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Abstract 
In this paper, wt: describe a n  object-based distribut- 

ed shared memory  called Adsmi th .  In a n  object-based 
D S M ,  the shared m.emory consists of m a n y  shared ob- 
jects, through which the shared m e m o r y  i s  accessed. 
Adsmi th  is built on  top of PVM at the library layer us- 
ing C++. PVM is used as the  communication subsys- 
t e m  because it is a de fac to  standard and encapsulates 
many  sys tem related details. Several mechanisms are 
used t o  improve the performance of Adsmi th ,  such as 
release memory  consistency, load/store-like memory  
accesses, nonblocking accesses, and atomic operations, 
etc. Performance results show that  even though Ad- 
smith is implemented on top of PVM, programs run- 
ning on  Adsmi th  can achieve a performance compara- 
ble wi th  those running directly o n  PVM. 

1 Introduction 
For ease of construction and high scalability, many 

high performance parallel computers today are built 
as distributed memory systems. In such systems, mes- 
sage passing is the most general programming paradig- 
m. With message passing, programmers are forced 
to manage the data flows explicitly - they have to 
know where a piece of data is located and when to 
set up the send/receive pair between two communi- 
cating entities. Such a task is tedious and error-prone. 
Shared-memory programming, on the other hand, re- 
lieves programmers from managing shared data ex- 
plicitly. Thus programs can be developed more easi- 
ly. Combining distributed-memory architecture with 
shared-memory programming is thus a right choice for 
parallel computers. Based on this observation, dis- 
tributed shared m e m o r y  (DSM) was proposed and has 
attracted much attention [8]. 

A DSM provides a logically shared memory on top 
of a network of computers with a physically distribut- 
ed memory. Previous approaches to DSMs usual- 
ly partition the shared-memory addressing space in- 
to logical fix-sized pages, which are distributed to the 
nodes in the system. Through a memory manager, 
the nodes can access to  any page in the shared ad- 
dressing space. Such a DSM system is referred to  as 
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a block-based DSM in this paper. Block-based DSMs 
are often taken as an  extension of traditional virtual 
memory systems, and thus are usually implemented 
at the hardware and/or operating system layers. One 
advantage of such an  implementation is transparen- 
cy - the memory system is totally hidden from the 
users. However, block-based DSMs have the problem 
of choosing the right size for the blocks. The block size 
depends not only on the system characteristics but al- 
so on the applications. Another problem is the design 
complexity. Implementation a t  the hardware and/or 
operating system layers needs to modify existing sys- 
tems, which requires a tremendous effort. Also, these 
implementations are usually system dependent. Thus 
it is very difficult to implement block-based DSMs on 
top of heterogeneous systems. 

Another approach to DSM is object-based, which 
partitions the shared memory according to logical da- 
t a  structures. Object-based DSMs are most often im- 
plemented a t  the language/compiler or library layers. 
DSMs implemented a t  this layer usually require some 
modifications at the users’ end - either to the pro- 
gramming model, language, or style. Thus, transition 
from sequential computers to such an environment is 
not so seamless and transparent. Since object-based 
DSMs are implemented a t  a rather high layer in a 
computer system, performance is not as good as that 
of blocked-based DSMs. However, object-based DSMs 
do offer some unique and important features. 

An implementation at higher layers makes object- 
based DSMs very flexible and system independent. 
Programmers have a larger control over how data are 
distributed according to the characteristics of the ap- 
plication. Also, programmers can determine impor- 
tant parameters, such as the block size, access method, 
communication mechanism, memory consistency mod- 
el, etc., easily in object-based DSMs. The DSMs can 
be directly implemented on top of existing generic 
communication subsystems, such as TCP/IP, PVM, 
or DCE. Not only that system development efforts can 
be reduced dramatically, but also porting to different 
architectures is straightforward. Furthermore, the re- 
sulting system can be easily modified and improved 
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when newer techniques are available. 
Object-based DSMs can be implemented at  the lan- 

guage/compiler layer or the library layer. For the for- 
mer implementation, new compilers or preprocessors 
must be developed. Techniques involved in automat- 
ic data partition and distribution, parallelism extrac- 
tion, and communication optimization are still imma- 
ture and the development efforts are enormous. For 
library-layer implementations, we only have to sup- 
port primitives which may be useful for programming 
and compiler, such as those for distributing data, for 
utilizing efficient memory consistency model, and for 
performance tuning. Thus, implementing the DSM in 
library layer is more feasible. 

