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Abstract—In this paper, we present a high-performance
and light-weight deep learning model for Remote Sens-
ing Image Classification (RSIC), the task of identifying the
aerial scene of a remote sensing image. To this end, we
first evaluate various benchmark convolutional neural net-
work (CNN) architectures: MobileNet V1/V2, ResNet 50/151V2,
InceptionV3/InceptionResNetV2, EfficientNet B0/B7, DenseNet
121/201, ConNeXt Tiny/Large. Then, the best performing models
are selected to train a compact model in a teacher-student
arrangement. The knowledge distillation from the teacher aims to
achieve high performance with significantly reduced complexity.
By conducting extensive experiments on the NWPU-RESISC45
benchmark, our proposed teacher-student models outperforms
the state-of-the-art systems, and has potential to be applied on
a wide rage of edge devices.

Index Terms—Teacher-student model, convolutional neural
network (CNN), data augmentation, high-level features.

I. INTRODUCTION

Remote sensing image classification (RSIC) is a core task
for a range of real-world applications including land use classi-
fication, natural hazard assessment [/1]], scene-driven geospatial
object detection [2], and environmental monitoring [3]. The
task has therefore drawn much attention from the research
community in recent years, including in the area of datasets
and benchmarks. The earliest RSIC dataset, UCM [4], was pro-
posed in 2010. Subsequently, more challenging RSIC datasets
have been published, such as NWPU VHR-10 (2014) [5],
SAT6 (2015) [6], SIRI-WHU (2015) [7], AID (2017) [8],
OPTIMAL (2018) [9], NWPU-RESISC45 (2017) [10Q], etc.
Among these published datasets, NWPU-RESISC45 has the
largest number of classes, comprising 45 image scenes, each
of which is represented by 700 remote sensing images. Addi-
tionally, a wide range of classification models have been pub-
lished for RSIC tasks. Early systems used conventional image
processing techniques such as Texture Descriptors (TD) [11]],
Local binary patterns (LBP) [[12f], Color Histogram (CH),
Histogram of Oriented Gradient (HOG) [[13|], Scale-Invariant
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Feature Transformation (SIFT) [[14] to extract hand-crafted
features. Then, these features were classified by traditional ma-
chine learning based models such as Support Vector Machine
(SVM) [10], [15], Gaussian Mixture Model (GMM) [16],
etc. More recently proposed RSIC systems leveraged deep
learning based network architectures, which have proven to
be more effective compared to traditional machine learning
methods [17], [18]. Most deep learning based systems for
RSIC make use of Convolutional Neural Network (CNN)
based architectures such as ResNet [19], DenseNet [20]],
EfficientNet [21]] or Transformer [22]]. Although deep learning
based RSIC systems have demonstrated the potential for very
good performance [23|], these network architectures involve
large footprint models with a high number of trainable param-
eters [23]]. This causes challenges to apply such deep learning
based RSIC models within edge devices [24]. In this paper, we
aim to develop a low footprint RSIC model which is capable
of achieving high-performance by leveraging the strength of
advanced high complexity models to achieve cutting-edge per-
formance. The resulting distilled student architecture achieves
a model size reduction of 98% at the cost of a 1.4% relative
drop in performance. Our main contributions are as follows:

(a) A mechanism to combine individual high-performing
CNN-based networks trained on the RSIC task, to inform a
single robust teacher network. Given the teacher, we apply a
teacher-student scheme to train the student. Using knowledge
distillation from the teacher, the student not only performs
well but is also a low complexity model. In this paper, we
propose a constraint of maximum 5 million trainable param-
eters for a low-complexity RSIC model. This is consistent
with the capability of typical edge devices. (b) We evaluate
our proposed teacher and student models on the NWPU-
RESISC45 benchmark [10]. Results reveal that the proposed
models outperform state-of-the-art systems with or without
considering the issue of complexity — demonstrating the ability
of the technique to enable implementation on a range of edge
devices.
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Fig. 1. Evaluation of benchmark networks using the transfer learning
technique.

II. THE THREE-PHASE PROCESS TO DEVELOP AND
ACHIEVE A HIGH-PERFORMANCE AND LOW-COMPLEXITY
RSIC MODEL

In this section, we describe the methods employed to
achieve a high-performance and low-complexity RSIC model,
which leverages a teacher-student arrangement [25]]. In partic-
ular, the process comprises three main phases:

o Phase I: We first evaluate a wide range of benchmark
convolution neural network (CNN) based architectures.
Then, we select which networks (i.e. the best performance
models) to use for developing the teacher model, and
which network is used for the student model (i.e. the
student model not only performs well but also presents a
low footprint).

o Phase II: In this phase, the best performance models from
Phase I are used to develop the teacher. After training
the proposed teacher, the feature maps at the next to last
dense layer of the teacher are extracted. The extracted
feature maps are referred to as high-level features.

o Phase III: Finally, the student network, which selected
in Phase I, is trained with the high-level features (i.e.
via knowledge distillation from the teacher) to achieve a
high-performance and low-complexity RSIC model.

