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Abstract—Deep Neural Networks (DNNs) deployed to the real
world are regularly subject to out-of-distribution (OoD) data,
various types of noise, and shifting conceptual objectives. This
paper proposes a framework for adapting to data distribution
drift modeled by benchmark Continual Learning datasets. We
develop and evaluate a method of Continual Learning that
leverages uncertainty quantification from Bayesian Inference
to mitigate catastrophic forgetting. We expand on previous
approaches by removing the need for Monte Carlo sampling
of the model weights to sample the predictive distribution.
We optimize a closed-form Evidence Lower Bound (ELBO)
objective approximating the predictive distribution by prop-
agating the first two moments of a distribution, i.e. mean and
covariance, through all network layers. Catastrophic forgetting
is mitigated by using the closed-form ELBO to approximate
the Minimum Description Length (MDL) Principle, inherently
penalizing changes in the model likelihood by minimizing the
KL Divergence between the variational posterior for the current
task and the previous task’s variational posterior acting as the
prior. Leveraging the approximation of the MDL principle, we
aim to initially learn a sparse variational posterior and then
minimize additional model complexity learned for subsequent
tasks. Our approach is evaluated for the task incremental
learning scenario using density propagated versions of fully-
connected and convolutional neural networks across multiple
sequential benchmark datasets with varying task sequence
lengths. Ultimately, this procedure produces a minimally com-
plex network over a series of tasks mitigating catastrophic
forgetting.

Index Terms—Continual Learning, Bayesian Deep Learning,
Deep Variational Inference, Minimum Description Length Prin-
ciple, Density Propagation

I. INTRODUCTION

A commonly held assumption in deep learning is a net-

work’s training and test data distributions are static and ac-

curately represent its deployed environment. However, Deep

Neural Networks (DNNs) deployed in real-world environ-

ments are regularly subject to out-of-distribution (OoD) data,

various types of noise, and shifting conceptual objectives [1].

Input patterns not generalized by the network after training

may inadvertently trigger features in the network leading to

incorrect results with high confidence during deployment.

This work was supported by the National Science Foundation Awards NSF
ECCS-1903466 and NSF OAC- 2234836. We are also grateful to UK EPSRC
support through EP/T013265/1 project NSF-EPSRC: ShiRAS. Towards Safe
and Reliable Autonomy in Sensor Driven Systems.

While adapting to data drift can be achieved by retraining a

DNN on an entire dataset comprised of the original samples

and new drifted samples, there are situations where this may

be infeasible or unreasonable due to time, cost, computing,

or retained data constraints. Additionally, simply training

on the new information from the data drift will result in

a phenomenon called catastrophic forgetting, causing rep-

resentations of newly trained information to interfere with

or overwrite previous representations, resulting in a drop in

performance on previously trained samples [2], [3].

Reasonable stand-alone performance in real-world envi-

ronments requires DNNs to indicate OoD data samples and

adapt to these anonymous samples without sacrificing perfor-

mance on previously trained information. To achieve these

requirements, the sequential nature of Bayesian inference

naturally lends itself as a mathematical framework to quantify

uncertainty and continually adapt to new data without for-

getting previous information [4]. Variational methods using

the Evidence Lower Bound (ELBO) to approximate the true

parameter posterior in Bayesian inference are asymptotically

equivalent to the Minimum Description Length principle

as the sample size grows to infinity [5]. Both approaches

regularize optimization by penalizing model complexity,

preventing the overfitting of training data. We propose to

leverage this concept for Continual Learning (CL) to mitigate

catastrophic forgetting by minimizing changes to the network

parameters over subsequent tasks.

While many deep learning variational approximations of

Bayesian Inference exist, such as Bayes-by-Backprop (BBB)

[6], Monte-Carlo Dropout (MCDrop) [7], and have been

applied to Continual Learning [8], most rely on Monte Carlo

sampling during training and testing to estimate predictive

uncertainty. Uncertainty learned by these methods is only

based on a few samples of the variational posterior requiring

the reparameterization trick [6], [9] using ”noise variables”

to decouple the network parameters from the variational

distribution for dealing with non-differentiable and/or com-

plex models. A major limitation of these approaches is the

significant time and computational cost imposed by sampling

the variational posterior, where more samples must be drawn

to better estimate the uncertainty about a prediction.