Another issue in implementing object-based DSM- 
s is choosing a suitable communication subsystem. 
An ideal communication subsystem must be general 
enough and have well-defined communication inter- 
face, in which system details are encapsulated. PVM 
is one of the best choices. PVM stands for Parallel 
Virtual Machine [lo]. It enables a collection of het- 
erogeneous computers to be used as a coherent and 
flexible concurrent computational resource [3]. PVM 
provides process management, message buffering, and 
other useful message passing utilities. PVM has been 
ported to many systems and is a de facto standard in 
high performance computing. A DSM built on top of 
PVM can support both message passing and shared 
memory programming. Thus for accesses with known 
patterns, message passing can be directly used to min- 
imize the number of messages, but for unknown pat- 
terns, shared memory accesses can be used [I]. 

We have designed and implemented an efficient 
object-based DSM called Adsmith. It is implemented 
a t  the library layer on top of PVM. Programmers use 
the system through C++. Although Adsmith can be 
easily ported to different architectures through PVM, 
it currently does not support heterogeneous environ- 
ments for efficiency reasons. Adsmith supports many 
options that allow the users to specify the properties 
of each declared object, data access methods, data 
distribution, memory consistency policies, and com- 
munication mechanisms. Although Adsmith is built 
on top of PVM, applications with careful design can 
still achieve good performance on Adsmith. Later we 
will compare applications running on Adsmith and on 
the bare PVM. 

In this paper, we will investigate the issues involved 
in the implementation of Adsmith and describe its us- 
er interface. The rest of the paper is organized as fol- 
lows. In Section 2, we introduce the design strategies 
of Adsmith. In Section 3, the user interface and the 
programming style of Adsmith are described. In Sec- 
tion 4, we show some preliminary performance results 
of Adsmith. We conclude this paper in Section 5 .  

2 Implementation Strategies 
Since Adsmith is totally independent of the under- 

lying operating system, its performance may suffer. 
Reducing the number of messages and the communi- 
cation latency is very important. Several methods are 
used in Adsmith to solve this problem, including the 

use of the Release Consistency memory model' [4], 
load/store-like data accesses (Section 2.2), nonblock- 
ing accesses (Section 2.4 and 3.4), and atomic access- 
es (Section 3.7.) We will describe these techniques in 
more detail below. 
2.1 Communication Subsystem 

Generally, active messages [2] are used in DSMs to 
eliminate the need for message buffering and to reduce 
the access latency. Unfortunately, Adsmith cannot 
use active messages, because PVM does not provide 
needed supports. Note that software active messages 
usually need the help of system dependent function- 
s. Since the communication details are encapsulated 
by PVM, using any system dependent functions di- 
rectly in Adsmith could be very dangerous. Beside, 
PVM uses nonblocking sends. Thus, message buffers 
in user space always exist. As a result, Adsmith does 
not employ active messages but use nonblocking send- 
s instead. One advantage of nonblocking sends is to 
overlap computations and communications, which is 
important for high performance parallel computing. 
2.2 Data  Granularity 

Data granularity is the unit size of the data during 
internal data allocation and external transmission. In 
object-based DSMs, users have the freedom of specify- 
ing the data granularity. As a result, the false-sharing 
problem can be avoided. 

