
Adsmith: An Efficient Object-Based Distributed Shared
Memory System on PVM

Wen-Yew Liang Chun-Ta King Feipei Lai

Dept. Computer Science Dept. Computer Science Dept. Electrical Engineering
and Information Engineering National Tsing Hua University & Dept. Computer Science
National Taiwan University Hsinchu, Taiwan and Information Engineering

Taipei, Taiwan

Abstract
In this paper, wt: describe a n object-based distribut-

ed shared memory called Adsmi th . In a n object-based
D S M , the shared m.emory consists of m a n y shared ob-
jects, through which the shared m e m o r y i s accessed.
Adsmi th is built on top of PVM at the library layer us-
ing C++. PVM is used as the communication subsys-
t e m because it is a de fac to standard and encapsulates
many sys tem related details. Several mechanisms are
used t o improve the performance of Adsmi th , such as
release memory consistency, load/store-like memory
accesses, nonblocking accesses, and atomic operations,
etc. Performance results show that even though Ad-
smith is implemented on top of PVM, programs run-
ning on Adsmi th can achieve a performance compara-
ble wi th those running directly o n PVM.

1 Introduction
For ease of construction and high scalability, many

high performance parallel computers today are built
as distributed memory systems. In such systems, mes-
sage passing is the most general programming paradig-
m. With message passing, programmers are forced
to manage the data flows explicitly - they have to
know where a piece of data is located and when to
set up the send/receive pair between two communi-
cating entities. Such a task is tedious and error-prone.
Shared-memory programming, on the other hand, re-
lieves programmers from managing shared data ex-
plicitly. Thus programs can be developed more easi-
ly. Combining distributed-memory architecture with
shared-memory programming is thus a right choice for
parallel computers. Based on this observation, dis-
tributed shared m e m o r y (DSM) was proposed and has
attracted much attention [8].

A DSM provides a logically shared memory on top
of a network of computers with a physically distribut-
ed memory. Previous approaches to DSMs usual-
ly partition the shared-memory addressing space in-
to logical fix-sized pages, which are distributed to the
nodes in the system. Through a memory manager,
the nodes can access to any page in the shared ad-
dressing space. Such a DSM system is referred to as

National Taiwan University
Taipei, Taiwan

a block-based DSM in this paper. Block-based DSMs
are often taken as an extension of traditional virtual
memory systems, and thus are usually implemented
at the hardware and/or operating system layers. One
advantage of such an implementation is transparen-
cy - the memory system is totally hidden from the
users. However, block-based DSMs have the problem
of choosing the right size for the blocks. The block size
depends not only on the system characteristics but al-
so on the applications. Another problem is the design
complexity. Implementation a t the hardware and/or
operating system layers needs to modify existing sys-
tems, which requires a tremendous effort. Also, these
implementations are usually system dependent. Thus
it is very difficult to implement block-based DSMs on
top of heterogeneous systems.

Another approach to DSM is object-based, which
partitions the shared memory according to logical da-
t a structures. Object-based DSMs are most often im-
plemented a t the language/compiler or library layers.
DSMs implemented a t this layer usually require some
modifications at the users’ end - either to the pro-
gramming model, language, or style. Thus, transition
from sequential computers to such an environment is
not so seamless and transparent. Since object-based
DSMs are implemented a t a rather high layer in a
computer system, performance is not as good as that
of blocked-based DSMs. However, object-based DSMs
do offer some unique and important features.

An implementation at higher layers makes object-
based DSMs very flexible and system independent.
Programmers have a larger control over how data are
distributed according to the characteristics of the ap-
plication. Also, programmers can determine impor-
tant parameters, such as the block size, access method,
communication mechanism, memory consistency mod-
el, etc., easily in object-based DSMs. The DSMs can
be directly implemented on top of existing generic
communication subsystems, such as TCP/IP, PVM,
or DCE. Not only that system development efforts can
be reduced dramatically, but also porting to different
architectures is straightforward. Furthermore, the re-
sulting system can be easily modified and improved

1087-4089/96 $5.00 0 1996 IEEE
173

when newer techniques are available.
Object-based DSMs can be implemented at the lan-

guage/compiler layer or the library layer. For the for-
mer implementation, new compilers or preprocessors
must be developed. Techniques involved in automat-
ic data partition and distribution, parallelism extrac-
tion, and communication optimization are still imma-
ture and the development efforts are enormous. For
library-layer implementations, we only have to sup-
port primitives which may be useful for programming
and compiler, such as those for distributing data, for
utilizing efficient memory consistency model, and for
performance tuning. Thus, implementing the DSM in
library layer is more feasible.

