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Abstract 

Although many networks have been proposed as the 
topology of a large-scale parallel and distributed system. 
Most of them are neither expansible nor of equal degree. 
The inexpansibility and inequality of node degrees will 
make their VLSI implementation more difficult and more 
expensive. The hypernet, which was proposed by Hwang 
and Ghosh, represents a family of recursively scalable 
networks that are both expansible and of equal degree. In 
addition to the two merits, the hypernet has proven 
efficient for communication and computation. But, 
unfortunately, most topological properties and the problem 
of shortest-path routing for the hypernet are still unsolved. 
In this paper, we are concerned with the hypernet of two 
levels, we obtain the following results: ( 1 )  a shortest-path 
routing algorithm, ( 2 )  the diameter, (3) the connectivity, 
and (4)  embedding of a ring, a torus, and a hypercube. 

1 Introduction 

One crucial step on designing a large-scale 
multiprocessor system is to determine the topology of the 
interconnection network (network for short). In the recent 
decade, a number of networks have been proposed in the 
literature: for example, hypercubes [251, cube-connected 
cycles [23], star networks [ l ] ,  arrangement graphs [ l l ] ,  
rotator graphs [9], hypernets [22], WK-recursive networks 
[261, and some hypercube-related networks [3, 10, 13-16, 
201. The readers are referred to two special issues [2, 191 
for extensive references. Among them, only the hypernets 
[221 and the WK-recursive networks 1261 own the two 
merits of expansibility and equal degree. A network is 
expansible if no changes to node configuration and link 
connections are required when it is expanded, and of equal 
degree if its nodes have the same degree which is 
maintained a constant. A network with these two 
properties will gain the advantages of easy implementation 
and low cost when it is manufactured. 

The hypernet, which was proposed by Hwang and 
Ghosh [22], represents a family of recursively scalable 
networks. Since the hypernet has a recursive structure, it 

can be constructed incrementally by methodically putting 
together a number of basic modules. Although cubelet, 
treelet, and buslet can all serve as the basic module, the 
discussion in [22] assumed the cubelet to be the basic 
module. Throughout this paper we make the same 
assumption as [22] about the basic module. 

The structure of the hypemet is characterized by two 
parameters: dimension of the cubelet (d)  and expansion 
level ( I ) .  The hypemet with parameters d and 1 is composed 
of d-dimensional cubelets that are organized in a hirarchy of 
1 levels. As computed in [22], there are N=221-1(d-2)+1+1 
nodes contained in such a hypemet. Notice that N increases 
as a doubly exponential function of 1 as d>2. In Table I, 
we show the values of N for 21d57 and 21117. As can be 
seen, N grows drastically with 1 for d>2. The entries in the 
shaded area contain more than one million nodes. Under 
current hardware technology, it is more feasible to build a 
massively parallel system containing thousands or tens of 
thousands of nodes. Therefore, it is meaningful to 
concentrate our effort on the hypemet with small I .  

Now we briefly review earlier work about the 
hypemet. In [22], the performance of the hypernet was 
analyzed in terms of average path delay, hardware 
requirements, and support for communication traffic in 
typical application domains. Moreover, the mapping of a 
wide range of algorithms on the hypernet was de- 
monstrated. A simple routing algorihm based on the 
recursiveness of the hypemet was also suggested in [221. 
This algorithm, although very easy to be understood, 
cannot guarantee the shortest routing path. An easy upper 
bound of 2l-l(d+l)-l on the diameter was further derived 
from the routing algorithm and the recursive structure. A 
broadcasting algorithm for the hypernet can be found in 
[71. 

Before few results were obtained about the topological 
properties such as diameter, hamiltonicity, and con- 
nectivity of the hypemet. The diameter of a network is 
usually adopted as a measure of the maximum trans- 
mission delay among the network, and threrefore it can 
influence the efficiencies of many applications such as 
broadcasting. A hamiltonian network has the capability of 
embedding a ring network of the same size with dilation 1. 
In other words, a hamiltonian network can simulate a ring 
network of the same size without loss of efficiency. The 
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connectivity of a network is commonly used as a measure 
of the robustness of the network. By Menger's theorem [ 5 ] ,  
within a network the number of node-disjoint paths (except 
the two end nodes) between any two nodes is bounded 
above by the connectivity. 