A problem with object-based DSMs is that the 
shared objects tend to be small. Since each reference 
to a shared object may cause a read or write request, 
many messages may be generated. Since memory ref- 
erences exhibit locality, we solve the above problem 
with a load/store-like m e m o r y  access style. A load 
operation is performed only for the first read access, 
and a store operation for the last write access. Other 
accesses for the shared object in the program segment 
can be performed locally through a cached copy. This 
is similar to the data access methods in load/store ar- 
chitecture. Load/store operations in Adsmith will be 
described in Section 3. 
2 .3  Data Distribution 

Under object-based DSM, users have a larger con- 
trol over how shared data are distributed - based on 
the application behavior and machine characteristics. 
In our implementation, the home location of a shared 
object is randomly selected by default. The program- 
mer or parallelizing compiler can also determine how 
the shared objects are distributed. 

Allowing the home nodes to  be moved from time 
to time is not practical in distributed environments, 
because many messages will be produced due to the 
change of home nodes. Adsmith fixes home nodes to 
simplify the implementation. The problem of such a 
scheme is that the home node may not be the one 
which accesses to the object the most. Programmers 
can help to solve this problem by setting the home n- 
ode to the host that has the most references to the ob- 
ject. If the process with the most references changes a t  
different execution phases, the programmer/compiler 
can also force the home to be changed. The ability to 

'Currently, RG,, is implemented. 
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manually change the home nodes is now under devel- 
opment in Adsmith. 
2.4 Write Policy and Coherence Protocol 

Two general write policies are write-through and 
write-back. In Adsmith, both write policies are sup- 
ported. Since load/store-like memory accesses are 
used, the last, write accesses are always delimited by 
the programmer. Thus write accesses need not actual- 
ly be performed to the home node until the last write 
access is encountered. The last write access can use a 
write-through polic.y, while others a write-back policy. 

Pipeline write means that several write requests can 
be outstanding at the same time. Pipeline write will 
have no benefit if the write function is invoked for 
every write access, because this will produce a large 
amount of messages [7]. Since most accesses in Ad- 
smith are done locally, pipeline write can be used to 
overlap the communication with the computation. 

There are two general methods for data coherence: 
write-invalidate and write-update. Write-update will 
update all the copies of the written data, while write- 
invalidate will only invalidate the copies. Write- 
update needs to include the content of the modified 
data in its coherence message. Since Adsmith is an 
object-based DSM, most objects are small. A write- 
update and a write-invalidate message will have simi- 
lar communication costs. To allow maximum flexibil- 
ity, Adsmith supports both. 
2.5 Memory Model 

Release consistency (RC) is implemented in Ad- 
smith. Shared accesses in RC are classified as compet- 
ing accesses (special accesses) and noncompeting ac- 
cesses (ordinary accesses). Competing accesses mean 
that two or more accesses may refer t o  the same shared 
memory location ai the same time and a t  least one 
is a write access. Special accesses are further catego- 
rized as synchronizakion accesses and nonsynchroniza- 
tion accesses. Nonsynchronization accesses are com- 
peting accesses which are not used for synchronization 
purposes. Synchronization accesses are further divid- 
ed into acquire accesses and release accesses. Adsmith 
provides all these access operations. Programmers are 
responsible for writing properly-labeled programs by 
utilizing these operations [4]. 
2.6 Architecture of Adsmith 

Adsmith is completely built on top of PVM. A dae- 
mon will be spawned for each host to support run- 
time shared object handling. Internal manipulations 
of shared objects are totally transparent to the users. 
The basic organization of Adsmith is shown in Fig- 
ure 1. 

The architecture can be divided into two layers: 
Logzcal Shared Memory  Layer (LSML) and Process 
Bufler Layer (PBL). LSML is supported by the dae- 
mons. Each daemon will interact with the application 
processes to provide shared-memory services. Shared 
objects are distributed to the memories of the partic- 
ipating hosts. PBL exists in each application process. 
Shared data are buffered in PBL and refreshed from 
and flushed to LSML when necessary. Note that there 
is no limitation on the buffer size. The whole local 
memory can be used as buffers. Status information 

of shared objects are distributed in the data mapping 
directories on each daemon and the referencing pro- 
cesses. 