Instead, we propose using the general, model-agnostic
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framework, Variational Density Propagation (VDP) demon-

strated in our previous works [10], [11], to quantify the

predictive uncertainty and aid in the mitigation of catas-

trophic forgetting via model complexity regularization. This

process removes the need for Monte Carlo sampling of the

variational posterior by propagating the first two moments of

the variational distribution, i.e. mean and covariance, using a

first-order Taylor series approximation. To enhance variance

expression in the Variational Density Propagation framework,

we impose independence across all network parameters re-

sulting in each random variable parameter having a unique

mean and variance. We approximate the propagation of the

covariance matrix through each layer as a vectorized diagonal

of the full covariance matrix representing the variance of each

propagated feature to aid computational efficiency.

By modeling changes in each parameter’s variational

posteriors as a change in model complexity, changes in

parameters can be penalized via the approximation of the

Minimum Description Length Principle. This approximation

is achieved by minimizing the Kullback-Leibler (KL) diver-

gence between the variational posterior and the network prior

inherent to the Evidence Lower Bound objective of Varia-

tional Inference. While learning additional information and

overwriting already trained representations may not strictly

increase model complexity, setting the network prior to the

variational posterior from the previously learned task will

construe any change to the previous variational posterior as

increased model complexity. In this manner, an additional

task or a data drift’s representation can be learned with min-

imal changes to the variational posterior from the previous

task, preserving representations and mitigating catastrophic

forgetting.

To demonstrate this approach, our contributions are as

follows:

• We develop a fully factorized version of the Variational

Density Propagation framework, which uses Taylor-

series approximation to propagate the first two moments

of the variational distribution, with an approximation of

the propagated covariance matrix for reduced computa-

tional requirements.

• We convert the approximation of Monte Carlo sampling

to the propagation of variational moments to approxi-

mate the Minimum Description Length Principle.

• We apply our framework to the problem of task incre-

mental learning by imposing a model complexity cost

over a series of tasks.

• We demonstrate catastrophic forgetting mitigation over

task incremental learning with multiple sequential

benchmark datasets and compare our results to Monte

Carlo sampling-based approaches and baseline perfor-

mance metrics in the Bayesian and deterministic set-

tings.

II. BAYESIAN DEEP LEARNING

In Deep Bayesian Inference, network parameters, W,

are represented as random variables with some prior dis-

tribution W ∼ p(W). After observing some training set

D = {X(i),y(i)}ni=1 , Bayes’ Rule is used to determine the

posterior distribution p(W|D). The predictive distribution,

p(y|X,D) is determined by marginalizing the parameters,

W, within the posterior distribution. Marginalization can also

be performed previously unseen data X̃ with corresponding

output ỹ to perform inference after training, as shown in

Equation 1.

p(ỹ|X̃,D) =

∫

p(ỹ|X̃,W)p(W|D) dW (1)

The mean of the predictive distribution represents the net-

work’s prediction. The predictive variance represents the

statistical uncertainty of the network attached to the same

prediction. The predictive variance is construed as confidence

in an estimation.

A. Variational Inference

Despite having an analytical formulation, applying

Bayesian Inference to DNNs is intractable due to the required

integration of all network parameters [6]. To avoid this issue,

Variational Inference (VI) is a common technique used to

estimate the posterior distribution of a network by converting

the intractable, analytical problem of solving the posterior

distribution to an optimization problem. This approach im-

poses a distribution of variational parameters, qθ(ΩΩΩ), over

the network parameters and minimizes the Kullback-Leibler

(KL) divergence between the variational distribution and the

true posterior distribution, shown in Equation 2.

min
θ

KL[qθ(Ω)||p(Ω|D)] = min
θ

∫

qθ(Ω) ln
qθ(Ω)

p(Ω|D)
dΩ

min
θ

KL[qθ(Ω)||p(Ω|D)] = min
θ

Eqθ(Ω)