Besides, no shortest-path routing algorithm is avail- 
able for the hypemet. In order for the hypemet to be 
considered a general-purpose parallel and distributed 
system, efficient communication must be addressed because 
communication delay has been recognized as a major cause 
of performance degradation in such a computing environ- 
ment. Shortest-path problems are the most fundamental 
problems in the study of communication within a network. 
Therefore it is not surprising that a large number of 
researches (see [12]) have been devoted to the subject of 
shortest-path problems, and efficient shortest-path routing 
algorithms have been designed for many existing networks 
Cl], [61, P I ,  U11, U31, [ W ,  D71. 

It is not easy to solve the problems above for the 
whole family of the hypernet networks because the 
structure of the hypemet is rather complex. For example, it 
is hard to imagine the structure of a hypernet even if its 
size is small e.g., d=3 and 1=3. Also note that the structure 
of the hypemet is not symmetric. In this paper, we try to 
attack these problems starting with a special subclass, i.e., 
1=2, of the hypernet networks. Our result is helpful for 
interested readers to work on larger subclasses. Undoubted- 
ly, the first step to investigate the topology of a network 
is to provide a mathematical (graph) description of the 
network. Hence, a concise mathematical definition of the 
hypernet is first introduced in the next section. Some basic 
properties of the hypemet are also proved. A shortest-path 
routing algorithm is then proposed in Section 3. The 
diameter, and connectivity are computed in Section 4. To 
compute the connectivity, maximum number of node- 
disjoint paths between any two nodes are constructed. The 
hamiltonicity is shown in Section 5, where the embedding 
of rings, tori, and hypercubes are also discussed. Finally, 
this paper is concluded in Section 6. 

2 Wypernet networks 

For convenience we use HN(d,  I )  to denote a hypemet 
of level 1 whose basic modules are each a d-dimensional 
cubelet (d-cubelet for short). A link of the hypemet is 
referred to as an internal link if it  connects two nodes 
within the same basic module, and an external link 
otherwise. A d-cubelet is indeed a d-hmensional hypercube 
augmented with an external link at each node. So a d- 
cubelet contains 2d nodes and 2d external links. The basic 
module is denoted by HN(d, 1). HN(d, 2)  can be 
constructed by grouping 2d-1 HN(d ,  1)s as follows. Each 
HN(d, 1) assigns one of its external links as an 1/0 
channel, and reserves half (i.e., 2d-1) of them for future use. 
The remaining 2d-1-1 external links are used to connect 
other 2d-1-1 HN(d,  1)s. Hence, if each HN(d, 1) is regarded 
as a vertex, then HN(d, 2) forms a 2d-1-vertex complete 

graph. HN(d,  3) can be constructed from HN(d, 2)s all in a 
similar way. In general, HN(d, 1) fo:-P2 can be constructed 
recursively by grouping Md,~2(d-2)2 +l HN(d, l-1)s. There 
are 2Md.l extemal links available for each HN(d, l-1); one 
is dedicated as an I/O channel, Md,) are reserved for future 
expansion, and hfd,/-l are used to connect other HN(d, 1- 
1)s. There are N=22*-1(d-2)+1+1 nodes contained in HN(d, r )  
(N and Md,/  were computed in [22]). Letting n=log2N and 
md,l= log2Md,,(note that 2md,)+l-l=n), Hw(d,  I )  can be 
defined mathematically as follows. 