3 Programming on Adsmith 
Adsmith is implemented as a user level library in 

C++ with PVM as its communication platform. It 
can be viewed as adding a DSM layer on top of PVM. 
Both the PVM message-passing library and the Ad- 
smith shared-memory library are accessible a t  the 
same time. In this section, we introduce the main 
functions provided in Adsmith. 

3.1 System and Process Control 
The progra.mmers need not do any initialization or 

termination explicitly. All these works are automat- 
ically accomplished by the object initialization facili- 
ties provided by C++. The library contains a system 
object, which is responsible for system initialization 
and termination. 

For process creation, although PVM has provid- 
ed the function pvmspawn(), we require that child 
processes be created through adsmspawn() from Ad- 
smith. This is because some system information will 
be transmitted during the process creation time. 
3.2 Shared Object Allocation and Deallo- 

cation 
Shared objects can only be allocated at  run time. 

Two forms of the allocation function are supported: 

void * adsmmalloc( char *identifier, int size, 

void * adsmmalloc( char *identifier, int size, 
int hint = AdsmDataDefault ); 

void *init, int hint = AdsmDataDefault ); 

In the declaration, size is the size of the shared object 
and identifier is the string name used to refer to the 
shared object. All shared objects must be allocated 
before they are used. The parameter, init, in the sec- 
ond form is used to set the initial value for that shared 
object. 

Several options can be set through the hint param- 
eter to affect the access behaviors of a shared object. 
Currently, the value of hint may be AdsmDataCache, 
AdsmDataLocal and AdsmDataUpdate. AdsmData- 
Cache means that the shared data will be cached in 
application processes and managed through the coher- 
ent protocol. AdsmDataLocal means that the shared 
object will be allocated on the local host. This can be 
used when most accesses of the object are performed 
by the local processes. AdsmDataUpdate means that 
write-update will be used as the coherence protocol 
for the declared object. By default, write-invalidate is 
used if AdsmDataCache is selected. All these values 
can be set simultaneously by the or operation in C++. 

After the shared object is done referencing, the 
buffer space can be freed by the following function: 

adsmfree( void * ptr  ); 

Freed objects can be reused by reallocating them a- 
gain. 
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3.3 Shared Array Declaration 
Arrays are often used in scientific computations and 

the distribution method will significantly affect the ex- 
ecution efficiency. Adsmith allows the programmer to 
specify the distribution method of an array. The array 
allocation function has two forms: 

void adsmmallocarray( char * identifier, 
int elmt-size, int num, void * array, 
int hint = AdsmDataDefault ); 

void adsmmallocarray( char * identifier, 
int elmt-size, int num, void * array, 
int * dist, int hint = AdsmDataDefa.uk ); 

We explain this function by the following example. 
Assume that we want to declare a two dimensional 
array of integers according to a certain distribution 
method. The code will look like this: 

int *C[N] [NI; // pointers to allocated elements 
int distC[N][N]; /*  distribution array, which 
contains the home node for each element */ 
adsmmallocarray ( ”arrayC”,sizeof(int), 

N*N,C,distC); // allocate 
. . . refer to each element by *C[i] b3 . . . 

The identifier “arrayC” is the name of the whole 
array. Each element can be referenced by “array- 
C[i]”, where i means the i-th element. The home n- 
ode where each element is distributed to is specified 
in distC[N][N]. After allocation, pointers to the N*N 
shared objects are stored in array C. Further refer- 
ences to the shared array can then be made through 
the returned pointers, i.e., *C[i]b]. Usually, the distri- 
bution is determined by the parallelizing compiler or 
the programmer. 
3.4 Ordinary Accesses 

After a shared object has been allocated, an address 
will be returned, which points to the buffer space of 
the shared object. As described previously, Adsmith 

uses a load/store-like memory access style. Thus most 
shared object accesses are done on the local buffer. 
Actual accesses to the shared memory must be per- 
formed through the following two operations. They 
refresh the buffers from and flush their contents to 
the shared memory when necessary.’ 

adsmrefresh( void * ptr ); 
adsmflush( void * ptr  ); 

Since no hardware or operating system related fa- 
cilities are used in Adsmith, data should be manually 
refreshed (loaded) from LSML by the programmer be- 
fore they are accessed. Similarly if data are modified, 
they should be flushed (stored) back to LSML after 
they are referenced. Under RC, adsmrefresho is for 
ordinary loads, and adsmflush() is for ordinary stores. 
The value refreshed is guaranteed to be as up-to-date 
as that a t  the time of the last acquire (see the next 
section). 