Another issue in implementing object-based DSM-
s is choosing a suitable communication subsystem.
An ideal communication subsystem must be general
enough and have well-defined communication inter-
face, in which system details are encapsulated. PVM
is one of the best choices. PVM stands for Parallel
Virtual Machine [lo]. It enables a collection of het-
erogeneous computers to be used as a coherent and
flexible concurrent computational resource [3]. PVM
provides process management, message buffering, and
other useful message passing utilities. PVM has been
ported to many systems and is a de facto standard in
high performance computing. A DSM built on top of
PVM can support both message passing and shared
memory programming. Thus for accesses with known
patterns, message passing can be directly used to min-
imize the number of messages, but for unknown pat-
terns, shared memory accesses can be used [I].

We have designed and implemented an efficient
object-based DSM called Adsmith. It is implemented
a t the library layer on top of PVM. Programmers use
the system through C++. Although Adsmith can be
easily ported to different architectures through PVM,
it currently does not support heterogeneous environ-
ments for efficiency reasons. Adsmith supports many
options that allow the users to specify the properties
of each declared object, data access methods, data
distribution, memory consistency policies, and com-
munication mechanisms. Although Adsmith is built
on top of PVM, applications with careful design can
still achieve good performance on Adsmith. Later we
will compare applications running on Adsmith and on
the bare PVM.

In this paper, we will investigate the issues involved
in the implementation of Adsmith and describe its us-
er interface. The rest of the paper is organized as fol-
lows. In Section 2, we introduce the design strategies
of Adsmith. In Section 3, the user interface and the
programming style of Adsmith are described. In Sec-
tion 4, we show some preliminary performance results
of Adsmith. We conclude this paper in Section 5 .

2 Implementation Strategies
Since Adsmith is totally independent of the under-

lying operating system, its performance may suffer.
Reducing the number of messages and the communi-
cation latency is very important. Several methods are
used in Adsmith to solve this problem, including the

use of the Release Consistency memory model' [4],
load/store-like data accesses (Section 2.2), nonblock-
ing accesses (Section 2.4 and 3.4), and atomic access-
es (Section 3.7.) We will describe these techniques in
more detail below.
2.1 Communication Subsystem

Generally, active messages [2] are used in DSMs to
eliminate the need for message buffering and to reduce
the access latency. Unfortunately, Adsmith cannot
use active messages, because PVM does not provide
needed supports. Note that software active messages
usually need the help of system dependent function-
s. Since the communication details are encapsulated
by PVM, using any system dependent functions di-
rectly in Adsmith could be very dangerous. Beside,
PVM uses nonblocking sends. Thus, message buffers
in user space always exist. As a result, Adsmith does
not employ active messages but use nonblocking send-
s instead. One advantage of nonblocking sends is to
overlap computations and communications, which is
important for high performance parallel computing.
2.2 Data Granularity

Data granularity is the unit size of the data during
internal data allocation and external transmission. In
object-based DSMs, users have the freedom of specify-
ing the data granularity. As a result, the false-sharing
problem can be avoided.

A problem with object-based DSMs is that the
shared objects tend to be small. Since each reference
to a shared object may cause a read or write request,
many messages may be generated. Since memory ref-
erences exhibit locality, we solve the above problem
with a load/store-like m e m o r y access style. A load
operation is performed only for the first read access,
and a store operation for the last write access. Other
accesses for the shared object in the program segment
can be performed locally through a cached copy. This
is similar to the data access methods in load/store ar-
chitecture. Load/store operations in Adsmith will be
described in Section 3.
2 .3 Data Distribution

Under object-based DSM, users have a larger con-
trol over how shared data are distributed - based on
the application behavior and machine characteristics.
In our implementation, the home location of a shared
object is randomly selected by default. The program-
mer or parallelizing compiler can also determine how
the shared objects are distributed.

