
Finding Hamiltonian cycles with graph neural
networks

Filip Bosnić
Faculty of Electrical Engineering and Computing

University of Zagreb
Zagreb, Croatia

ORCID 0000-0003-4888-5912

Mile Šikić
Laboratory of AI in Genomics

Genome Institute of Singapore, A*STAR
Singapore

ORCID 0000-0002-8370-0891

Abstract—We train a small message-passing graph neural
network to predict Hamiltonian cycles on Erdős-Rényi random
graphs in a critical regime. It outperforms existing hand-crafted
heuristics after about 2.5 hours of training on a single GPU.
Our findings encourage an alternative approach to solving com-
putationally demanding (NP-hard) problems arising in practice.
Instead of devising a heuristic by hand, one can train it end-
to-end using a neural network. This has several advantages.
Firstly, it is relatively quick and requires little problem-specific
knowledge. Secondly, the network can adjust to the distribution
of training samples, improving the performance on the most
relevant problem instances. The model is trained using supervised
learning on artificially created problem instances; this training
procedure does not use an existing solver to produce the super-
vised signal. Finally, the model generalizes well to larger graph
sizes and retains reasonable performance even on graphs eight
times the original size.

Index Terms—Machine learning, Neural nets, Graph algo-
rithms, Heuristics design

I. INTRODUCTION

When dealing with problems that are computationally too
costly to solve explicitly, such as NP-hard problems, it is
common to rely on heuristics. The idea of using neural
networks to train such heuristics is quite appealing and has
attracted considerable interest over the years. One aims to
enhance an algorithm, such as greedy search, with a neural
network module that is trained to improve the decision-making
of the algorithm. See [4], [8] or [29] for an introduction and an
overview of the area. In practice, problem instances typically
come from a distribution with specific biases which are hard
to describe explicitly. These can be exploited by a neural
network. As an illustration, let us consider the Hamiltonian
cycle problem (HCP), which is at the core of this paper (nodes
in the cycle can not repeat). It asks the following:

Problem 1 (HCP). Determine whether or not there exists a
cycle that passes through all vertices of a given graph. If it
exists, such a cycle is called a Hamiltonian cycle, and the
graph is said to be Hamiltonian.

The general HCP is known to be NP-complete and thus
computationally intractable. Currently, the fastest known exact

This work has been supported in part by the Croatian Science Foundation
under the project Single genome and metagenome assembly (IP-2018-01-
5886) and the Genome Institute of Singapore, A*STAR core funding

solution algorithm is due to [5] and has worst-case complexity
of O(1.657n).

As far as applications are concerned, HCP is used to
improve runtimes of rendering engines, see [2]. To do so,
one solves the HCP for a dual graph of triangulation and
renders the triangles in that order which reduces the number
of points to process. Another application of HCP comes from
genomics, more specifically, the problem of de novo genome
assembly. The task here is to reconstruct the genetic material
of an organism, i.e. the exact sequence of nucleobases on all of
its chromosomes, from a large number of sequenced fragments
called reads. As chromosomes contain hundreds of millions
bases, correctly assembling a single one is already a huge
undertaking, see [19] for an example. Interpreting overlaps
between reads as edges, after preprocessing and cleaning (see
[32]), one ends up with a string graph as proposed in [20].
The Hamiltonian cycle in the string graph corresponds to the
correct assembly of the chromosome. For more details see
[22], [3], [28] and [14]. Both triangular meshes of 3d objects
and string graphs of various assemblers (such as [3] or [28])
have specific structures and statistical properties arsing from
the context. These could make solving the HCP easier but are
difficult to exploit directly. We show here how to exploit them
using graph neural networks in a similarly specific setting of
Erdős-Rényi random graphs.