A. Phase I: Evaluate the benchmark neural networks to select
high-performance networks for the teacher and student

We assessed various convolutional neural network (CNN)
based architectures for both the teacher and the student
models by evaluating twelve different benchmark deep
convolutional neural networks: MobileNet, MobileNetV2,
ResNet50, Resnet151V2, InceptionV3, InceptionResNetV2,
DenseNetl121, DenseNet201, EfficientNetB0, EfficientNetB7,
ConvNeXtTiny, and ConvNeXtLarge, all available in the Keras
library [26]]. As the top of Figure [1| shows, the benchmark
networks are first trained with the ImageNet dataset [27],
referred to as the up-stream task. Then, the first layer to the
global pooling layer of these pre-trained networks are extracted
and combined with a Dense Layers block to perform the down-
stream RSIC task as shown at the bottom of Figure|l| In other
words, we apply a transfer learning method in which the first
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layer to the global pooling layer, trained from the up-stream
task using the ImageNet dataset [27], are transferred to the
down-stream RSIC task. The Dense Layers block is considered
to house the adapting layers for the down-stream RSIC task.

We also apply data augmentation for the RSIC down-stream
task, namely Image Rotation [28]] and Mixup [29], performed
on the remote sensing image input dataset. In particular, all
images in an original RSIC dataset are rotated using three
different angles: 90, 180, and 270°. Since three angles are
used, the augmented dataset is four times larger than the
original. Next, batches of 60 images are randomly selected
from the new dataset. For each batch, we apply the Mixup [29]]
method to mix the images within one batch with random ratios.
Both Uniform and Beta distributions are used to generate the
mixup ratios, and we make use of both the rotation augmented
image database in addition to the new mixup images; as a
consequence the batch size increases by three times from 60
to 180 images.

Thanks to the use of Mixup [29]] for data augmentation, the
labels will no longer be in one-hot encoding format. Therefore
we apply Kullback-Leibler divergence (KL) loss [30] instead
of Entropy loss to train the evaluating models, as in equation|[I}
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where © presents trainable parameters, the constant A is
empirically set to 0.0001, the batch size B, the number
of classes C, ype and ¥p. denote expected and predicted
probabilities of an input image, respectively. Note that we
set the low learning rate to be 0.0001 and none of trainable
parameters are frozen during the training process.

B. Phase II: Develop the teacher and extract high-level fea-
tures from the teacher

Given N high-performance models selected from Phase I,
we then develop and train the teacher architecture during this
phase. Again, we leverage parameter based transfer learning
techniques to develop the teacher as shown in Figure 2] In
particular, the first layer to the Dense Layer 01 of Dense Lay-
ers block from all N high-performance networks described in
Phase I are reused and then combined to generate a composite
high-level feature. If we consider N vectors e, € R>12 as the
output of the Dense Layer 01, the Combination block used to
generate the composite high-level feature in Figure [2] by,

N
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Fig. 3. The student model with knowledge distillation from the teacher.

where wi,b € R°2 are weight and bias trainable pa-
rameters. The high-level feature is finally transferred into a
Fully Connected layer followed by a Softmax for classifying
to target classes. When we finish training the teacher model,
the high-level features are then extracted and used for the
knowledge distillation process to train the student in Phase
IIT which follows.

Data augmentation is used when training the teacher net-
work, however only Image Rotation [28]] is applied at this and
thus the labels can remain in one-hot format, and Entropy loss
can be used to train the teacher model as in equation

C
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where © are trainable parameters, the constant \ is set to
0.0001, the batch size B and the number of classes C, yp and
¥be denote expected and predicted probabilities of a particular
image, respectively.

We again set the low learning rate to 0.0001, and the
trainable parameters of the first layer to the Dense Layer 01 are
frozen when training the teacher. In other words, only trainable
parameters in the Combination block and in the finally Fully
Connected layer are updated during the training process.

C. Phase III: Train the student network to achieve high-
performance and low-complexity RSIC

From the results in Phase I, a network architecture, which
not only performs well but also presents a low footprint, is
selected and considered as the base student model. We then
train the student with the high-level features extracted from the
teacher mentioned in Phase II. As Figure E] shows, the student
is trained with two loss functions. While the first Entropy loss
is used for the classification task, the Euclidean Distance loss
helps to ensure the high-level features of the student become
closer to the high-level features extracted from the teacher,
effectively guiding the feature discrimination ability of the
student. The ratio between both losses is empirically set to
0.5/0.5.