Allowing the home nodes to be moved from time
to time is not practical in distributed environments,
because many messages will be produced due to the
change of home nodes. Adsmith fixes home nodes to
simplify the implementation. The problem of such a
scheme is that the home node may not be the one
which accesses to the object the most. Programmers
can help to solve this problem by setting the home n-
ode to the host that has the most references to the ob-
ject. If the process with the most references changes a t
different execution phases, the programmer/compiler
can also force the home to be changed. The ability to

'Currently, RG,, is implemented.

174

manually change the home nodes is now under devel-
opment in Adsmith.
2.4 Write Policy and Coherence Protocol

Two general write policies are write-through and
write-back. In Adsmith, both write policies are sup-
ported. Since load/store-like memory accesses are
used, the last, write accesses are always delimited by
the programmer. Thus write accesses need not actual-
ly be performed to the home node until the last write
access is encountered. The last write access can use a
write-through polic.y, while others a write-back policy.

Pipeline write means that several write requests can
be outstanding at the same time. Pipeline write will
have no benefit if the write function is invoked for
every write access, because this will produce a large
amount of messages [7]. Since most accesses in Ad-
smith are done locally, pipeline write can be used to
overlap the communication with the computation.

There are two general methods for data coherence:
write-invalidate and write-update. Write-update will
update all the copies of the written data, while write-
invalidate will only invalidate the copies. Write-
update needs to include the content of the modified
data in its coherence message. Since Adsmith is an
object-based DSM, most objects are small. A write-
update and a write-invalidate message will have simi-
lar communication costs. To allow maximum flexibil-
ity, Adsmith supports both.
2.5 Memory Model

Release consistency (RC) is implemented in Ad-
smith. Shared accesses in RC are classified as compet-
ing accesses (special accesses) and noncompeting ac-
cesses (ordinary accesses). Competing accesses mean
that two or more accesses may refer t o the same shared
memory location ai the same time and a t least one
is a write access. Special accesses are further catego-
rized as synchronizakion accesses and nonsynchroniza-
tion accesses. Nonsynchronization accesses are com-
peting accesses which are not used for synchronization
purposes. Synchronization accesses are further divid-
ed into acquire accesses and release accesses. Adsmith
provides all these access operations. Programmers are
responsible for writing properly-labeled programs by
utilizing these operations [4].
2.6 Architecture of Adsmith

Adsmith is completely built on top of PVM. A dae-
mon will be spawned for each host to support run-
time shared object handling. Internal manipulations
of shared objects are totally transparent to the users.
The basic organization of Adsmith is shown in Fig-
ure 1.

The architecture can be divided into two layers:
Logzcal Shared Memory Layer (LSML) and Process
Bufler Layer (PBL). LSML is supported by the dae-
mons. Each daemon will interact with the application
processes to provide shared-memory services. Shared
objects are distributed to the memories of the partic-
ipating hosts. PBL exists in each application process.
Shared data are buffered in PBL and refreshed from
and flushed to LSML when necessary. Note that there
is no limitation on the buffer size. The whole local
memory can be used as buffers. Status information

of shared objects are distributed in the data mapping
directories on each daemon and the referencing pro-
cesses.

3 Programming on Adsmith
Adsmith is implemented as a user level library in

C++ with PVM as its communication platform. It
can be viewed as adding a DSM layer on top of PVM.
Both the PVM message-passing library and the Ad-
smith shared-memory library are accessible a t the
same time. In this section, we introduce the main
functions provided in Adsmith.

3.1 System and Process Control
The progra.mmers need not do any initialization or

termination explicitly. All these works are automat-
ically accomplished by the object initialization facili-
ties provided by C++. The library contains a system
object, which is responsible for system initialization
and termination.

For process creation, although PVM has provid-
ed the function pvmspawn(), we require that child
processes be created through adsmspawn() from Ad-
smith. This is because some system information will
be transmitted during the process creation time.
3.2 Shared Object Allocation and Deallo-

cation
Shared objects can only be allocated at run time.