Definition 2.1. The node set of HN(d, 1)  is denoted 
by (b,.lb,.z...bo I bi=O or 1 for OGSn-1). Node adjacency 
is defined as follows: bn-lbn-2...b0 is adjacent to (1) b,. 
l...bd-~...bi'...bo, where bi' is the complement of bi and 
O~Sd-13 and (2) bn-1.. -bj+l+hd j+2 b .  l+mdj+2' - . b j+1b j+2~~~+~*  .* 

b;+1 +mdj+$;. . .bo (i.e., swapping b;+,dj+2...bj+l +mdj+2 with 
b;+mdJ+2.- b,+l) if bj=O and bj-l=bj-2=...=b0=l, where 05jSl- 
2. 

Each node of HN(d, r )  is assigned with an n-bit address 
bn-lbn-2...b0. The leftmost md,) bits, i.e., b,-lbn-2...bn-md,l, 
identify the HN(d,  1-1) where the node resides. The next n- 
md2,-d bits further identify the cubelet where the node 
resides. The remaining d bits distinguish the node from the 
others within the same cubelet. The links defined by (1) are 
intemal links. The links defined by (2) are external links 
each connecting two HN(d, j+l)s (within the same HN(d,  
j+2)). These links are referred to as levelj+l links. The 
external links incident on nodes with b,+hdj+2...bj+l+mdj+2 
=b;+md j + 2 ' .  * b;+l are assigned as I/O channels. The other 
extemal links are reserved for future expansion. 

Figure 1 shows the structure of HN(3, 3). Let us 
consider the node 11010101 that is located in the HN(3,2) 
with identifier 110 and in the cubelet with identifier 10. 
Since bl=O and bo=l, there is an external link stemming 
from it and reaching the node 10111001. Since this link 
connects two HN(3, 2)'s within the same HN(3, 3), it is a 
level two link. Another example is the link between 
11010000 and 11000100. This link is established because 
bo=O and both end nodes can be obtained from each other 
by swapping b4b3 with b2b l .  Since it connectes two 
HN(3, 1)'s within the same HN(3, 2), it is a level one 
link. Also note that the external link incident on 11010100 
is used as an I/O channel because b4b3=bZbl. 

For easy of the following discussion, we represent 
each node bn-lbn.2...b0 by a three-tuple ( I ,  J ,  K ) ,  where 
I=bn-l...bn.md,l, J=bn.md,l-l...bl-l, and K=b,.2...bo. Note that 
node ( I ,  J ,  K )  is connected to node ( J ,  I ,  K )  if K=O 1 '-2, 
where 1"2 represents 1-2 consecutive 1s. In the rest of this 
section, we introduce three lemmas that are helpful to 
shortest-path routing. 
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Lemma 2.1. [21] Suppose P is an arbitrary path 
from the source node to the destination node in HN(d, I), 
where 122. If P contains three or more external links of 
level 1-1, then P is not the shortest. 

Lemma 2.2. [21] Suppose (I,, J,, K,) and (I,, J,, 
K,) are two nodes in HN(d, I) and they reside in the same 
HN(d, i) for some 15i51-1, where 122. Then their shortest 
path does not contain external link of level equal to or 
greater than i. 

Lemma 2.3. [21] Suppose (I,, J,, K,) and (I,, J,, 
Kd) are two nodes in HN(d, I )  and they reside in different 
HN(d, 1-1)s (i.e., I,#[,), where 122. If their shortest path 
contains exactly one external link of level I-1, then it has 
the form: (Z,, J,, K,) ++* (I,, I,, 01'-2) (I,, I,, 01r-2) 
++* (Id, Jd, K,), where ++* indicates a shortest path. 

Suppose (Z, J,, K,) and ( I ,  Jd, Kd)  are two nodes in 
HN(d, I ) .  Since they are located in the same HN(d, 1-1) 
(with identifier I), we can use J&, and J S d  to represent 
their addresses in the HN(d, 1-1). Moreover, we use d(J&,, 
J&d) to denote their distance. The distance between two 
nodes of a network is defined as the length of their shortest 
path. We have the following lemma. 