[

ln
qθ(Ω)

p(Ω|D)

] (2)

However, directly minimizing the KL divergence between

the variational parameters and the true posterior is also

intractable as determining the true posterior from Bayes’ rule

still requires the evidence derived from the integration over

the product of the likelihood function and the prior distribu-

tion p(D) =
∫

p(D | Ω)p(Ω)dΩ. Instead, VI maximizes

an equivalent quantity called the Evidence Lower Bound

(ELBO) which can be derived from Equation 2 using Bayes’

Rule to rewrite the true posterior, as shown in Equation 3.

The log marginal likelihood of the data, ln p(D), is fixed

and does not depend on the variational distribution and can

be grouped with the KL divergence between the variational

posterior and the true posterior becoming the lower bound

on the evidence.

KL[qθ(Ω)||p(Ω|D)] = Eqθ(Ω)[ln qθ(Ω) − ln p(Ω|D)]

KL[qθ(Ω)||p(Ω|D)] = Eqθ(Ω)

[

ln qθ(Ω)− ln
p(y|X,Ω)p(Ω)

p(D)

]

KL[qθ(Ω)||p(Ω|D)] = Eqθ(Ω)

[

ln
qθ(Ω)

p(Ω)
− ln p(y|X,Ω)

]

+ ln p(D)

−ELBO = −Eqθ(Ω)[ln p(y|X,Ω)] + KLqθ(Ω)[qθ(Ω)||p(Ω)]

(3)

The optimization objective for Variational Inference is the

maximization of the ELBO as shown in Equation (4). Maxi-

mizing this quantity ultimately maximizes the log-likelihood



of data given the network parameters and minimizes the KL

divergence between the variational posterior and the prior

distribution.

φ
∗ = argmax

[

Eqθ(Ω)[ln p(y|X,Ω)]− KLqθ(Ω)[qθ(Ω)||p(Ω)]
]

(4)

B. Moments Propagation

The goal for moments propagation is to produce the mean

and the covariance of the predictive distribution from which

the network’s success or failure can be gauged by relating

the predictive distribution’s mean to the label weighted by the

predictive distribution’s variance. To achieve moments prop-

agation, all network operations are replaced by operations of

random variables. Each algebraic operation in a deterministic

network is replaced by the multiplication of a random vari-

able with a constant, multiplication of two random variables,

or approximating the non-linear transformation over random

variables using a first-order Taylor-series approximation [10].

As a result, the first and second moments of the variational

distribution, mean and covariance, can be propagated layer

by layer through the entire network.

We consider a fully connected model for simplicity of

notation and without loss of generality. Let x ∈ R
n be the

input to a layer with mean µx and covariance matrix Σx. We

assume that the jth model parameter wj follows a Normal

distribution wj ∼ N(µwj
,σ2

wj
). The model parameters

are assumed to be independent from each other and the

input. The first-order Taylor series approximates the first

two moments after a non-linear activation function. In the

following, we present the derivations pertaining to the various

model layers.

1) Propagation through the kth linear layer: To streamline

notation, we will exclude the reference to k in our representa-

tion. Let z = W Tx+b, where, for the kth layer, W ∈ R
n×m

is a random matrix of weights, b ∈ R
m is a random vector

of biases, and z ∈ R
m is the resulting random vector. Let

W = [w1, · · · ,wm], where wi is the ith column of W ,

with the mean and covariance of wi represented as µwi
and

Σwi
. It follows that the mean and variance elements, µzi

and σ2
zi

, contained within the resulting random vector z can

be derived for elements i = 1 · · ·m with the matrix-vector

multiplication as shown in Equation (5).

µzi = µT
wi
µx + µbi

σ2
zi

= tr (Σwi
Σx) + µT

xΣwi
µx + µT

wi
Σxµwi

+ σ2
bi

(5)

The input data for the first layer of the network k = 0 is

treated as deterministic where, in Equation (5), Σx = 0. The

resulting covariance for σ2
zi

only depends on µx
TΣwi

µx.