Two forms of the allocation function are supported:

void * adsmmalloc(char *identifier, int size,

void * adsmmalloc(char *identifier, int size,
int hint = AdsmDataDefault);

void *init, int hint = AdsmDataDefault);

In the declaration, size is the size of the shared object
and identifier is the string name used to refer to the
shared object. All shared objects must be allocated
before they are used. The parameter, init, in the sec-
ond form is used to set the initial value for that shared
object.

Several options can be set through the hint param-
eter to affect the access behaviors of a shared object.
Currently, the value of hint may be AdsmDataCache,
AdsmDataLocal and AdsmDataUpdate. AdsmData-
Cache means that the shared data will be cached in
application processes and managed through the coher-
ent protocol. AdsmDataLocal means that the shared
object will be allocated on the local host. This can be
used when most accesses of the object are performed
by the local processes. AdsmDataUpdate means that
write-update will be used as the coherence protocol
for the declared object. By default, write-invalidate is
used if AdsmDataCache is selected. All these values
can be set simultaneously by the or operation in C++.

After the shared object is done referencing, the
buffer space can be freed by the following function:

adsmfree(void * ptr);

Freed objects can be reused by reallocating them a-
gain.

175

3.3 Shared Array Declaration
Arrays are often used in scientific computations and

the distribution method will significantly affect the ex-
ecution efficiency. Adsmith allows the programmer to
specify the distribution method of an array. The array
allocation function has two forms:

void adsmmallocarray(char * identifier,
int elmt-size, int num, void * array,
int hint = AdsmDataDefault);

void adsmmallocarray(char * identifier,
int elmt-size, int num, void * array,
int * dist, int hint = AdsmDataDefa.uk);

We explain this function by the following example.
Assume that we want to declare a two dimensional
array of integers according to a certain distribution
method. The code will look like this:

int *C[N] [NI; // pointers to allocated elements
int distC[N][N]; /* distribution array, which
contains the home node for each element */
adsmmallocarray (”arrayC”,sizeof(int),

N*N,C,distC); // allocate
. . . refer to each element by *C[i] b3 . . .

The identifier “arrayC” is the name of the whole
array. Each element can be referenced by “array-
C[i]”, where i means the i-th element. The home n-
ode where each element is distributed to is specified
in distC[N][N]. After allocation, pointers to the N*N
shared objects are stored in array C. Further refer-
ences to the shared array can then be made through
the returned pointers, i.e., *C[i]b]. Usually, the distri-
bution is determined by the parallelizing compiler or
the programmer.
3.4 Ordinary Accesses

After a shared object has been allocated, an address
will be returned, which points to the buffer space of
the shared object. As described previously, Adsmith

uses a load/store-like memory access style. Thus most
shared object accesses are done on the local buffer.
Actual accesses to the shared memory must be per-
formed through the following two operations. They
refresh the buffers from and flush their contents to
the shared memory when necessary.’

adsmrefresh(void * ptr);
adsmflush(void * ptr);

Since no hardware or operating system related fa-
cilities are used in Adsmith, data should be manually
refreshed (loaded) from LSML by the programmer be-
fore they are accessed. Similarly if data are modified,
they should be flushed (stored) back to LSML after
they are referenced. Under RC, adsmrefresho is for
ordinary loads, and adsmflush() is for ordinary stores.
The value refreshed is guaranteed to be as up-to-date
as that a t the time of the last acquire (see the next
section).

For more efficient da ta accesses, Adsmith also sup-
ports nonblocking load, i.e., da ta prefetching, through
the following function.

adsm-prefresh(void * ptr);

The function is very similar to adsmrefresh() and the
programmer can insert the prefetch function before
the first load access as far as possible. The sequence of
shared data accesses in Adsmith is depicted as follows:

Acquire --+ Prefresh --+ Refresh -+
Local Accesses t Flush t Release

where Refresh and Flush are ordinary accesses dis-
cussed above. Nonblocking load and store will be
performed between prefresh-refresh and flush-release
pairs respectively. The code segment below is a typical
example to perform computations on a shared object
within a critical section:

’If AdsmDataCache is specified, adsmrefresh() may be
performed locally without the need of any communication.