Lemma 2.4. [21] Suppose (I,, J,, K,) and (I,, Jd,  
Kd)  are two nodes in HN(d, 1) and they reside in different 
HN(d, 1-l)s, where 122. If their shortest path contains two 
external links of level 1-1, then it has the form: (I,, J,, K,) 

+r-l (Id,  J*, 01"2) +-+* (Id,  Jd,  Kd) ,  where J* minimizes 
the value of d(J&,, S01"2)+d(J*01'-2, JJCd). 

++* (I,, s, Ol"2) +*-, (J*, I,, O P )  ++* (J* ,  I,, 011-2) 

3 Shortest-path routing algorithm 

Given arbitrary two nodes in a network, the routing 
problem is to determine a path such that messages can be 
transmitted from one to the other. In this section, an 
algorithm is proposed to determine a shortest path between 
arbitrary two nodes of HN(d, 2). Extension to higher-level 
hypernet networks is also discussed. 

Suppose ( I , ,  J,, K,)  and (I2,  J2,  K2)  are two nodes in 
HN(d, 2), where I , ,  J1, I*, and J 2  have length d-1, and K, 
and K2 have length 1. The combination of J1 and K, (J2 
and K2) uniquely identifies a node in the HN(d, 1) with 
identifier I, (I2). If (I,, J,, K , )  and (I2,  J2,  K2)  are in the 
same HN(d, 1) (Le., 11=12), then their distance can be 
computed as the number of 1s in J 1 K 1 0 J 2 K 2 ,  where 0 
represents the exclusive-OR operation. Besides, their 
shortest path can be determined easily. Hence, in the rest of 
this section, we concentrate our effort on the case of 11#12. 
Letting B ( J 1 K 1 0 J 2 K 2 )  represent the number of 1s in 
J IKl  OJ2K2, we have the following lemma by the aid of 
Lemma 2.3. 

Lemma 3.1. Suppose (I,, J,, K,) and ( I d ,  Jd, Kd) are 
two nodes in HN(d, 2), where I,&,. Then, their shortest 
path that contains exactly one external link of level one 
has length equal to B ( J ~ , O f ~ ) + B ( I , O O J ~ ~ + l = B ( J , O I d )  
+B(I,OJ~+B(K,OO)+B(O~K~+ 1. 

Similarly, by the aid of Lemma 2.4, the length of the 
shortest path that contains two external links of level one 
can be computed as follows. 

Lemma 3.2. [21] Suppose (I, ,  J,, K,) and ( I d ,  J d ,  
Kd)  are two nodes in HN(d, 2), where Z,#Id. Then, their 
shortest path that contains two external links of level one 
has length equal to B(I,OId+B(J,OJd)+B(K,OO)+B(OOKd) 
+L. 

Combining Lemmas 2.1, 3.1, and 3.2, the length of 
the shortest path from (I, ,  J,, K,) to ( I d ,  Jd,  Kd) can be 
determined as follows. 

Theorem 3.1. Suppose (I,, J,, K,) and ( Id ,  Jd,  Kd)  
are two nodes in HN(d, 2), where I,#$& Then, their shortest 
path has length equal to min (B(J,OId)+B(I,OJ,)+B(K,OO) 
+B(OOKd)+l, B(Z,OId)+B(J,OJd)+ B(K,OO)+B(OOKd+2). 

Since determining the shortest path between two nodes 
of HN(d,  1) is very easy, the shortest path between (I,, J8, 
K,) and (Id,  Jd,  Kd)  can be constructed according to either 
Lemma 2.3 or Lemma 2.4. 