For computational efficiency, moment propagation is re-

formulated to only propagate the diagonal variance elements

of the covariance information through the network. As a

result of this further approximation, Equation (5) can be

reformulated as Equation (6) below, where µwi,h
and σ2

wi,h

are the hth element of µwi
and the hth diagonal element of

Σwi
, respectively.

µzi = µT
wi
µx + µbi

σ2
zi

=

n
∑

h=1

(σ2
xh
σ2
wi,h

+ µ2
xh
σ2
wi,h

+ σ2
xh
µ2
wi,h

) + σ2
bi

(6)

It is important to note that as Equation (6) is a further

approximation, there is a loss in the fidelity of the propagated

variances due to subsequent network layers’ reliance on

the covariance elements of previous layers to compute the

true covariance values. Convolution operations are treated

similarly, where kernels and underlying image patches are

vectorized before moment propagation.

2) Propagation through a non-linear activation: Let g =
Ψ(z) represent some non-linear activation function (e.g.

ReLU, Hyperbolic Tangent, Softmax) of a random vector

input z ∈ R
m with mean µz and covariance Σz . The mean

and covariance for the resulting random vector g can be

approximated using the first-order Taylor series approxima-

tion [10]–[12] in Equation (7) where ⊙ is the element-wise

product of the incoming covariance matrix, Σz , and the

squared gradient, ∇, of non-linear function with respect to

the incoming mean, µz .

µg ≈ Ψ(µz)

Σg ≈ Σz ⊙∇Ψ(µz)∇Ψ(µz)
T

(7)

Similarly, to reduce computational complexity, the diag-

onal variance elements are vectorized, and the covariance

elements are ignored. The vectorized form of Equation (7) is

shown in Equation (8), where σ2

z represents the vectorized

form of the diagonal variance elements. In the vectorized

form, the outer product used for constructing the correlation

matrix in Equation (7) can be replaced by the squared

gradient of the non-linear activation function with respect to

the input mean due to the off-diagonal elements are no longer

required for the Hadamard product with the input covariance

matrix.

µg ≈ Ψ(µz)

σ2
gi
≈ σ2

zi
⊙

(

∂Ψ

∂zi
(µz)

)2 (8)

For the Softmax classification layer at the output of the

network µŷ and σ2
ŷ are representative of the variational

distribution that can be used to infer the ELBO objective

function.

C. Closed Form ELBO

Recalling the objective function for Variational Inference,

presented in Equation (4), using the propagated values µŷ

and σ2

ŷ of the variational distribution q(Ω) the ELBO can

be written in closed form, as shown in Equation (9). The

weighting variable τ is added to control the level of com-

pression toward the prior induced by the KL divergence term

in the ELBO. The vectorized form of the closed-form ELBO

changes the log determinant of the covariance matrix Σŷ to



ELBO = −
N

2
ln (2π)−

1

2
ln (|Σŷ|) −

1

2

(

(y − µŷ)
T
Σŷ

−1(y − µŷ)
)

−
τ

2

|Ω|
∑

i=1

(

−1 +
(µqwi

− µpi)
2

σ2
qwi

+ ln

(

σ2
pi

σ2
qwi

)

+
σ2
qwi

σ2
pi

)

(9)

ELBO = −
N

2
ln (2π)−

1

2

N
∑

n=1

ln (σ2
ŷn

) +
1

2

N
∑

n=1

(yn − µŷn)
2

σ2
ŷn

−
τ

2

|Ω|
∑

i=1

(

−1 +
(µqwi

− µpi)
2

σ2
qwi

− ln

(

σ2
pi

σ2
qwi

)

−
σ2
qwi

σ2
pi

)

(10)

the log sum of all the variational distributions, effectively

producing the log product of the diagonal variance values

from the covariance matrix, equivalent to the determinant

when the off-diagonal elements are zero. The same is true

for Σŷ
−1 where the inverse of a diagonal matrix is simply the

inverse of each diagonal element. The vectorized closed-form

expression of the ELBO is shown in Equation (10) where

|Ω| denotes the cardinality of the set Ω, i.e., the number of

weight parameters and N denotes the number of classes or

output nodes of the final layer.