For HCP in general, heuristics based on Hopfield networks
were already trained in the early 90-ties, see [17], [18].
More recently, however, the area of geometric deep learning
and graph neural networks has seen rapid developments and
produced neural network layers such as message passing [9] or
graph attention layers [30]. These layers are built to exploit any
graph structure in data and can handle arbitrarily large graphs
with a limited set of parameters, resembling convolution layers
in computer vision. They have found applications in image and
text processing, combinatorial optimization, physics, chem-
istry [9] and biology [22]. See [35] and [7] for a deeper
dive into the area. In particular, they are excellent candidates
for heuristics of graph-based problem. However, most efforts
so far have been directed towards combinatorial optimization
problems, the two-dimensional traveling salesman problem in
particular. Heuristics for the 2d-TSP based on transformer
architecture were trained in [16], [6] and those based on graph

ar
X

iv
:2

30
6.

06
52

3v
1 

 [
cs

.L
G

] 
 1

0 
Ju

n 
20

23



neural networks in [34] and [12]. The state-of-the-art result is
achieved in [6] where a comprehensive list of references can
be found as well. It has to be noted that previously mentioned
models still perform worse than the Concorde TSP solver
[1], a state-of-the-art exact solver based on branch and bound
search combined with the cutting plane method. Nevertheless,
theoretical complexities of neural network models are superior
to Concorde. Let us also mention [13], [26] and [27] which
work with general combinatorial optimization and constraint
satisfaction problems.

In this paper we present a HCP solver based on graph neural
networks and show that it easily outperforms most hand-made
heuristics. The code is available at https://github.com/lbcb-
sci/GNNs-Hamiltonian-cycles.

II. RELATION TO TSP AND 2D-TSP

It is known that the HCP can be reformulated as a special
case of the general traveling salesman problem (TSP):

Problem 2 (TSP). Given a graph with a non negative length
assigned to each edge, find the shortest cycle passing through
all its vertices.

Hence, TSP solvers can be used for HCP and we shall exploit
this by using Concorde TSP solver, see [1], to evaluate the
performance of our models in Section V. While it is tempting
to assume that all papers studying TSP are immediately appli-
cable to the HCP, this is not the case at all. In particular, papers
presenting neural network TSP solvers, such as [6], [12], [16]
or [34] only study the special case of two-dimensional TSP:

Problem 3 (2d-TSP). Given a set of points in the unit square
[0, 1]2, find the shortest (in terms of Euclidean distance) cycle
which passes through all of them.

The 2d-TSP introduces two simplifications to the general TSP:
• graphs are always fully connected and
• distances between nodes comply with Euclidean structure

(triangle inequality).
Only 2n point coordinates are required to describe a 2d-TSP
instance, in contrast to n2−n adjacency matrix weights needed
for the general TSP. Moreover, 2d-TSP solvers can not be used
to solve the HCP. On the contrary, we find it better to view
the HCP and the 2d-TSP as two quite different aspects of the
general TSP. The HCP focuses on complexities arising from
discrete connectivity structure while the 2d-TSP deals with
difficulties coming from the choice of edge lengths.

III. PROBLEM SETUP

We only consider simple, undirected graphs and denote a
typical graph example by G and its size (number of nodes)
by n. The HCP is classically posed as a decision problem:
Determine whether the graph contains a Hamiltonian cycle
or not. However, to put more emphasis on finding the actual
cycle, which is important in practice, we also require that
solvers produce at least one Hamiltonian cycle. In case the
output of a solver is not a valid Hamiltonian cycle, which is

straightforward to check, we assume the solver predicted that
no Hamiltonian cycle exists.

A. Inputs and outputs

A solver receives as input a graph G and outputs a walk
v1v2 . . . vk on G proposing a Hamiltonian cycle. The walk is
considered to be closed if v1 = vk and thus is a Hamiltonian
cycle only if k = n + 1 and nodes v1, v2, . . . vk−1 are all
distinct.

