
larger patches of size 288×288. Indeed, having patches of very
small sizes has many drawbacks. First, small patches do not
always contain sufficient information for quality assessment.
Second, these patches can be only made of background and
specific strategies are needed to eliminate them [12]. Third,
this does not ensure that the extracted number of patches per
view is always the same, which creates an unbalanced dataset.
To ensure a better coverage of all the information, especially at
the connection between adjacent patches, patches are extracted
with an overlap of 20%. Figure 3 illustrates the decomposition
of a 2D view into four overlapped patches.

To sum up, given a database of N meshes, we construct
two databases Bk with k ∈ {view, patch}. Bview contains
N × 11 images, whereas Bpatch contains N × 11× 4 images.
Whatever the database, each constituting image is normalized
between 0 and 1. In [12], the authors performed a local
contrast normalization, while in the proposed approach, we
have preferred a global normalization performed on the L∗

lightness channel in the CIELAB color space. Indeed, the
perceived lightness (L∗) is nonlinear as the human perception
and its normalization may optimize the quality assessment
process.

Fig. 3. Transformation Process: From View to Patches.



C. Learning and regression

Once the database Bk of rendered images is constructed,
our goal is to score the quality of each mesh Mi from its
rendered images Iij . To do so, features are extracted from
the rendered images using a pre-trained VGG16 convolutional
network (after resizing the images to 224×224). This network
was considered as being the most efficient feature extractor
with respect to other models such as AlexNet and ResNet
[12]. The flowchart of our proposed approach is presented
in Figure 4. Each image is fed into the pre-trained VGG16
model that acts as a feature extractor ϕ by saving its output
before its dense layers. Consequently, a feature vector of size
7 × 7 × 512 is obtained, then flattened in order to obtain
a vector of size 25088. This feature vector ϕ(Iij) is used
as an input to a shallow MLP to perform the regression
task of quality assessment. The goal is to score the quality
PMOSk(I

i
j) of an image Iij from a database Bk based on

its corresponding feature vector ϕ(Iij). During training, the
reference MOS for each image Iij corresponds to the 3D mesh
Mi. Obviously, PMOSk(I

i
j) should be close to MOS(Mi). The

shallow MLP contains a single hidden layer of 512 neurons
with a ReLu activation function, and a single neuron output
layer. After the dense layer, a dropout layer with a rate of
0.5 is added to prevent over-fitting. In order to initialize the
weights of the dense layer, we employed the Glorot uniform
initialization method [13]. This method initializes the weights
from a uniform distribution within a specific range, which is
determined by the number of input and output neurons of the
layer.

To predict the quality score of an input image, the MLP
is trained on either Bview or Bpatch (next section will present
the training/evaluation protocol). Once the training has been
performed, the quality estimation of a mesh Mi is computed
as:

PMOS(Mi) =
1

nk

nk∑
j=1

PMOSk(I
i
j) (1)

where k ∈ {view, patch}, and Iij is the jth patch or view
among the nk images of the mesh Mi (nview = 11 and npatch =
44). The quality of a mesh is therefore the average of the
predictions PMOSk(I

i
j) obtained for all its rendered images.

III. EXPERIMENTS

A. Database

In this work, we have considered the LIRIS/EPFL General-
Purpose database [1], which is a widely used dataset in the
field of MVQA. This database contains 88 mesh models
divided into 4 reference meshes (named Dinosaur, Armadillo,
RockerArm and Venus) and 84 distorted versions. With this
database we therefore have N = 88 meshes. There are 21
distortions for each reference mesh model. These distortions
are generated through the application of smoothing and noise
addition techniques on either smooth areas, rough areas or
intermediate areas (between rough and smooth regions). A
MOS (Mean Opinion Score) has been obtained for each model

by averaging the subjective scores obtained from 12 human
observers. The score range is between 0 (for good quality) and
10 (for bad quality). Figure 5 illustrates the reference Dinosaur
mesh on the left and its corresponding distorted mesh with
noise added on rough and intermediate areas.

B. Evaluation protocol

As presented in the previous Section, we can learn to predict
the quality of a mesh Mi from its rendered images Iij that come
either from Bview or Bpatch. This means that we can predict the
quality of a mesh either from 11 2D views or 44 2D views’
patches. We will compare these two methodologies as well as
with the state of the art. The following subsections describe
the evaluation protocol we used.