III. CONTINUAL LEARNING METHODOLOGY

A. Continual Learning

Continual Learning aims to retain performance over multi-

ple training periods. Many approaches have been developed

to combat the problem of catastrophic forgetting, separat-

ing into three main categories: Regularization, Replay, and

Dynamic Architectures [13]. The Dynamic Architectures

approach focuses on adding additional neural resources to

a network to account for information in new tasks. Replay

focuses on preserving certain data samples from previous

tasks and ”replaying” them during the training of subsequent

tasks. Regularization-based approaches constrain the opti-

mization problem to prevent representations of previous data

from adapting exclusively to the new data in the network.

The method outlined in this paper aligns with Regularization

based Continual Learning, where the KL Divergence regu-

larizes the optimization to restrict parameters to remain close

to the previous task.

B. Prior Compression

Continually learning with Variational Density Propagation

leverages the KL Divergence between the variational pos-

terior and the prior in the ELBO objective function. This

regulates learning to prevent network parameters from drift-

ing far from the prior. The model parameters are treated as

independent random variables to obtain a simplified version

of the KL divergence between the variational posterior and

the prior, as shown in Equation 10. This formulation allows

each parameter to receive independent gradient updates from

the KL term so the new posterior remains close to the

previous posterior while receiving updates from the model

likelihood. This is an ancillary benefit of assuming all ex-

plicitly parameterized random variables are independent.

When learning over multiple tasks, the prior pt(Ω) itera-

tively becomes the posterior of the previous task q(Ωt−1) for

task t. The updated prior, q(Ωt−1), contains all information

from all previously trained task representations, such that

pt(Ω) = qt(Ωt−1). For the first task, t = 0, the prior

is chosen as standard normal Gaussian for every network

parameter. Using a standard normal prior is known to be

parameter sparsity-inducing [9]. Using the KL divergence

term to constrain network parameters near zero will effec-

tively remove unneeded model parameters from contributing

to a model’s prediction.This process aligns with the idea of

the Minimum Description Length principle [14] in which

the best model for a given dataset is the one that results in

the minimum total description length of the dataset together

with the model, satisfying Occam’s Razor principle [4]. By

converging to the minimal model complexity on the first task,

all subsequent tasks will retain the goal of minimal model

complexity via updating the prior distribution to the varia-

tion posterior. Thus, a sparsity-inducing prior is effectively

applied across all tasks. This process is shown in Algorithm

1.

Algorithm 1 Continual Learning via Prior Compression

Require: D = (X,y);
The predictive distribution ŷm ∼ N(µŷm

,σ2
ŷm

);
The variational distribution qθ(Ω) ∼

∏

N(µwj
,σ2

wj
);

The prior distribution p0(Ω0) ∼
∏

N(0, 1);
KL divergence weighting factor τ ;

τ = τ0
qθ∗

0
(Ω0)← argmaxθ[Eqθ(Ω0)[ln p(y|X,Ω0)]−

τKLqθ(Ω0)[qθ(Ω0)||p0(Ω0)]]
τ = τ1
for Task t > 0 do

pt(Ωt)← qθ∗

t−1
(Ωt−1)