B. Evaluation distribution

The performance of HCP heuristics depends heavily on
properties of graphs they are required to solve. Indeed, it
is reasonable to have heuristics constructed specifically to
achieve good performance on particular types of graphs,
such as duals of triangulations or string graphs mentioned in
Section I. As there are many possible applications of the HCP,
finding a good class of evaluation graphs is a challenging
task. Currently at least, there seems to be no agreed-upon
class for this purpose. There are datasets of collected HCP
problems, see, for example, [23] or [10], but they are not quite
large enough to train neural networks on. A natural approach,
used in early works such as [17], [18], [33] is to use random
graphs generated by adding edges between pairs of vertices
independently with a fixed probability p ∈ (0, 1). Such random
graphs are known as Erdős-Rényi random graphs with edge
probability p. Papers working with 2d-TSP typically use a
similar idea of evaluation on randomly generated problems,
concretely the random uniform euclidean (RUE) sets of two-
dimensional points chosen uniformly at random from the unit
square [0, 1]2.

However, using Erdős-Rényi graphs with constant edge
probability parameter p for evaluating the HCP has a major
flaw. Intuitively it is clear that the HCP gets more difficult
as the size of the graph increases. This is not the case for
Erdős-Rényi graphs with constant p as indicated by Table I. It
tracks performances of Concorde TSP solver and HybridHam
heuristic from [25]. The performance of either solver clearly
improves as the graph size increases, suggesting that the
problem is in fact getting easier. The issue is that large graphs
end up having too many edges, leading to many Hamiltonian
cycles thus making it easier to find one.

TABLE I – Fraction of solved instances out of 5000 in
supercritical regime, p = 0.25

graph size

Name 25 50 100 150 200

Concorde 0.80 1.0 1.0 1.0 1.0
HybridHam 0.41 0.68 0.79 0.84 0.87

This can be mended by carefully decreasing parameter p as the
size of the graph increases. We rely on the following theorem
from [15].

Theorem 1 (Paraphrase of [15], Theorem 1.). Let ER(n, p)
denote the Erdős-Rényi graph on n nodes with edge proba-

https://github.com/lbcb-sci/GNNs-Hamiltonian-cycles
https://github.com/lbcb-sci/GNNs-Hamiltonian-cycles


bility parameter p. For every pH ∈ (0, 1) there is an explicit
sequence (pn)n∈N such that

P (ER(n, pn) is Hamiltonian) n→∞−−−−→ pH .

Concretely, one can take pn =
lnn+ln lnn−ln ln p−1

H

n−1 .

In other words, for any pH there is a procedure of generat-
ing graphs such that they contain a Hamiltonian cycle with
a probability approximately equal to pH . We call this the
critical regime for the HCP. If the asymptotic behavior of
pn is above the one from the previous theorem, we speak
of the supercritical regime. Examining the performance of
Concorde solver in Table II shows that the empirical fraction
of Hamiltonian cycles remains relatively stable and is fairly
close to the asymptotic value of pH = 0.8. By controlling the
existence probability of Hamiltonian cycles we control their
expected number in a graph and hence also the difficulty of the
HCP. This motivates our use of Erdős-Rényi random graphs in
the critical regime as the evaluation class. For simplicity, we
use pH = 0.8 for the rest of the paper although other values of
pH would work equally well. Two examples of random graphs
in the critical regime are shown Fig. III.1.

(a) (b)

(c) (d)

Fig. III.1 – Examples of random graphs in the critical HCP
regime. 25 nodes in top and 50 nodes in bottom
row. Graphs in each row are identical. Right
column graph is ordered in circle following a
Concorde TSP solution, with the HP predicted
by our basic model shown in solid red.

C. Datasets

We work exclusively with generated datasets. Our test
dataset is sampled from the evaluation distribution described in

the previous section and consists of 5000 Erdős-Rényi graphs
in critical regime with pH = 0.8 for each size n = 25,
50, 100, 150 and 200. This sample size is large enough so
that the fraction of Hamiltonian graphs stays within ±2%
interval with 95% probability for every size n. Train and
validation datasets are generated from a different distribution
described in Section IV-B. They are never explicitly sampled.
Instead, graph examples are generated on the fly when needed.
The train dataset is limited to graphs of size 25 in order to
emphasize generalization properties of the model.