Before ending this section, we briefly discuss how to 
obtain the shortest path in HN(d, 1) for b 2 .  First, we 
discuss the case of 1=3. Suppose (I,, J,, K,) and (I,, J,, K,) 
are two nodes in HN(d,  3). If I,=fd, they are located in the 
same HN(d, 2), and the discussion is the same as the case 
of 1=2. So, we assume I#,. Lemma 2.1 assures that their 
shortest path contains one or two external links of level 2. 
If the shortest path contains one external link of level 2, 
its length can be obtained by the aid of Lemma 2.3, 
because the lengths of the subpaths (I,, J,, K,) +-+* (I,, 
I,, 0 1 and (I,, I,, 0 1 1-2)  -+ -+ (I,, J,, K,) can be 
computed as stated in Theorem 3.1. Otherwise, computing 
the length of the shortest path is reduced to determining the 
J* in Lemma 2.4. Unfortunately, no efficient method for 
computing J' is available as yet except a brute-force 
method. 

For the case of 1>3, the level i, where K i l l ,  is first 
determined such that (I,, J,, K,) and (Id,  Jd, Kd)  are in the 
same HN(d ,  i). but in different HN(d, i-1)s. Lemma 2.2 
assures that their shortest path will not travel outside the 
HN(d, i) where they are resident. Again, by Lemma 2.1, 
the shortest path contains one or two external links of 
level i-1. For the former case, the shortest path can be 
determined, provided the shortest-path routing problem is 
solvable for HN(d, i-1). For the latter case, the J' in  
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Lemma 2.4 should be determined before the shortest path 
can be computed. 

To sum up, the main difficulty of the shortest-path 
routing problem arises in computing the J*. 

eter and connectivity 

In this section, the diameter and the connectivity of 
HN(d, 2) are computed. 

A. Diameter 
The diameter of a network is defined as the maximum 

distance between any two of its nodes. By Dd,l we denote 
the diameter of HN(d, I ) .  Hwang and Ghosh [22] have 
proposed an upper bound on Ddl as stated below. 

Lemma 4.1. [22] D&2"'(d+l)-l. 

Letting 1=2, we obtain Dd,,12d+l from Lemma 4.1. 
A lower bound can be established by computing the 
distance of two nodes. Let us consider node 0"' 1 and node 
1"-'1 in HN(d ,  2), where n=(d-l)+(d-l)+l=2d-l is the 
length of the node identifier. By Theorem 3.1, d(On-ll, 1"- 
' 1 )  is computed as min{2d+l, 2d+2}=2d+l, which is 
identical to Hwang and Ghosh's bound. Hence, the 
following theorem holds. 

Theorem 4.1. Dd.,=2d+ 1 

B .  Connectivity 
An important issue when we design a parallel and 

distributed system is how fault-tolerant it is. A commonly 
used measure for the fault-tolerance of a network is the 
minimum number of nodes whose removal can result in 
disconnecting the network. This measure has been referred 
to as connectivity. Thus, a network with connectivity K is 
guaranteed to remain connected even if K-1 nodes are 
removed. 

Obviously the connectivity of a network is bounded 
above by the network degree which is defined as the 
minimum of its node degrees. If the connectivity is equal 
to the network degree, then the network is said to be 
maximally fault-tolerant. By Menger's theorem [SI a lower 
bound on the connectivity can be obtained by counting the 
maximum number of node-disjoint paths between any two 
nodes. It is important for a network to have node-disjoint 
paths between any two of its nodes, in order to speed up 
the transfer of a large amount of data and provide 
alternative routes in case of node failures. 

There are d node-disjoint paths between arbitrary two 
nodes of HN(d,  2), and they can be constructed as follows. 
Suppose ( Z A ,  J A ,  K A )  and (Ig, J B ,  K B )  are two distinct nodes 
of HN(d, 2). If they belong to the same HN(d ,  l ) ,  then the 
d node-disjoint paths can be constructed according to Saad 
and Schultz's work [25]. Otherwise, the d node-disjoint 
paths are constructed as (ZA, J A ,  K A )  -+ ... + ( ]A,  Xi, 0) + 

(xi, I A ,  0) + ... + (xi, 0) + ( I S ,  xi, 0) + + ( I S ,  
.IB, KB),  where i=l, 2, ..., d,  and Xis are all distinct. Since 
the node-disjoint property of the set of subpaths ( IA ,  JA, 
K A )  + ... + ( I A ,  Xi, 0) and the set of subpaths (IB, Xi, 0) 
+ ... -+ (Ig, J B ,  K B )  can be guaranteed by Rabin's work 
[241, these d paths are node-disjoint. Since HN(d,  2) has 
degree d, the following theorem is thus concluded. 