For more efficient da ta  accesses, Adsmith also sup- 
ports nonblocking load, i.e., da ta  prefetching, through 
the following function. 

adsm-prefresh( void * ptr  ); 

The function is very similar to adsmrefresh() and the 
programmer can insert the prefetch function before 
the first load access as far as possible. The sequence of 
shared data accesses in Adsmith is depicted as follows: 

Acquire --+ Prefresh --+ Refresh -+ 
Local Accesses t Flush t Release 

where Refresh and Flush are ordinary accesses dis- 
cussed above. Nonblocking load and store will be 
performed between prefresh-refresh and flush-release 
pairs respectively. The code segment below is a typical 
example to perform computations on a shared object 
within a critical section: 

’If AdsmDataCache is specified, adsmrefresh() may be 
performed locally without the need of any communication. 
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typeA *A = (typeA*) adsmmalloc( 
”A”,  sizeof( typeA)); 

AdsmMutex: mutex(”mutex name”); 
/ /  AdsmMutex is a synchronization class 
mutex.lock(); 
adsm-prefresh( A); 
. . . prologue of computation . . . 
adsm refresh( A); 
. . . computations with local access on A 1 .  

adsmflush(A); 
. . . epilogue of computation . . . 
mutex.unlock(); 

Note that adsm.refresh() is still required for the 
first load access to “ i r e  that the requested data has 
arrived. 
3.5 Synchronization Accesses 

Ordinary accesse:3 require that the programmer use 
enough synchronizations to ensure the correctness. 
Adsmith provides three classes of synchronization op- 
erations: counting semaphore, mutex and barrier. The 
public methods are listed as follows: 

AdsmSemaph0re::wait (); 
Adsm Semaphore: : signal() ; 
AdsmMutex::lock(); 
AdsmMutex::unlock(); 
AdsmBarrier::barrier( int count ); 

Among the synclhronization functions, semaphore 
wait, mutex lock and barrier are acquire accesses, and 
semaphore signal, mutex unlock and barrier are release 
accesses. An acquire is needed in order to gain the 
access right to a set of data,  and a release is used to 
grant the access right. The RC model guarantees that 
ordinary accesses after an acquire will obtain the most 
up-to-date data available at the time of the acquire. 
3.6 Nonsynchronization Accesses 

Adsmith has two nonsynchronization functions: 

adsmrefreshinow( void * ptr ); 
adsmflushnow( void * ptr  ); 

These two accesses will be performed without wait- 
ing for previous ordinary accesses. That is, a write 
through adsmflush .now() will be seen immediately 
by all the following loads through adsmrefresh-now(), 
even when they are invoked by other processes. 
3.7 Atomic Accesses 

Consider accessin,g a shared object in a critical sec- 
tion. The number of message required may be at  most 
seven, including two for acquire, two for refresh, two 
for flush, and one for release. It will be expensive when 
there is only one object in the critical section. 

The problem can be solved by allocating the syn- 
chronization arbitrat#or to the home node of the shared 
object and combining these two operations. During an 
acquire, the requested data can be piggy-backed on 
the lock grant message. After the computations, the 
modified data can also be sent back with the release 
message. In this way, the required messages will be re- 
duced to four (two for acquire and refresh, and two for 

flush and release) at most. Since most of the shared 
objects are small, carrying the data  contents directly 
in the acquire/release messages should not affect the 
performance. 