IV. MODEL DETAILS

Our model is autoregressive and decodes the Hamiltonian
cycle a single node at a time. It begins by selecting a starting
node and then chooses between neighbors in each following
step. The chosen node is then appended to the partial solution
and the process repeats until a node gets visited twice. There
are two main components, a neural network component that
guides the neighbor selection at each step and a search algo-
rithm which combines selected nodes into a Hamiltonian cycle.
Concretely, given a partial solution walk v1v2 . . . vk at k+1-th
step of autoregressive decoding, the neural network component
estimates with P(v|v1 . . . vk) the probability that extending the
walk by node v will eventually lead to a Hamiltonian cycle
(HC):

P(v|v1 . . . vk) ≈ P
(
v1 . . . vkv ⊆ HC

∣∣v1 . . . vk ⊆ HC
)
.

The search algorithm then selects the neighbor v greedily
according to estimated probabilities. It stops decoding when
a node gets visited twice, i.e. v ∈ {v1, . . . vk}, and returns
v1v2 . . . vkv as the solution. The greedy approach is the
simplest case of beam search algorithm with beam width
β = 1. For beam width β > 1, at each step k the algorithm
keeps track of the top β partial walks according to score

S(v1v2 . . . vk) :=
k∏

j=1

P(vj |v1 . . . vj−1)

≈ P(v1v2 . . . vk is contained in a HC)

and extends them over all possible neighbors. A new set of
top β partial solutions is then selected and the process repeats.
Clearly, larger beam width β compensates for the performance
of neural network at the cost of additional computations.
While we report the performance of various beam widths in
Table II, our basic model employs the simplest possible search
algorithm (β = 1) in order to emphasize the neural network
part.

Our neural network uses persistent node features h in the
same way as in [31]. These features are passed on between
applications of the neural network, adding a sort of recurrent
structure to the network. This provides a way for the network
to access information from previous decoding steps.

A. GNN architecture

Since graph neural networks (GNN) form the central com-
ponent of our model, HCP information needs to be represented



in the suitable form. We represent the adjacency matrix of the
graph as a list of edges and one hot-encode the following
three node-level feature channels. Two channels to mark the
start and the end node of the partial solution plus a channel to
mark all nodes the solution contains. Note that this is precisely
the information needed to correctly extend the walk by an
unvisited node or close the HC if necessary.

We employ the encode-process-decode architecture ana-
logue to the one used in [31]. This means that our GNN is
divided into the encoder, processor and decoder networks. The
whole GNN has around 22 thousand parameters. Both encoder
and decoder are single layer, fully connected networks with
ReLU activation that operate on node features individually
for each node. The processor network, containing about 95%
of all parameters, is the core part. It is a residual stack of
5 max-aggregation message passing layers, see [9] for more
details. As names suggest, an input example is encoded,
then processed and finally decoded by applying the above
networks successively. In addition, we augment the output
of the encoder with a randomized vector of features which
was shown to improve the performance of GNNs in [24].
Algorithm 1 presents the pseudocode of a single forward pass.
A ”free” index i ∈ G in a line indicates that this line should
be repeated for each node; symbol

⊕
denotes concatenation

in feature dimension; operator maxj∼i stands for maximum
over neighbors of i.