Regarding the data augmentation used to train the student,
only Image Rotation [28|] is applied. We also set the low

learning rate of 0.0001 and no trainable parameters are frozen
during the student training phase.

III. EXPERIMENTS AND RESULTS
A. Dataset

In this paper, the benchmark dataset of NWPU-RESISC45
[10] is used to evaluate all state of the art and proposed models.
The dataset, which was collected from more than 100 different
countries and regions around the world, consists of 31,500
remote sensing images separated into 45 scene classes. Each
class comprises 700 RGB images with a resolution of 256 x
256 x 3. To compare with state-of-the-art systems, we comply
with the original settings mentioned in [10]. We then split the
NWPU-RESISC45 dataset into Training and Testing sets with
two different ratios: 10%-90% and 20%-80%, respectively.

B. Evaluation metric

As the Accuracy (Acc.%) has been used as the main
metric to compare performance among the RSIC systems, we
also apply the metric in this paper. Additionally, as we aim
to achieve a low complexity model for the RSIC task, we
compute the number of trainable parameters (M) to compare
against state-of-the-art RSIC systems.

C. Experimental settings

We constructed our proposed deep learning networks with
Tensorflow using the Adam method [[42]] for optimization. The
training and evaluating processes are conducted on two Titan
RTX 24GB GPUs. The results presented in this paper are all
the average scores from 10 individual experimental runs.

D. Results and Discussions

As experimental results show in Table [l we can see that
ConvNeXt, EfficientNet, DenseNet based models are com-
petitive and outperform MobileNet, ResNet and Inception
based models. Particularly, the best network architectures of
ConvNeXtLarge and ConvNeXtTiny achieve 95.3% and 93.0%
accuracy, respectively. Around 2% worse than ConvNeXt-
Large, the performance of EfficientNetB7 and DenseNet201 on
the NWPU-RESSIC4S5 task are 93.6% and 93.3%, respectively.
Meanwhile, their smaller variants named DenseNet121 and
EfficientNetBO achieve over 92% accuracy.

Although ConvNeXt, EfficientNet and DenseNet based
models perform well among the evaluating network architec-
tures, these involve large footprints. In particular, the three
best variants, namely ConvNeXtLarge, EfficientNetB7, and
DensNet201 have some of the largest parameter set sizes
of 196.6, 65.1, and 19.1 M, respectively. Among the Con-
vNeXt, EfficientNet and DenseNet variants, only Efficient-
NetBO combines a relatively good accuracy of 92.3% with a
low complexity footprint (4.7 M parameters). As a result, we
select EfficientNetB0 as the foundation network for the student
model required in Phase III. We also note that DenseNet201,
EfficientNetB7 and ConvNeXtLarge perform better than 93%
and their general architectures are dissimilar to each other. We



TABLE

I

PERFORMANCE COMPARISON OF BENCHMARK CNN BASED NETWORK ARCHITECTURES ON
THE NWPU-RESISC45 TASK WITH A TRAINING/TESTING SPLIT OF 20/80.

Network MobileNetV2 MobileNet ResNet5(0 Resnet151V2 InceptionV3 InceptionResNetV2
Accuracy (%) 88.0 90.8 91.8 92.4 86.9 90.5
Parameters (M) 2.9 3.7 24.6 59.2 22.8 55.1
Network DenseNet121 | DenseNet201 | EfficientNetB0 | EfficientNetB7 | ConvNeXtTiny ConvNeXtLarge
Accuracy (%) 92.0 93.3 92.3 93.6 93.0 95.3
Parameters (M) 7.5 19.1 4.7 65.1 27.5 196.6
TABLE II TABLE IV

PERFORMANCE COMPARISON OF THE TEACHER (A COMBINATION OF
CONVNEXTLARGE,DENSENET201,EFFICIENTNETB7), THE STUDENT
(EFFICIENTNETBO) WITH VARIOUS SETTINGS, ON THE
NWPU-RESISC45 TASK WITH A TRAINING/TESTING SPLIT OF 20/80.

Network Accuracy (%) | Parameters (M)
Teacher 96.2 280.8
EfficientNetB0 (student) 92.3 4.7
EfficientNetB0+distillation 94.8 4.7
EfficientNetB0-6B+distillation 94.4 3.0
EfficientNetB0-5B+distillation 93.5 0.93
EfficientNetB0-4B+distillation 91.3 0.37
EfficientNetB0-3B+distillation 85.6 0.11
TABLE III

PERFORMANCE (ACC.%) COMPARISON OF THE PROPOSE TEACHER
AGAINST STATE-OF-THE-ART RSIC SYSTEMS ON THE NWPU-RESISC45
BENCHMARK WITH TWO SPLIT ARRANGEMENTS, AND WITHOUT ANY
TRAINABLE PARAMETER SIZE CONSTRAINT.