qθ∗

t
(Ωt)← argmaxθ[Eqθ(Ωt)[ln p(y|X,Ωt)]−

τKLqθ(Ωt)[qθ(Ωt)||pt(Ωt)]]
end for

C. Experimental Setup

Our Continual Learning framework is evaluated for task

incremental learning in which task information is given at

test time and the network has separate output layers per

task, referred to as a multi-headed network [8]. In this

multi-headed architecture, all parameters in layers before

the classification layer are shared amongst all tasks. Multi-

headed networks promote feature sharing by encouraging the

slight differences required between tasks to be captured in

the bespoke classification layer [15]. We evaluate task in-

cremental learning on the MNIST and CIFAR10 benchmark

datasets with two versions of task groupings: 5-Split, where

there are five different tasks of differentiating between two

classes, and 2-Split, where there are two different tasks of

differentiating between five classes. Our methodology is also

evaluated on Permuted MNIST, in which the MNIST dataset



digit’s pixels are permuted with ten different functions, one

for each task. The network is then tasked with classifying

the permuted digits 0-10. For the Split and Permuted MNIST

datasets, a fully connected network with a single 1200-node

hidden layer is used. For the sequential CIFAR10 datasets,

a six-layer convolutional network with three linear layers is

used.

1) Hyperparameters: A hyper-prior was used to initialize

the variational posterior where values of mean and variance

of the weights were randomly selected from N(0, 0.05)
and N(π, 0.05), respectively. To ensure the positivity in the

variance of network parameters, parameter variance values

are passed through the soft-plus activation function before

actual network operations, shown in Equation 13. For the first

task only, the variational prior was set to a sparsity-inducing,

the standard normal prior for every parameter, N(1, 0).

σ2
w = log(1 + exp(σ2

π)) (13)

A grid search is performed to determine the most appro-

priate initialization scheme for the variance of the weights

and KL divergence weighting. The sweep for the mean of

the initialization distribution for the variance, π, considered

integer values from -6 to -18. Network layer biases were

initialized with the same scheme. The KL divergence term

between the variational posterior and the prior manages the

trade-off between updates from error embedded in the model

likelihood and the divergence from the prior. A weighting

term τ is applied and varied to ensure sufficient representa-

tion of each task was learned and retained over multiple tasks.

Similar approaches to approximating Bayesian inference in

deep learning using Autoencoders [16] use values of τ > 1
to promote sparsity in the learned latent representation of

the data. Using τ > 0.001 would not allow the network to

learn a sufficiently complex network to represent the data

when learning the first task with a sparsity-inducing prior.

The sweep for the hyperparameter τ considered values 1e-3

to 1e-6 for the first task and values between 1e-1 and 1e-

4 for all subsequent tasks, with increments of powers of

ten. Larger values of τ provide more compression toward

the previous tasks posterior. All model variations are trained

with the Adam optimizer with an initial learning rate of 1e-

3. The learning rate is reduced by a factor of 10 when the

loss of each task plateaus. Random seeds are held constant

throughout hyperparameter sweeps.

D. Performance Measurement

After learning all test sets for t tasks, models are evaluated

to demonstrate performance and catastrophic forgetting miti-

gation over multiple tasks. Performance is gauged through the

Average Test Classification Accuracy (ACC) and Backward

Transfer (BWT). Average Test Classification Accuracy is an

average of all test accuracies on individual tasks after training

all tasks. Backward Transfer indicates how much learning

new information has affected performance on previous tasks.

Backward Transfer values less than zero indicate catastrophic

forgetting, while values greater than zero indicate improved

performance on previous tasks after training on new in-

formation [17]. If Backward Transfer is greater than zero,

then training subsequent tasks improved the generalization of

previously trained tasks with information from subsequently

trained tasks. These metrics are shown mathematically in

Equation 14.

BWT =
1

t

t
∑

i=1

Ri,t −Ri,i

ACC =
1

t

t
∑

i=1

Ri,t

(14)

IV. RESULTS AND DISCUSSION

Continual Learning performance with our Variational Den-

sity Propagation framework (VDP PC) is compared to

Variational Continual Learning (VCL) [8], which utilizes

sampling-based deep variational inference to mitigate catas-

trophic forgetting via the approximation of Bayesian Infer-

ence. Additionally, both approaches are compared to four

baselines in which deterministic and VDP frameworks are

trained sequentially: a Single-Head deterministic architecture

(DET-SH); Fine Tuning (*-FT), where no efforts are made to

mitigate catastrophic forgetting; Feature Extraction (*-FE),

where shared network parameters are frozen, but bespoke

output layers are trained; and Joint Training (*-JT), where

later tasks are supplemented with all data from previous

tasks. The Average Test Classification Accuracy (ACC) and

Backward Transfer (BWT) metrics across both frameworks

and all datasets are presented in Table I.