Algorithm 1: ApplyGNN(G,x,h; θ).
Input: G - graph with n vertices;

x ∈ R(n,din) - partial walk repr.;
h ∈ R(n,dh) - persistent features

Output: p ∈ [0, 1]n - next-step probabilities per node.
Hyperparams: din = 3, dh = 32, dr = 4, np = 5
Params: θ ≡ {WE , bE ,WP , bP , . . .} - NN weights

1 // Encoder - Initialize features
2 zi = WE(xi

⊕
hi) + bE ∈ Rdh−dr

3 r = Uniform
(
[0, 1]n×dr

)
∈ R(n,dr)

4 hi = zi
⊕

ri ∈ Rdh

5 // Processor - Apply residual max-MPNN layers
6 for k = 1, 2, . . . np do
7 mi = maxj∼i ReLU

(
W k

M (hi

⊕
hj

)
+ bM ) ∈ Rdh

8 hi = hi +ReLU
(
W

(k)
P (hi

⊕
mi) + b

(k)
P

)
∈ Rdh

9 // Decoder - Extract logits and probabilities
10 li = WD(zi

⊕
hi) + bD ∈ R

11 for i = 1, 2, . . . , n do
12 if i ∼ GetLastNode(x) then
13 li = −∞
14 p = softmax l ∈ Rn

15 return p, h

B. Training

Our supervised approach requires a large number of solved
HCP instances during training. Even though they can easily
be generated using existing HCP solvers, we will show it is

possible to train on artificially generated graphs such that HCP
solution is known in advance. We believe that such methods
are useful when working with problems similar to HCP for
which no exact solvers are available. The construction of
a training example starts from a graph G of arbitrary size
but with no edges. A random permutation of nodes is then
connected into a single cycle by adding appropriate edges
into G. This will be a Hamiltonian cycle in the final graph
and is stored as a supervision signal. Finally, for every pair
of vertices in G we add and edge connecting them with
probability pedge = 0.125 (independently of other pairs). pedge
is treated as a training hyperparameter and was determined
through experimentation. While the distribution of training
samples generated in this way is quite different from the
evaluation distribution which consists of ER graphs, the results
show that the basic model still generalizes well. Note also that
the final graph may have Hamiltonian cycles other than the
original one. All such cycles are ignored during training.

The training procedure is summarized in Algorithm 2. A
single training example consists of a graph G and a Hamilto-
nian cycle v1v2 . . . vnv1 on G. The network is trained using
teacher forcing along this Hamiltonian cycle on the conditional
cross-entropy loss L defined by

L (v1 . . . vnv1) = −
n+1∑
i=2

ln (P(vi|v1 . . . vi−1)) ,

where vn+1 := v1 for notational convenience. Remark that the
summation index starts from 2 because the choice of the first
node in a cycle is completely arbitrary. Loss L is minimized
over minibatches of 8 training examples using Adam optimizer
with a learning rate of 10−4 for 2000 epochs of 100 gradient
updates. The final model checkpoint was selected based on
the fraction of solved instances on validation set generated
in the same way as the training set. The whole training was
performed on a single NVIDIA GeForce RTX 3080 GPU and
took about 2.5 hours. Weight initialization and other optimizer
hyperparameters are kept to default PyTorch 1.11.0 values,
[21].

V. RESULTS AND DISCUSSION

We evaluate the performance of our models by measuring
the fraction of successfully solved problems on test dataset
described in Section III and compared it with following
heuristics:

(i) Concorde TSP solver - the state-of-the-art exact TSP
solver from [1],

(ii) HybridHam - an HCP heuristic from [25],
(iii) Ant-inspired heuristic - an HCP heuristic presented in

[33],
(iv) Least degree first heuristic - simple greedy heuristic

always selecting the neighbor with the lowest degree.
Let us remark that the ant-inspired heuristic is a convergence
procedure which we terminate after 5n2 lnn steps. This bound
matches the theoretical complexity of the basic model leading
to a relatively fair comparison. In [33], authors suggest to



Algorithm 2: Training.
Input: No input
Output: θfinal - trained parameters for the model.
Params: n = 25 - training size;

pedge = 0.125 - generation edge probability;
maxStep = 20 000 - nr. of gradient updates