Adsmith provides atomic accesses to support this 
kind of accesses. Two functions are supported: 

adsmatomic-begin( void *ptr ,  

adsmatomic-end( void *ptr  ); 
int type = AdsmAtomic Wri te  ); 

The function adsmatomic-begin ) can be viewed as a 

adsmatomic-end() as a combination of flush and re- 
lease. Note that in Adsmith these operations are cate- 
gorized as nonsynchronization accesses. It can not be 
used as synchronization accesses, because coherence of 
other shared objects are not maintained here. Here is 
an example of atomic accesses modified from that in 
Section 3.4. 

combination of acquire and refres 6 , while the function 

typeA *A =(typeA*) adsmmalloc(”A”, 

adsmat omicbegin( A) ; 
. . . computation with local access on A . . 
adsm-atomic-end(A); 

sizeof( typeA)); 

Let the program segment between adsmatomic- 
-begin() and adsmatomic-end() be called atomic sec- 
tion. Two types of atomic operations can be specified 
in the type parameter in adsm-atomic-begin(): Ads- 
mAtomicWrite and AdsmAtomicRead. The former is 
to indicate that both read and write accesses are in- 
cluded in the atomic section; and the latter is to indi- 
cate that only read accesses exist in the section. Ad- 
smith implements single-writer/multiple-readers pro- 
tocol. For a writer, adsmatomicebegin() can be per- 
formed only when there are no readers nor writers in 
the atomic section. For a reader, adsmatomic-begin() 
can be performed only when there is no writer in the 
atomic section. For fairness purpose, Adsmith imple- 
ments the writer first protocol. That is, when a writer 
is waiting to enter the atomic section, readers which 
come after the writer will be blocked until the writ- 
er has finished its atomic section. Of course, readers 
before the writer can proceed until they all exit their 
atomic sections. 

3.8 Pointer 
Pointers in shared memory are supported in Ad- 

smith, but the usage is not so straightforward. This 
is because the address of a shared object in one pro- 
cess may not be the same as that in the other process. 
Thus, the programmers are required to translate the 
local address of a shared object to a globally recog- 
nizable address before the address is passed to other 
processes through the shared memory. Functions for 
pointer manipulations are as follows: 

int adsmgid( void *ptr  ); 
void * adsmattach( int gid ); 
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The function adsmgid()  translates the local address 
of a shared object into its global address, which is rep- 
resented by an integer. The function adsmattach() ,  
on the other head, translates a global address back to 
the local address for the requesting process. 

For example, if the programmer wants to pass the 
address of shared object T from process P l  to process 
PZ through the shared object (pointer) S, the following 
two code segments can be used. 

/ /  process P1 sets the pointer 
A d s m B a r r i e r  Bpointer(”barrier for this code”); 
sometype *T = (sometype*) a d s m m a l l o c (  

”target data”,  sizeof(sometype)); 
int *S = ( i n t * ) a d s m m a l l o c (  ”pointer to T”, 

*S = adsm-gid(T); // get global address of T 
a d s m f l u s h n o w ( S ) ;  / /  flush immediately 
Bpointer.barrier(2); // done 
// process PZ gets the pointer 
A d s m B a r r i e r  Bpointer(”barrier for this code”); 
int *S = ( i n t * ) a d s m m a l l o c (  ”point to T”, 

Bpointer.barrier(2); // wait until P1 is done 
a d s m r e f r e s h n o w ( S ) ;  / /  get the pointer value 
/ /  attach the pointer into local address space 
sometype *T = (sometype*)adsmattach(*S); 

sizeof(int)); 

sizeof(int)); 

4 Performance Evaluation 
In this section we study the performance of Ad- 

smith through an application program that solves the 
Traveling Salesman Problem. We will compare the 
performance of the application programs developed in 
Adsmith and in PVM. The PVM version was written 
following the master-slave programming model. We 
ported it onto Adsmith using the SPMD (Single Pro- 
gram Multiple Data) model with the algorithm un- 
changed. There are two major communication parts 
in the program, which are used to compute a glob- 
al maximum (minimum) from local maximums (mini- 
mums). The related code segments are listed below. 