To evaluate the quality assessment performance, we con-
sider two standard measures: the Spearman Rank-Order cOrre-
lation Coefficient SROOC and the Pearson Linear Correlation
Coefficient PLCC. These metrics are commonly used in the
field of visual quality assessment to measure the agreement
and similarity between predicted scores and ground truth val-
ues. They will serve as a basis for comparing the performance
of our proposed method with existing no-reference mesh
quality assessment metrics. By quantifying the relationship
between the predicted and actual scores or rankings, these
coefficients provide valuable insights on the performance of
prediction models.

The SROOC coefficient (rs) is a statistical measure used to
assess the strength and direction of the monotonic relationship
between the predicted quality scores PMOS(Mi) and the
reference mean opinion scores MOS(Mi).

On the other hand, the PLCC metric rp assesses the
linear relationship or correlation between the predicted scores
and the ground truth values. Both metrics range from −1
to 1. A value of 1 indicates a perfect positive correlation,
−1 indicates a perfect negative correlation, and 0 indicates
no correlation. By using these metrics, we will be able to
compare the performance of the patch-based and view-based
methodologies, as well as benchmark them against state-of-
the-art approaches.

C. Base Model

We initiated our experiments with the MLP Regression
(MLPR) model presented in the previous section and depicted
in Figure 4. The model was trained for a fixed number of 20
epochs using the RMSprop optimizer with a learning rate fixed
to 1E−3. Based on extensive tests, we have found that the best
correlation scores are obtained with a batch size of one-third
of the training set size. This parameter will be fixed this way
for all the trials. In order to evaluation the model accuracy, we
perform the Leave-One-Mesh-Out Cross-Validation procedure
(LOMO-CV). At training, all the meshes are considered except
one mesh and its distorted version.

Figure 6 presents the training and testing process for each
trained MLPR using LOMO-CV. In this approach, the images
associated to a specific mesh are all excluded (i.e., 22 meshes)
from the training process. The trained neural network is then



Fig. 4. The pipeline of the proposed quality assessment index that estimate the quality of a rendered image (2D view or 2D view patch).

Fig. 5. Dinosaur reference 3D mesh (left) and its distorted version (right)
with noise addition on rough and intermediate areas. The top-left subfigure
presents a cropped and zoomed area.

tested on these excluded images to evaluate its performance
as they represent unseen data. This LOMO-CV process is
repeated for each 22 meshes (a reference mesh and its distorted
versions) in the dataset. By employing cross-validation, we
ensure an objective assessment of the MLPR model as it
is evaluated on strictly independent data that they have not
been trained on. For one fold, we obtain quality predictions
PMOSk(I

i
j) for all the images of this fold. Therefore, we can

evaluate the results directly at the image (2D view or 2D
view patch) level or at the mesh level. We will differentiate
these two different evaluation ways by the names concat and
average. Indeed, as shown in Equation 1, to obtain the quality
of a given mesh Mi we have to average all the predictions
from its rendered views or patches. To achieve this, we group
the prediction scores by mesh and compute the average score
for each. This aggregation process allows us to consolidate
the information from multiple predictions into a single score
that reflects the overall quality of the mesh. By transitioning
from the concatenation scores to the average scores by mesh,
we obtained a more focused and interpretable evaluation of
the quality of each individual mesh in our dataset. This
approach provided a more fine-grained understanding of the
performance of our model on a per-mesh basis.

Table I presents the results of the base model (with 20
epochs) in term of SROOC values. We can remark that the
Spearman correlation values for (rs concat) are relatively low
on both databases Bview and Bpatch, especially for the Dinosaur
mesh and its distorted versions, where the prediction can be
much enhanced by averaging the prediction of all the patches.
However, when we aggregate the predictions on an average
basis per mesh, it provides better interpretability and aligns

with our ultimate goal of evaluating mesh quality. It is logical
that the patch protocol yields better results since the dataset is
larger . The only exception is the Venus model, which shows
a slightly better correlation with the view-based protocol.