Theorem 4.2. HN(d, 2 )  has connectivity d ,  and is 
maximally fault-tolerant. 

5 Embedding 

In this section the capability of HN(d, 2 )  to embed 
rings, tori, and hypercubes are shown. An embedding of a 
network (guest network) onto another network (host 
network) is a mapping Cp from the node set of the guest 
network to the node set of the host network. Thus, a link 
in the guest network may correspond to a path in the host 
network. Four measures, i.e., dilation, congestion, 
expansion, and load, are commonly used to evaluate a 
mapping. The dilation of Cp is defined as the maximum 
distance between $(U)  and $(v) for all links ( U ,  v )  in the 
guest network. The congestion of $I is defined as the 
maximum number of links in the guest network whose 
corresponding paths in the host network contain the same 
link in the host network. The expansion of (b is defined as 
the ratio of the number of nodes in the host network to the 
number of nodes in the guest network. The load of Cp is 
defined as the maximum number of nodes in the guest 
network that are mapped to the same node in the host 
network. If all four measures are constant, the host 
network can efficiently simulate the guest network with 
constant slowdown. 

A.  Embedding of rings 
A cycle in a network is called a hamiltonian cycle if it 

contains every node of the network exactly once [4].  
Similarly, a hamiltonian path is a path that contains every 
node of the network exactly once. A network is 
hamiltonian if it contains a hamiltonian cycle. A direct 
consequence of the hamiltonicity of a network is its 
capability of embedding a ring. If a network is 
hamiltonian, then it can embed a ring with all four 
measures equal to one. 

It is not difficult to construct a hamiltonian cycle for 
the hypercube. For example, the three-dimensional 
hypercube contains a hamiltonian cycle as follows: (000, 
001, 011, 010, 110, 1 1 1 ,  101, loo), which is really a 
Gray code of three bits. A Gray code [8] of n bits contains 
2" distinct codewords (G(O), G(1),  G(2) ,  ..., G(2"-1)), 
where each G(i), 05i52n-1, is an n-bit sequence, such that 
G ( i )  and G(( i+ l )  MOD 2") differ in exactly one bit 
position. For illustration, (000, 001, 101, 100, 110, 1 1 1 ,  
011,010) is another Gray code of three bits. 
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Gray codes can be constructed conveniently by a 
recursive method. Suppose (G(O), G(l), G(2), ..., G(2"-1)) 
is a Gray code of n bits. Then, (OG(O), OG(l), OG(2), ..., 
OG(2"-1), 1G(2"-1), ..., 1G(2), 1G(1), lG(0)) forms a Gray 
code of n+l bits. Also note that Gray codes thus 
constructed have a property that the first codeword and the 
(2'-'+l)th codeword differ from the 2'th codeword in exactly 
one bit position. In the last instance, OG(O), 1G(2"-1), and 
lG(0) are the first, the (2"+l)th, and the 2"+lth codewords, 
respectively, and OG(0) and 1G(2"-1) differ from lG(0) in 
exactly one bit position. A more detailed description about 
Gray codes can be found in [8]. 