Despite benchmark datasets’ simplistic nature, tasks

learned sequentially in a single-headed network (DET-SH)

result in a complete loss in performance on previous tasks.

Multi-headed networks trained sequentially to fine-tune (*-

FT) each new task fare significantly better, retaining the

majority of performance after training a sequence of tasks.

The bespoke output layer, however, carries the majority of

the performance improvement, as demonstrated by freez-

ing all shared parameters (*-FE) before training subsequent

tasks and only learning the bespoke output layer. Restricting

changes in model complexity with our VDP Prior Compres-

sion (VDP PC) approach improves Average Test Classifica-

tion Accuracy and Backward Transfer performance over all

tested sequences of tasks. Performance with the VDP Prior

Compression approach closely follows the joint training (*-

JT) performance for both the deterministic and VDP frame-

works and is considered the upper bound on performance for

the tested model architecture on each experiment.

Conversely, we show that Variational Continual Learning

(VCL), not trained with a core set, does not improve over

existing deterministic baseline approaches. Results collected

for VCL are slightly improved over what is reported for Split

and Permuted MNIST datasets in the original publication.

This improvement is expected to result from reducing the

depth of the fully-connected network. Less shared parameters

results in less interference from one task to the next. Split

Cifar10 results were not collected in the original VCL paper

and are demonstrated to follow the same general trend as the



TABLE I
TASK INCREMENTAL LEARNING RESULTS

Approach
2-Split MNIST 5-Split MNIST Permuted MNIST 2-Split CIFAR10 5-Split CIFAR10

ACC BWT ACC BWT ACC BWT ACC BWT ACC BWT

DET-SH 50.72% -48.42% 20.00% -79.80% 72.81% -25.63% 46.50% -42.89% 19.03% -74.45%

DET-FT 98.64% -0.60% 99.34% -0.49% 96.47% -1.67% 81.96% -18.04% 77.68% -15.59%

VDP-FT 98.55% -0.35% 98.32% -1.46% 95.91% -2.47% 78.82% -8.53% 73.42% -19.92%

DET-FE 98.96% 0.00% 99.33% 0.00% 96.41% 0.00% 72.78% -4.24% 78.43% -0.79%

VDP-FE 97.90% 0.00% 99.40% 0.00% 96.72% 0.00% 79.49% 0.02% 80.63% -0.13%

VCL 98.04% -0.86% 99.08% -0.50% 88.80% -7.90% 64.39% -10.93% 76.82% -8.96%

VDP PC 99.24% -0.01% 99.80% -0.06% 97.71% -0.14% 88.81% -1.08% 83.23% -0.62%

DET-JT 99.38% -0.01% 99.87% 0.00% 98.33% -0.10% 86.51% +0.63% 93.11% +0.16%

VDP-JT 99.34% +0.18% 99.73% -0.08% 98.15% -0.17% 87.81% +1.84% 94.04% +0.19%

MNIST results, performing slightly under fine-tuning perfor-

mance, demonstrating no additional benefit to catastrophic

forgetting mitigation.

V. CONCLUSION

In this work, the Variational Continual Learning frame-

work is improved by removing the requirement for Monte

Carlo sampling of the variational posterior of the model

parameters. Network operations are replaced with operations

of random variables providing a quicker and less noisy esti-

mate of model parameters utilizing a completely closed-form

Evidence Lower Bound objective. The inherent compression

within the ELBO approximates the Minimum Description

Length Principle by penalizing additional model complexity

over multiple tasks. Our approach demonstrates catastrophic

forgetting mitigation in the task incremental learning setting

for a multi-headed network on common Continual Learn-

ing benchmark datasets and demonstrates improvement over

sampling-based approaches. We leverage the KL regulariza-

tion weighting term to control the amount of change in model

complexity induced by each task. Overall, improved Average

Test Classification Accuracy and Backward Transfer metrics

are achieved.
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