On Bview On Bpatch
Configuration rs concat rs average rs concat rs average
Armadillo out 0.704 0.832 0.657 0.949
Dinosaur out 0.01 0.292 0.253 0.779

Venus out 0.895 0.953 0.896 0.942
RockerArm out 0.583 0.929 0.727 0.949

Average 0.548 0.751 0.633 0.904

TABLE I
SROOC VALUES FOR THE BASE MODEL TRAINED FOR 20 EPOCHS ON

BVIEW OR BPATCH DATABASES.

In order to enhance the results, we employ in our im-
plementation the Early Stopping technique which is a form
of regularization that helps prevent overfitting and improves
generalization of the trained model. This also allows us to
identify the optimal number of epochs that may lead to better
results. For each methodology (view-based or patch-based),
the optimal number of epochs is fixed after a patience delay
that determines the number of epochs to wait before stopping
the training process if the monitored metric does not improve.
Results are presented in Table II. This enables to drastically
boost the results. If we compare our results with [12] that
also considers VGG16 for feature extraction but with patches
of very small size of 32×32 and a fixed number of epochs of
40, they obtained an average rs of 0.925 while our approach
achieves 0.945. This shows that the minimization process can
be prone to local minima and early stopping combined to a
patience delay can help to cope with. Larger patches also help
to enhance the results as they capture more details.

On Bview On Bpatch
Early stopping (patience=30) Early stopping (patience=60)

Configuration epochs rs concat rs average epochs rs concat rs average
Armadillo out 77 0.815 0.963 307 0.939 0.989

Dyno out 211 0.142 0.789 680 0.189 0.814
Venus out 71 0.933 0.984 311 0.971 0.995

RockerArm out 110 0.957 0.962 400 0.836 0.981
Average – 0.712 0.924 – 0.734 0.945

TABLE II
SROOC VALUES FOR THE BASE MODEL TRAINED WITH AN EARLY

STOPPING ON BVIEW AND BPATCH DATABASES.



Fig. 6. Resulting neural networks issued from the leave-one-mesh-out cross-validation (LOMO-CV).

D. Cumulative Model

So far, we have shown in the previous section that our
approach is competitive with similar approaches of the state-
of-the art (in particular with [12] but more comparisons will
be shown in the next section). As we have used a LOMO-
CV training, we are able to measure how good our proposed
approach is. However, we are not able to use a resulting
network to evaluate the quality of new unseen 3D meshes,
since four MLPRs were trained to predict the objective quality
scores for each fold. In this section, we propose a novel
learning strategy that allows to obtain a single neural network
that can be used to assess visual quality of 3D meshes that
don’t belong to the LIRIS/EPFL General-Purpose database and
that can go beyond the performances of the models obtained
by LOMO-CV. To do so, we consider a cumulative training
of which the principle is depicted in Figure 7. This learning
strategy begin by training and testing the MLPR model with
Glorot initializat on the first fold for 1000 epochs. Then, the
same MLPR is used for training on the next fold and so
on. As a consequence, the final cumulative MLPR can be
used to perform future predictions on unseen data and this
also helps in improving its accuracy. However if we measure
the performances of this final model, this obviously leads to
overestimated results as this cumulative training was gradually
trained over the entire dataset. To mitigate this effect and better
evaluate the performances of the Cumulative Model (CM), we
re-train it using LOMO-CV in order to obtain a final Retrained
Cumulative Model (RCM). To do so, on each fold, a new
MLPR is initialized with the weights of the CM and is trained
for a fixed number of epochs. The latter is determined by
finding the global minimum of the average of the losses of
all folds during the cumulative training. Table III presents the
results of RCM in term of Spearman correlation. As expected,
the CM model performs better than the Base model we have
developed in the previous section. Refitting it enables to have
a better evaluation of its generalization abilities.

Fig. 7. Cumulative Model Training.

On Bview On Bpatch
CM RCM CM RCM

Configuration rs rp rs rp rs rp rs rp
Armadillo out 0.993 0.999 0.992 0.998 0.998 0.999 0.997 0.999

Dyno out 0.999 0.998 0.995 0.998 0.998 0.999 0.998 0.998
Venus out 0.999 0.999 0.997 0.998 1 1 0.999 0.999

RockerArm out 0.986 0.995 0.986 0.992 0.994 0.997 0.991 0.996
Average 0.994 0.997 0.992 0.996 0.997 0.998 0.996 0.998

TABLE III
SROOC AND PCC CUMULATIVE MODEL (CM) VS RE-TRAINED

CUMULATIVE MODEL (RCM) RESULTS TRAINED ON DATABASES BVIEW

OR BPATCH .