Since the hypercube is hamiltonian, there is a 
hamiltonian path between its two adjacent nodes. So, in 
HN(d, 2) there is a hamiltonian path between node ( I ,  G(i), 
0) and node ( I ,  G(i+l) MOD 2d-1, 0), where OIi12d-1-1, 
and it is conveniently expressed as ( I ,  G(i), 0) +H ( I ,  
G(i+l) MOD 2d-1, 0). By the aid of Gray codes, a 
hamiltonian cycle of HN(3, 2) can be constructed as 
follows. Letting (G(O), G(l), G(2), G(3)) denote a Gray 
code of two bits, a hamiltonian cycle of HN(3, 2) is 
expressed as (G(O), G(2), 0) -+H (G(O), G(3), 0) -+ (G(3), 
G(O), 0) +H (G(3), G(1), 0) -+ (G(1), G(3), 0) -+H (G(1), 
G(2), 0) + (G(2), G(1), O)+H (G(2), 0) + (G(O), 
G(2), 0). In this construction, the nodes are traveled in the 
sequence of (G(O), *, *), (G(3), *, *), (G(l), *, *), and 
(G(2), *, *), where (G(i), *, *), OIiI3, represents the set 
of nodes contained in the HN(3, 1) with identifier G(i). 

The construction above can be extended to HN(d, 2) 
for d>3. Since HN(d, 2) is hamiltonian, the following 
result is concluded. 

Theorem 5.1. [21] HN(d, 2) can embed a ring with 
dilation 1, congestion 1, expansion 1, and load 1. 

B.  Embedding of tori 
Next, we consider an embedding of a torus T of size 

2 d - 1 ~ 2 d  onto HN(d, 2). A torus is simply a mesh with 
wrap-around links in the rows and the columns. The node 
set of T can be conveniently expressed by (T(i, J) I i=O, 1, 
..., 2d-1-1 and j=O,  1, ..., 241).  Suppose Gl(0), Gl(l), ..., 
G,(2d-1-1) constitute a Gray code of d-1 bits, and G,(O), 
G2(l), ..., G,(2d-1) constitute a Gray code of d bits. 
Moreover, let X(G,(i)) represent the subsequence of G,09 
that contains the leftmost d-1 bits and Y(G,(j)) represent 
the rightmost bit of G2@. For example, if G,(j)=110011, 
then X(G2(j~)=11001 and Y(G2(i))=1. A bijective mapping 
I$ from the node set of T to the node set of HN(d, 2) is 
defined as follows: $(T(i,J))=(G*(i), X(G,(j]), Y(G,(j))). 
Clearly $ has load 1 and expansion 1. 

Theorem 5.2. [21] HN(d, 2) can embed a torus of 

size 2d -1~2d  with dilation 5, average dilation T - F ,  5 1  

1 0 ~ 2 ~  - 8  
d ~2~ +2d-1  -1' 

congestion 8, average congestion 

load 1, and expansion 1. 
The average dilation is bounded above by 2.5, and the 

average congestion is decreasing as d grows. For nontrivial 
HN(d, 2)s, i.e., d22, the average congestion is bounded by 
32/9. The following corollary is an immediate consequence 
of Theorems 5.1 and 5.2. 

Corollary 5.1. Suppose A is an algorithm 
executable on a ring of length 22d-1 or a torus of size 2d- 
' ~ 2 ~ .  Then, A can be executed on HN(d,  2) as well with 
constant slowdown. 

C. Embedding of hypercubes 
We consider an embedding of a hypercube N of 

dimension 2d-1 onto HN(d, 2). The node set of I1 i s  
conveniently expressed by ( H ( K )  I K E (0, 1 Let 
K=IIIJ, where I is a (d-1)-bit sequence, J is a d-bit sequence, 
and 11 represents the concatenation of I and J .  A bijective 
mapping q5 from the node set of H to the node set of HN(d, 
2) is defined as follows: I$: H(II1.l) -+ (I ,  X(.l), Y(J)), where 
X(J) represents the subsequence of J that contains the 
leftmost d-1 bits and Y(J> represents the rightmost bit of J .  
Clearly, the load and the expansion of # are all 1. 

Theorem 53.  [21] HN(d, 2) can embed a hypercube 
of dimension 2d-1 with dilation 5, average dilation - 
(5d - 4) x 22d-2 - ( d  - 1) x 2d 5 

2 
(e - ) ,  load 1, and 

(2d - 1) x 22d-2 
expansion 1. Although the congestion is not constant, the 
average congestion is smaller than 5. 