1 θ = RandomInitialization()
2 for step = 1, 2, . . .maxStep do
3 G, c = GenerateTrainExample(n, pedge)
4 h = GetInitialH(θ)
5 loss = 0
6 for i = 1, . . . , n+ 1 do
7 x = EncodeWalk(c[: i])
8 p,h = ApplyGNN(G,x,h; θ)
9 if i ̸= 1 then

10 loss += − lnp[c[i]]
11 θ = GradientUpdate(∇θloss)
12 return θ

terminate after O(n3) iterations but this is very time con-
suming. We list evaluation results in Table II and average
inference times in Table III. Keeping in mind that testing can
be performed on a different sample of 5000 graphs, the 95%
confidence interval for all values in Table II is below ±0.02.
Models were run on a single NVIDIA GeForce RTX 3080
GPU while all other solvers were run on a single core of
Intel Core i7-12700 processor. Note also that HybridHam, least
degree first and ant-inspired heuristic were reimplemented in
Python 3.8 and could be optimized for better performance.

Our HCP setup makes it impossible for a solver to produce
a false positive prediction. Consequently, all solvers have
perfect precision and metrics such as F1, F2 are unnecessarily
complicated. As the number of true positives (solvable HCPs)
is stable by construction of the evaluation set (0.8 in the limit),
accuracy, recall and fraction of solved instances have similar
qualitative behavior. Thus we only report the fraction of solved
instances for each model.

TABLE II – Fraction of solved instance out of 5000

graph size

Name 25 50 100 150 200

Concorde 0.77 0.74 0.72 0.71 0.71
HybridHam 0.39 0.52 0.35 0.23 0.15
Least deg. 0.33 0.07 0.00 0.00 0.00
Ant-inspired 0.73 0.09 0.00 0.00 0.00
Basic model 0.75 0.69 0.62 0.55 0.48
Beam β = 2 0.77 0.73 0.71 0.69 0.68
Beam β = 3 0.77 0.73 0.72 0.70 0.70
Beam β = 5 0.77 0.74 0.72 0.70 0.71

In conclusion, after only a few hours of training our basic
model clearly outperformed existing heuristic solvers without
using any pre-solved HCP. We believe that techniques similar
to the ones presented here can be used to quickly develop
heuristic for variations or generalizations of the HCP. For

TABLE III – Average inference time (ms) on 5000 instance

graph size

Name 25 50 100 150 200

Concorde 27.4 29.2 35.0 44.3 56.3
HybridHam 1.1 2.5 6.0 10.2 15.3
Least deg. 0.6 1.3 2.9 4.8 6.6
Ant-inspired 9.9 56.0 289 755 1460
Basic model 29.4 61.3 130 209 293
Beam β = 2 58.5 151 448 933 1514
Beam β = 3 87.8 227 673 1410 2284
Beam β = 5 146 379 1129 2376 3845

example, the task of finding the longest cycle in a graph.
Or the task of finding the route of minimal length which
covers all the nodes in the graph (some of them maybe more
than once). The class of Erdős-Rényi random graphs is used
for simplicity and evaluation convenience since it allows for
rough estimate of the difficulty of the HCP with respect to
its size. Another class of graphs can be used just as well,
provided that it is specific enough so that the neural network
can exploit its statistical or structural peculiarities. But this
typical happens with graph instances coming from practical
problems. Moreover, polynomial complexity of O(n2 log n)
for our basic model is superior to exponential complexity
of exact solvers. For example, Concorde TSP solver on the
RUE 2d-TSP instances was experimentally found to have
complexity of O(1.24

√
n) in [11], although it is not clear how

this translates to the critical regime HCP. Nevertheless, neural
network solvers are yet to achieve reasonable performance
on large input graphs and Concorde TSP solver remains the
best-performing HCP solver. This comes as no surprise since
Concorde also outperforms all existing neural network solvers
for the 2d-TSP problem.