PVM version: 

Master Program 

int slaves[SLAVE-NUM]; / /  slave tids 
/ /  get local maxs and compute the global max 
float max=0.0; 
for (int i=O; i<SLAVE-NUM; i++) { 

pvmrecv(-l,SOME-TAG); 
pvm-upkfloat(&local-max,l,l); 
if ( localmax>max) max=localmax; 

I // broadcast the global max 
pvminitsend( PvmDat aDefault) ; 
pvm-pkfloat(&max, 1,l); 
pvmmcast (slaves,SLAVE-NUM ,SOME-TAG); 

Slave Program 

int master; / /  master tid 
// compute local max 
float localmax= . * . 
/ /  send local max to master 
pvminitsend( PvmDataDefault); 
pvm-pkfloat( &localmax, 1,l); 
pvmsend(master,SOME-TAG); 
/ /  get global max from master 
float max; 
pvmrecv(master,SOME-TAG); 
pvm_upkfloat(&max, 1,l); 

A d s m i t h  version: 

// compute local max 
float localmax= . . . 
float *max=(float*)adsmmalloc( 

/ /  compute max thru atomic operation 
adsm-atomic-begin(max) ; 
if (local-max>*max) *max=localmax; 
a d s m a t o m i c - e n d ( m a x ) ;  
// wait for all processes done 
A d s m B a r r i e r  Btsp(”tsp”); 
B tsp . barrier (PROC-NUM) ; 
/ /  get the global max 
a d s m r e f r e s h ( m a x ) ;  

”max” ,sizeof(float)); 

Atomic accesses are used in the Adsmith version, 
because there is only one shared object in the critical 
section. From the code, we can roughly compute the 
ratio of the number of messages required by the PVM 
version to that by the Adsmith version, which is about 
1:4. One reason for the larger number of messages in 
the Adsmith version is because we did not write the 
Adsmith version from scratch, but only translate it 
from the PVM version directly. 

Two Sparc 2 workstations were used in the experi- 
ment. The performance results are shown in Table 1. 
Surprisingly, we find that as the problem size increas- 
es, the execution time of the Adsmith version becomes 
closer to that of the PVM version. It is even short- 
er when the number of cities is greater than 10,000. 
One explanation is that  the communications are over- 
lapped between processes in Adsmith. Besides, the 
implementation overheads are lower in Adsmith. 

5 Conclusion 
In this paper we have introduced an object-based 

approach to DSM designs and described how such a 
system, called Adsmith, is built. Major features of 
Adsmith are listed below: 

1. It is an object-based DSM implemented as a user- 
level library in C++ on top of PVM. 

2. It has a two-level memory hierarchy: process 
buffer layer and logical shared memory layer. 

3. Information about shared objects is distributed 
in both daemons and application processes. Pro- 
grammers are allowed to  specify the distribution 
of shared objects/arrays. 
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Table 1: Execution times for the TSP program 

4. The home nodes of shared objects are fixed. Pro- 
grammers can determine whether the shared ob- 
ject is to be cached or not. 

5. It employs a load/store-like data access style and 
the Release Consistency model is fully supported. 

6. It provides atomic accesses to minimize the num- 
ber of messages. 

7. Nonblocking store (pipeline write) and nonblock- 
ing load (prefeitch) are used to overlap communi- 
cations and computations. 

8. Both write-through and write-back are support- 
Different shared objects can have different ed. 

coherence protocols. 

Since we built our system on top of PVM, the im- 
plementation considerations were quite different from 
others. For example, using PVM prevents us from 
adopting the active message mechanism, and a higher 
communication overhead is involved. Thus, our ma- 
jor task is to reduce the number of messages. Many 
features listed above help to  achieve this goal. In ad- 
dition, many flexibilities are provided to help perfor- 
mance tuning, especially for the parallelizing compil- 
ers. For example, shared objects can be set to use 
cache or not, to use write-update or write-invalidate, 
etc. Home nodes can be assigned by the programmer 
or the compiler, so can the distribution of shared ar- 
rays. Also prefetching is supported to hide the load 
access latency. Preliminary experimental results show 
that Adsmith is efficient and can achieve very good 
performance. 
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