Now that the congestion is not constant, HN(d ,  2) 
cannot simulate all algorithms of H with constant 
slowdown. However, if we forcus our attention on the data 
parallel algorithms [ 181, efficient simulation is still 
possible. The data parallel algorithms when they are 
executed on the hypercube have their operands transmitted 
over the links of the same dimension at every computation 
step. Most existing algorithms designed for the hypercube 
fall into this category. To simulate the data parallel 
algorithms, we only need to simulate the data transmission 
along each dimension. Assume data transmission is 
requested for the ith dimension from the right, where 
lSi22d-1. If l I i Id ,  the links used for data transmission are 
of type (H(ZIIJ), H(ZIIJ9). According to the link-to-path 
correspondence, the data transmission can be simulated by 
the links ( I ,  X(J), Y(J)) -+ ( I ,  X(J9, Y(J9) of HN(d, 2). 
Note that different links of type (H(IIIJ),  H(IIIJ')) are 
simulated by different links of HN(d, 2). 

On the other hand, if d+lSil2d-l ,  the links used for 
data transmission are of type (H(IlV), H(I'1V)). According to 
the link-to-path correspondence, the data transmission can 
be simulated by paths of HN(d, 2) whose lengths range 
from 2 to 5. Moreover, each link in these pa th  is 

10 1 



responsible for simulating at most two links of H. For 
example, the link (X(J), I ,  0) + (X(J), I ' ,  0) is responsible 
for simulating two links, (H(ZIW(J)O), H(I'IW(J)O)) and 
(H(IllX(J)l), H(I'lw(J)l)), of H,  whereas the link (X(J). I ,  
1) -+ ( X ( J ) , Z ,  0) is responsible for simulating only one 
link, (H(IllX(J)l), H(Z'lw(J)l)), of H .  According to the 
discussion above, we have the following theorem. 

Theorem 5.4. Suppose A is a data parallel 
algorithm executable on a hypercube of dimension 2d- 1. 
Then, A can be executed on HN(d, 2) as well with constant 
slowdown. 

6 Conclusion 

The hypernet, which integrates positive features of 
both hypercubes and tree-based topologies, is suitable to be 
the topology of a massively parallel computer system, 
especially for distributed supercomputing and AI 
applications. In addition to the two structural advantages of 
easy expansion and equal degree, the hypemet has proven 
efficient for communication and computation. However, 
there is a drawback for the hypemet: the number of nodes 
increases very rapidly. For example, the hypemet contains 
more than one million nodes if I=3 and d>5 or 1-4 and d>3 
or b-4 and d>2. Therefore, taking a practical consideration, 
we emphasize the hypemet of feasible size in this paper. 

A mathematical definition of a network is very 
necessary, in order to clarify its structure. In [22], Hwang 
and Ghosh have described the structure of the hypemet, to a 
certain degree, informally. In this paper, we first introduce 
a concise mathematical definition for the hypemet. This 
definition is very crucial for us to work out subsequent 
results. 

Although a heuristic routing algorithm for the 
hypernet has been proposed by Hwang and Ghosh [22], it 
is not a shortest-path one. In this paper, we designed a 
shortest-path routing algorithm for the hypemet of two 
levels. The design method can be generalized to the 
hypernet of higher levels. 

Many important topological properties of the hypemet 
were not investigated before. Hwang and Ghosh [22] have 
suggested an upper bound of the diameter. In this paper, we 
computed the exact value of the diameter. The connectivity 
was obtained by constructing maximum number of node- 
disjoint paths between any two nodes. Moreover, we 
showed the embedding of rings, tori, and hypercubes into 
the hypernet. 

When d=2, the number of nodes contained in the 
hypernet grows more slowly with respect to I (see Table I). 
So, it is the next subclass of the hypemet networks which 
we will pay more attention to in the near future. 
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Table I. The number of processors contained in the hypemet 

Figure 1. The structure of HN(3,3). 
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