VI. ABLATION STUDY & TRAINING STABILITY

The neural network component from Section IV is enhanced
with persistent features and vectors of randomized features
but can function without either of them. To estimate their
importance, we separately removed each one and trained the
corresponding reduced model 5 times from scratch. Average
performances and confidence intervals of 2 standard deviation
are shown in Fig. VI.1.
As shown on Fig. VI.1, persistent features play a crucial role in
our model. Without them the model can fail to converge during
training. This is probably because persistent features allow the
model to updated its internal node representations throughout
decoding process which results in an RNN-like behavior and
consequently increases the range of message passing neural
network layers. The use of randomized features is not as
significant but becomes noticeable when generalizing to large
graphs. Note also that Fig. VI.1 shows the standard deviation
of training procedure for the main model to be around 5% of
graphs solved.

REFERENCES

[1] D. Applegate. Concorde - a code for solving traveling salesman
problems. http://www.math.princeton.edu/tsp/concorde.html, 2001.



25 50 100 150 200
Graph size (number of nodes)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n 

of
 g

ra
ph

s s
ol

ve
d 

(H
C 

fo
un

d)

Ablation study
Main model
No persistent features
No random features

Fig. VI.1 – Average performance of models retrained 5
times. Shaded regions indicate intervals of 2
standard deviations

[2] Esther M Arkin, Martin Held, Joseph SB Mitchell, and Steven S Skiena.
Hamiltonian triangulations for fast rendering. The Visual Computer,
12(9):429–444, 1996.

[3] Monya Baker. De novo genome assembly: what every biologist should
know. Nature methods, 9(4):333–337, 2012.

[4] Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning
for combinatorial optimization: a methodological tour d’horizon. Euro-
pean Journal of Operational Research, 290(2):405–421, 2021.

[5] Andreas Bjorklund. Determinant sums for undirected hamiltonicity.
SIAM Journal on Computing, 43(1):280–299, 2014.

[6] Xavier Bresson and Thomas Laurent. The transformer network for the
traveling salesman problem, 2021.

[7] Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and
Pierre Vandergheynst. Geometric deep learning: Going beyond euclidean
data. IEEE Signal Processing Magazine, 34(4):18–42, 2017.

[8] Quentin Cappart, Didier Chételat, Elias Khalil, Andrea Lodi, Christopher
Morris, and Petar Veličković. Combinatorial optimization and reasoning
with graph neural networks. arXiv preprint arXiv:2102.09544, 2021.

[9] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals,
and George E. Dahl. Neural message passing for quantum chemistry.
In Doina Precup and Yee Whye Teh, editors, Proceedings of the
34th International Conference on Machine Learning, volume 70 of
Proceedings of Machine Learning Research, pages 1263–1272. PMLR,
06–11 Aug 2017.

[10] Michael Haythorpe. Fhcp challenge set: The first set of structurally
difficult instances of the hamiltonian cycle problem. arXiv preprint
arXiv:1902.10352, 2019.

[11] Holger H Hoos and Thomas Stützle. On the empirical scaling of run-
time for finding optimal solutions to the travelling salesman problem.
European Journal of Operational Research, 238(1):87–94, 2014.

[12] Chaitanya K. Joshi, Thomas Laurent, and Xavier Bresson. An efficient
graph convolutional network technique for the travelling salesman
problem, 2019.

[13] Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song.
Learning combinatorial optimization algorithms over graphs. Advances
in neural information processing systems, 30, 2017.

[14] Mikhail Kolmogorov, Derek M. Bickhart, Bahar Behsaz, Alexey Gure-
vich, Mikhail Rayko, Sung Bong Shin, Kristen Kuhn, Jeffrey Yuan,
Evgeny Polevikov, Timothy P. L. Smith, and Pavel A. Pevzner. metaflye:
scalable long-read metagenome assembly using repeat graphs. Nature
Methods, 17(11):1103–1110, Nov 2020.

[15] János Komlós and Endre Szemerédi. Limit distribution for the existence
of Hamiltonian cycles in a random graph. Discrete Math., 43(1):55–63,
1983.