176

http://AdsmDataDefa.uk

typeA *A = (typeA*) adsmmalloc(
”A”, sizeof(typeA));

AdsmMutex: mutex(”mutex name”);
/ / AdsmMutex is a synchronization class
mutex.lock();
adsm-prefresh(A);
. . . prologue of computation . . .
adsm refresh(A);
. . . computations with local access on A 1 .

adsmflush(A);
. . . epilogue of computation . . .
mutex.unlock();

Note that adsm.refresh() is still required for the
first load access to “ i r e that the requested data has
arrived.
3.5 Synchronization Accesses

Ordinary accesse:3 require that the programmer use
enough synchronizations to ensure the correctness.
Adsmith provides three classes of synchronization op-
erations: counting semaphore, mutex and barrier. The
public methods are listed as follows:

AdsmSemaph0re::wait ();
Adsm Semaphore: : signal() ;
AdsmMutex::lock();
AdsmMutex::unlock();
AdsmBarrier::barrier(int count);

Among the synclhronization functions, semaphore
wait, mutex lock and barrier are acquire accesses, and
semaphore signal, mutex unlock and barrier are release
accesses. An acquire is needed in order to gain the
access right to a set of data, and a release is used to
grant the access right. The RC model guarantees that
ordinary accesses after an acquire will obtain the most
up-to-date data available at the time of the acquire.
3.6 Nonsynchronization Accesses

Adsmith has two nonsynchronization functions:

adsmrefreshinow(void * ptr);
adsmflushnow(void * ptr);

These two accesses will be performed without wait-
ing for previous ordinary accesses. That is, a write
through adsmflush .now() will be seen immediately
by all the following loads through adsmrefresh-now(),
even when they are invoked by other processes.
3.7 Atomic Accesses

Consider accessin,g a shared object in a critical sec-
tion. The number of message required may be at most
seven, including two for acquire, two for refresh, two
for flush, and one for release. It will be expensive when
there is only one object in the critical section.

The problem can be solved by allocating the syn-
chronization arbitrat#or to the home node of the shared
object and combining these two operations. During an
acquire, the requested data can be piggy-backed on
the lock grant message. After the computations, the
modified data can also be sent back with the release
message. In this way, the required messages will be re-
duced to four (two for acquire and refresh, and two for

flush and release) at most. Since most of the shared
objects are small, carrying the data contents directly
in the acquire/release messages should not affect the
performance.

Adsmith provides atomic accesses to support this
kind of accesses. Two functions are supported:

adsmatomic-begin(void *ptr ,

adsmatomic-end(void *ptr);
int type = AdsmAtomic Wri te);

The function adsmatomic-begin) can be viewed as a

adsmatomic-end() as a combination of flush and re-
lease. Note that in Adsmith these operations are cate-
gorized as nonsynchronization accesses. It can not be
used as synchronization accesses, because coherence of
other shared objects are not maintained here. Here is
an example of atomic accesses modified from that in
Section 3.4.

combination of acquire and refres 6 , while the function

typeA *A =(typeA*) adsmmalloc(”A”,

adsmat omicbegin(A) ;
. . . computation with local access on A . .
adsm-atomic-end(A);

sizeof(typeA));

Let the program segment between adsmatomic-
-begin() and adsmatomic-end() be called atomic sec-
tion. Two types of atomic operations can be specified
in the type parameter in adsm-atomic-begin(): Ads-
mAtomicWrite and AdsmAtomicRead. The former is
to indicate that both read and write accesses are in-
cluded in the atomic section; and the latter is to indi-
cate that only read accesses exist in the section. Ad-
smith implements single-writer/multiple-readers pro-
tocol. For a writer, adsmatomicebegin() can be per-
formed only when there are no readers nor writers in
the atomic section. For a reader, adsmatomic-begin()
can be performed only when there is no writer in the
atomic section. For fairness purpose, Adsmith imple-
ments the writer first protocol. That is, when a writer
is waiting to enter the atomic section, readers which
come after the writer will be blocked until the writ-
er has finished its atomic section. Of course, readers
before the writer can proceed until they all exit their
atomic sections.