Methods 10% traini 20% training
MG-CAP [31] 90.8 93.0
EfficientNet-B3-aux [32! 91.1 93.8
ResNeXt-101 + MTL [33] 91.9 94.2
MBLANet [34] 92.3 94.6
GRMANet [35] 93.2 94.7
KFBNet [36] 93.1 95.1
CTNet [37] 93.9 95.4
TRS [22] 93.1 95.6
RSP-ViTAEv2-S-E100 [23] 94.4 95.6
Our system (Teacher) 94.6 96.2

therefore, select these three network architectures to generate
the teacher, as required in Phase II.

As Table [ shows, the teacher (i.e. a combination of
DenseNet201, EfficientNetB7 and ConvNeXtLarge) achieves
an accuracy of 96.2%, but with a very large footprint of
280.8 M parameters. Knowledge distillation from this capable
teacher into student EfficientNetBO allows it to achieve an
accuracy of 94.8% while maintaining a low complexity of
47 M parameters. To propose a wide range of low com-
plexity models, we further evaluate variants of the student
EfficientNetBO model. In particular, variants of the student
are generated by removing certain convolutional blocks in
the EfficientNetB0 backbone architecture to reduce complexity
further. EfficientNetB0-6B to EfficientNetB0-3B are variants
of EfficientNetB0O obtained by removing convolutional block
7 only, removing convolutional blocks 6 and 7, removing
all convolutional blocks from 5 to 7 and removing all con-
volutional blocks 4 to 7 inclusive. Experimental results in
Table [II) indicate that when the footprint of EfficientBO based
students is reduced, the accuracy performance also tends to
decrease. However, we can achieve a very low complexity

PERFORMANCE COMPARISON OF THE PROPOSED STUDENT AGAINST
STATE-OF-THE-ART SYSTEMS ON THE BENCHMARK NWPU-RESISC45
DATASET WITH TWO SPLIT SETTINGS AND A CONSTRAINT OF NO MORE

THAN 5M TRAINABLE PARAMETERS.

Methods 10% training | 20% training
EfficientNet-B0-aux (=~ 5M) [32] 90.0 92.9
DMP-MobileNetV2 (3.47 M) [38] 90.3 93.1
BiMobileNet (2.52 M) [39] 91.9 93.9
SE-MDPMNet (5.17 M) [40] 91.8 94.1
LGRIN (4.63 M) [41] 91.9 94.4
Our system (Student+distillation) 93.3 94.8

model of 0.37 M parameters with a performance of 91.3%
from EfficientNetB0-4B, which opens the potential for RSIC
applications on a very wide range of edge devices.

Finally, we compare our proposed models to the state-
of-the-art RSIC systems basing on two criteria: (1) accu-
racy performance without any model complexity constraint
and (2) accuracy performance with a constraint of 5 M
trainable parameters maximum. As Table shows, RSIC
performance with the first criterion reveals that our proposed
teacher (i.e. a combination of ConvNeXtLarge, DenseNet201,
and EfficientNetB7) outperforms the state-of-the-art systems,
achieving 94.6% and 96.2% for the training/testing settings
of 10/90 and 20/80, respectively. For the second criteria, i,e,
low-complexity RSIC models (< 5 M trainable parameters)
shown in Table our proposed student with knowledge
distillation also outperforms the state-of-the-art systems on
both training/testing split arrangements, yielding results of
93.3% for a 10/90 split ratio and 94.8% for a 20/80 split ratio.

IV. CONCLUSION

This paper has presented, explored, and developed a range
of deep convolutional neural networks for the remote sens-
ing image classification (RSIC) task, and in particular con-
sidered model complexity. Through experimentation on the
NWPU-RESISC45 benchmark, we obtained two RSIC sys-
tems: (1) a teacher developed by combining ConvNeXtLarge,
DenseNet201, and EfficientNetB7 network architectures and;
(2) alow complexity student (just 4.7 M trainable parameters),
which leverages EfficientNetBO via knowledge distillation
from the teacher. Our proposed RSIC systems outperform the
state of the art, whether complexity is constrained or not.
Additionally, a wide range of low- to very low-complexity
models using variants of EfficientNetBO are proposed and
explored, which are feasible to apply on edge devices with
differing degrees of computational constraint.
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