[16] Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to
solve routing problems!, 2019.

[17] S Mehta and Laszlo Fulop. A neural algorithm to solve the hamiltonian

cycle problem. In 1990 IJCNN International Joint Conference on Neural
Networks, pages 843–849. IEEE, 1990.

[18] Shashank Mehta and Laszlo Fulop. An analog neural network to solve
the hamiltonian cycle problem. Neural Networks, 6(6):869–881, 1993.

[19] Karen H Miga, Sergey Koren, Arang Rhie, Mitchell R Vollger, Ariel
Gershman, Andrey Bzikadze, Shelise Brooks, Edmund Howe, David
Porubsky, Glennis A Logsdon, et al. Telomere-to-telomere assembly of
a complete human x chromosome. Nature, 585(7823):79–84, 2020.

[20] Eugene W Myers. The fragment assembly string graph. Bioinformatics,
21(suppl 2):ii79–ii85, 2005.

[21] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward
Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga,
and Adam Lerer. Automatic differentiation in pytorch. 2017.

[22] Mihai Pop. Genome assembly reborn: recent computational challenges.
Briefings in Bioinformatics, 10(4):354–366, 05 2009.

[23] G Reinhelt. {TSPLIB}: a library of sample instances for the tsp (and
related problems) from various sources and of various types. URL:
http://comopt. ifi. uniheidelberg. de/software/TSPLIB95, 2014.

[24] Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Random features
strengthen graph neural networks. In Proceedings of the 2021 SIAM
International Conference on Data Mining (SDM), pages 333–341.
SIAM, 2021.

[25] KR Seeja. Hybridham: A novel hybrid heuristic for finding hamiltonian
cycle. Journal of Optimization, 2018, 2018.

[26] Jan Toenshoff, Martin Ritzert, Hinrikus Wolf, and Martin Grohe. Graph
neural networks for maximum constraint satisfaction. Frontiers in
artificial intelligence, 3:580607, 2021.

[27] Jan Tönshoff, Berke Kisin, Jakob Lindner, and Martin Grohe. One
model, any csp: Graph neural networks as fast global search heuristics
for constraint satisfaction. arXiv preprint arXiv:2208.10227, 2022.

[28] Robert Vaser and Mile Šikić. Time- and memory-efficient genome
assembly with raven. Nature Computational Science, 1(5):332–336, May
2021.

[29] Petar Veličković and Charles Blundell. Neural algorithmic reasoning.
Patterns, 2(7):100273, 2021.

[30] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Liò, and Yoshua Bengio. Graph attention networks, 2018.

[31] Petar Veličković, Rex Ying, Matilde Padovano, Raia Hadsell, and
Charles Blundell. Neural execution of graph algorithms. In International
Conference on Learning Representations, 2020.

[32] Lovro Vrček, Petar Veličković, and Mile Sikic. A step towards neural
genome assembly. In Learning Meets Combinatorial Algorithms at
NeurIPS2020, 2020.

[33] Israel A Wagner and Alfred M Bruckstein. Hamiltonian (t)-an ant-
inspired heuristic for recognizing hamiltonian graphs. In Proceedings
of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No.
99TH8406), volume 2, pages 1465–1469. IEEE, 1999.

[34] Zhihao Xing and Shikui Tu. A graph neural network assisted monte
carlo tree search approach to traveling salesman problem. IEEE Access,
8:108418–108428, 2020.

[35] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang,
Zhiyuan Liu, Lifeng Wang, Changcheng Li, and Maosong Sun. Graph
neural networks: A review of methods and applications. AI Open, 1:57–
81, 2020.


	Introduction
	Relation to TSP and 2d-TSP
	Problem setup
	Inputs and outputs
	Evaluation distribution
	Datasets

	Model details
	GNN architecture
	Training

	Results and discussion
	Ablation study & training stability
	References