3.8 Pointer
Pointers in shared memory are supported in Ad-

smith, but the usage is not so straightforward. This
is because the address of a shared object in one pro-
cess may not be the same as that in the other process.
Thus, the programmers are required to translate the
local address of a shared object to a globally recog-
nizable address before the address is passed to other
processes through the shared memory. Functions for
pointer manipulations are as follows:

int adsmgid(void *ptr);
void * adsmattach(int gid);

177

The function adsmgid() translates the local address
of a shared object into its global address, which is rep-
resented by an integer. The function adsmattach() ,
on the other head, translates a global address back to
the local address for the requesting process.

For example, if the programmer wants to pass the
address of shared object T from process P l to process
PZ through the shared object (pointer) S, the following
two code segments can be used.

/ / process P1 sets the pointer
A d s m B a r r i e r Bpointer(”barrier for this code”);
sometype *T = (sometype*) a d s m m a l l o c (

”target data”, sizeof(sometype));
int *S = (i n t *) a d s m m a l l o c (”pointer to T”,

*S = adsm-gid(T); // get global address of T
a d s m f l u s h n o w (S) ; / / flush immediately
Bpointer.barrier(2); // done
// process PZ gets the pointer
A d s m B a r r i e r Bpointer(”barrier for this code”);
int *S = (i n t *) a d s m m a l l o c (”point to T”,

Bpointer.barrier(2); // wait until P1 is done
a d s m r e f r e s h n o w (S) ; / / get the pointer value
/ / attach the pointer into local address space
sometype *T = (sometype*)adsmattach(*S);

sizeof(int));

sizeof(int));

4 Performance Evaluation
In this section we study the performance of Ad-

smith through an application program that solves the
Traveling Salesman Problem. We will compare the
performance of the application programs developed in
Adsmith and in PVM. The PVM version was written
following the master-slave programming model. We
ported it onto Adsmith using the SPMD (Single Pro-
gram Multiple Data) model with the algorithm un-
changed. There are two major communication parts
in the program, which are used to compute a glob-
al maximum (minimum) from local maximums (mini-
mums). The related code segments are listed below.

PVM version:

Master Program

int slaves[SLAVE-NUM]; / / slave tids
/ / get local maxs and compute the global max
float max=0.0;
for (int i=O; i<SLAVE-NUM; i++) {

pvmrecv(-l,SOME-TAG);
pvm-upkfloat(&local-max,l,l);
if (localmax>max) max=localmax;

I // broadcast the global max
pvminitsend(PvmDat aDefault) ;
pvm-pkfloat(&max, 1,l);
pvmmcast (slaves,SLAVE-NUM ,SOME-TAG);

Slave Program

int master; / / master tid
// compute local max
float localmax= . * .
/ / send local max to master
pvminitsend(PvmDataDefault);
pvm-pkfloat(&localmax, 1,l);
pvmsend(master,SOME-TAG);
/ / get global max from master
float max;
pvmrecv(master,SOME-TAG);
pvm_upkfloat(&max, 1,l);

A d s m i t h version:

// compute local max
float localmax= . . .
float *max=(float*)adsmmalloc(

/ / compute max thru atomic operation
adsm-atomic-begin(max) ;
if (local-max>*max) *max=localmax;
a d s m a t o m i c - e n d (m a x) ;
// wait for all processes done
A d s m B a r r i e r Btsp(”tsp”);
B tsp . barrier (PROC-NUM) ;
/ / get the global max
a d s m r e f r e s h (m a x) ;

”max” ,sizeof(float));

Atomic accesses are used in the Adsmith version,
because there is only one shared object in the critical
section. From the code, we can roughly compute the
ratio of the number of messages required by the PVM
version to that by the Adsmith version, which is about
1:4. One reason for the larger number of messages in
the Adsmith version is because we did not write the
Adsmith version from scratch, but only translate it
from the PVM version directly.

Two Sparc 2 workstations were used in the experi-
ment. The performance results are shown in Table 1.
Surprisingly, we find that as the problem size increas-
es, the execution time of the Adsmith version becomes
closer to that of the PVM version. It is even short-
er when the number of cities is greater than 10,000.
One explanation is that the communications are over-
lapped between processes in Adsmith. Besides, the
implementation overheads are lower in Adsmith.