E. Comparison with the state-of-the-art

There has been recently several proposed metrics for no-
reference quality assessment of 3D meshes. In this Section
we compared our approach with several existing state-of-
the-art no-reference methods [8]–[10], [12], [14]–[18]. The
correlation values rs and rp of our methods (base or cu-
mulative models), as well as those of the existing methods,
are presented in Table IV. We mention that the correlations
in the ”All Meshes” columns were calculated between the
objective scores of all objects and their corresponding MOS.
Our proposed methods demonstrate high correlation scores.
Both our patch-based (DCFQI-PBM) and view-based (DCFQI-
VBM) Base Model methods outperform CNNs-CMP [12] for
the Armadillo, Venus, and RockerArm models. Moreover,
they exhibit competitive correlations on the entire database,
with correlation values of rs = 92.4% and rp = 92.1%.
CNNs-CMP [12] uses a complex approach which relies
the combination of features from three pre-trained models
(VGG/AlexNet/ResNet) combined with saliency patch-based
selection. Our approach shows that using larger patches (or



Armadillo Dyno Venus RockerArm All Meshes
Type of method Metrics rs rp rs rp rs rp rs rp rs rp

Features based

BMQI [14] 20.1 - 83.5 - 88.9 - 92.7 - 78.1 -
BMQA-GSES [15] 98.7 80 99.2 80.4 98.8 80.1 99.5 99.9 90.5 87.9

NR-GRNN [16] 87.1 97.3 91.2 94.1 86.3 85 78.6 74.8 86.2 88.7
MVQ-GCN [17] 91.8 92.5 87.7 84.5 93.7 91.9 89.6 88.4 89.3 88.6
NR-CNN 1 [8] 87.2 84.3 86.4 86.2 92.2 85.6 91.3 85.2 83.6 82.7
NR-SVR [18] 76.8 91.5 78.6 84.1 85.7 88.6 86.2 86.6 81.5 8 7.8

View based DCFQI-VBM 96.3 98.2 78.9 89 98.4 99.5 96.2 95.7 90.4 89.9
DCFQI-VCM 99.2 99.8 99.5 99,8 99.7 99.8 98.6 99.2 96.5 96.6

Patch based

CNN-BMQA [9] 89.8 91.4 91.6 92.2 94.6 93.8 91.9 93.9 90 92
NR-CNN 2 [10] 93.4 95.6 86.2 84.3 94.1 90.3 80.4 82.2 81.7 82.5
CNNs-CMP [12] 95.8 95.6 93.6 92.9 93.4 91.3 94.5 95.2 92.6 91.3

DCFQI-PBM 98.9 98 81.4 98.1 99.5 99.7 98.1 97 92.4 92.1
DCFQI-PCM 99.7 99.9 99.8 99.8 99.9 99.9 99.1 99.6 99.1 99.4

TABLE IV
COMPARISON OF OUR PROPOSED DCFQI VIEW/PATCH BASED BASE AND CUMULATIVE MODELS (DCFQI-VBM & DCFQI-VCM / DCFQI-PBM &

DCFQI-PCM RESPECTIVELY) WITH THE STATE OF THE ART NO-REFERENCE METRICS.

even views) with a careful optimization can be as effective. Fi-
nally, both our proposed patch-based (DCFQI-PCM) and view-
based (DCFQI-VCM) Cumulative Models surpass the state-of-
the-art techniques for all meshes, except for the RockerArm
model, where we slightly fall short behind BMQA-GSES [16]
method. Nevertheless, the overall performance of our methods
is superior to the latter.

IV. CONCLUSION

In this paper, we presented a no-reference mesh quality
assessment approach. It renders the mesh in 2D views that can
be subsequently divided in patches. From these images, deep
features are extracted by the pre-trained VGG16 CNN and fed
into a MLP that performs quality prediction. This base model
is competitive with the state-of-the-art, even at the view level.
Finally a cumulative training has been proposed to obtain a
single final model for prediction that goes beyond the state-of-
the-art. Future works will consider combining both view and
patch predictions.
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