5 Conclusion
In this paper we have introduced an object-based

approach to DSM designs and described how such a
system, called Adsmith, is built. Major features of
Adsmith are listed below:

1. It is an object-based DSM implemented as a user-
level library in C++ on top of PVM.

2. It has a two-level memory hierarchy: process
buffer layer and logical shared memory layer.

3. Information about shared objects is distributed
in both daemons and application processes. Pro-
grammers are allowed to specify the distribution
of shared objects/arrays.

178

[Cities I PVM version I Adsmith version] Speedup I

Table 1: Execution times for the TSP program

4. The home nodes of shared objects are fixed. Pro-
grammers can determine whether the shared ob-
ject is to be cached or not.

5. It employs a load/store-like data access style and
the Release Consistency model is fully supported.

6. It provides atomic accesses to minimize the num-
ber of messages.

7. Nonblocking store (pipeline write) and nonblock-
ing load (prefeitch) are used to overlap communi-
cations and computations.

8. Both write-through and write-back are support-
Different shared objects can have different ed.

coherence protocols.

Since we built our system on top of PVM, the im-
plementation considerations were quite different from
others. For example, using PVM prevents us from
adopting the active message mechanism, and a higher
communication overhead is involved. Thus, our ma-
jor task is to reduce the number of messages. Many
features listed above help to achieve this goal. In ad-
dition, many flexibilities are provided to help perfor-
mance tuning, especially for the parallelizing compil-
ers. For example, shared objects can be set to use
cache or not, to use write-update or write-invalidate,
etc. Home nodes can be assigned by the programmer
or the compiler, so can the distribution of shared ar-
rays. Also prefetching is supported to hide the load
access latency. Preliminary experimental results show
that Adsmith is efficient and can achieve very good
performance.

References
[l] Tzi-cker Chiueh and Manish Verma,

“A Compiler-Tbirected Distributed Shared Mem-
ory System,” 9th A C M International Conference
on Supercomputing, 1995.

[2] Thorsten von Eicken, David E. Culler, Seth
Copen Goldstein, Klaus Erik Schauser, “Active
Messages: a Mechanism for Integrated Commu-
nication and Computation,” In Proceedings of the
19th International Symposium o n Computer Ar -
chitecture, May 1992.

[3] A. Geist, et al., P V M 3.0 User’s Guide and Ref-
erence Manual, Oak Ridge National Laboratory,
1993.

[4] K. Gharach.orloo, D. Lenoski, J . Laudon, P. Gib-
bons, A. Gupta, and J. Hennessy, “Memory Con-
sistency and Event Ordering in Scalable Shared-
Memory Multiprocessor,” In Proceedings of the
17th Annual International Symposium on Com-
puter Architecture, pp. 15-26, May 1990.

[5] Kirk L. Johnson, M. Frans Kaashoek, and Deb-
orah A. Wallach, “CRL: High-Performance All-
Software Distributed Shared Memory,” In Pro-
ceedings of the Fijleenth Symposium on Operating
Systems Principles, December 1995.

[6] Pete Keleher, Alan L. Cox, Sandhya Dwarkadas
and Willy Zwaenepoel, “TreadMarks: Distribut-
ed Shared Memory on Standard Workstations
and Operating Systems,” In Proceedings of the
2994 Winter Usenix Conference, pp. 115-113, Jan
1994.

[7] Wen-Yew Liang, “ADSMITH: A Structure-based
Heterogeneous Distributed Shared Memory on
PVM,” Master Thesis, National Tsing Hua U-
niversity, Taiwan, June 1994.

[8] B. Nitzberg and V. Lo, “Distributed Shared
Memory: A Survey of Issues and Algorithms,”
I E E E Computer, Vol. 24, No. 8, pp. 52-60, Aug
1991.

[9] Steven K. Reinhardt, James R. Larus, and David
A. Wood, “Tempest and Typhoon: User-Level
Shared Memory,” In Proceedings of the 21th A n -
nual International Symposium o n Computer Ar-
chitecture, April 1994.

[lo] V.S. Sunderam, “PVM: A Framework for Parallel
Distributed Computing,” Concurrency: Practice
and Experience, Vol. 2 , No. 4, Dec. 1990.

179

