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1. INTRODUCTION

One crucial step on designing a large-scale multiprocessor system is to determine
the topology of the interconnection network (network for short). In the recent
decade, a number of networks have been announced in the literature [1, 5, 13, 24,
26, 29, 34]. Among them, the WK-recursive networks own two structural advan-
tages: expansibility and equal degree. A network is expansible if no changes to node
configuration and link connection are necessary when it is expanded, and of equal
degree if all its nodes have the same degree no matter what the size is. A network
with these two properties will gain the advantages of easy implementation and low
cost when it is manufactured.

The WK-recursive networks, which were originally proposed by Vecchia and
Sanges [34], represent a family of recursively scalable networks. They offer a high
degree of regularity, scalability, and symmetry which very well conform to a
modular design and implementation of distributed systems involving a large num-
ber of computing elements. A VLSI implementation of a 16-node WK-recursive
network was realized at the Hybrid Computing Research Center [34]. In this
implementation, each node was implemented with the INMOS IMS T414 trans-
puter, and the network processes were coded in Occam programming language.
Later this prototype network was further extended to 64 nodes [35]. Recently two
variants of the WK-recursive networks have been proposed in [8, 9].

Much research [4, 6, 7, 10�12, 14, 34, 35] was devoted to the WK-recursive
networks. Vecchia and Sanges first presented a heuristic routing algorithm [34]
and an optimal broadcasting algorithm [35]. Chen and Duh [4] then improved
their work by presenting a shortest-path routing algorithm and another optimal,
but simpler, broadcasting algorithm. Topological properties such as diameter, con-
nectivity, and hamiltonicity were also investigated in [4]. Parallel routing paths,
wide diameter, and fault diameter were computed in [6]. The Rabin number
problem was discussed in [7]. Edge-disjoint hamiltonian paths and edge-disjoint
spanning trees were constructed in [11]. Some substructure allocation algorithms
for a multiuser WK-recursive network were presented in [10]. Embedding rings in
a faulty WK-recursive network appeared in [12]. A special multicast wormhole
routing was discussed in [14].

Although the WK-recursive networks own many favorable properties, there is a
rigorous restriction on the number of their nodes. As will become clear in the next
section, the number of nodes in a WK-recursive network must satisfy d t, where
d >1 is the size of the basic building block and t�1 is the level of expansion.
Thus, as d=4, extra 3_47=49,152 nodes are required to expand from a 7-level
WK-recursive network to an 8-level one. Almost all the announced networks have
suffered from the same restriction. To relieve this restriction, some incomplete
networks [17�19, 23, 25, 30] have been defined recently. Katseff [17] defined the
incomplete hypercubes that allow the number of nodes to be any positive integer.
Latifi and Bagherzadeh [18], and Ravikumar, Kuchlous, and Manimaran [25]
independently defined the incomplete star networks that contain an arbitrary num-
ber of nodes. Later Latifi and Bagherzadeh [19] defined a special class of the
incomplete star networks, named the clustered-star graphs, which contain c } k !

272 SU, CHEN, AND DUH



nodes, where 1<c�k is a positive integer. Ponnuswamy and Chaudhary [23]
defined the incomplete rotator graphs that have the same restriction as the
clustered-star graphs in the number of nodes. Recently, the incomplete WK-recur-
sive networks have been defined by the authors [30]. With practical consideration,
the number of nodes is required to be a multiple of d, where d is the size of the
basic building block. Thus an incomplete WK-recursive network can be expanded
or contracted in units of basic building blocks. Besides these incomplete networks,
some enhanced incomplete networks have also been proposed in the literature
[27, 33].

In order for an incomplete network to be considered a general-purpose parallel
and distributed system, efficient communication must be addressed because com-
munication delay has been recognized as a major cause of performance degradation
in such a computing environment (see [2, 15]). Undoubtedly, broadcasting is one
of the most fundamental problems in the study of communication within a network,
and so it is not surprising that much research [16, 21, 22, 28, 35] has been devoted
to the subject of broadcasting. In [17], Katseff presented an optimal broadcasting
algorithm for the incomplete hypercubes. In [18], Latifi and Bagherzadeh presented
a broadcasting algorithm for a special class of the incomplete star networks that
comprise c k-stars, where 1<c�k (i.e., the clustered-star graphs as defined in
[19]). To the best of our knowledge, no broadcasting algorithms for the (general)
incomplete star networks and the incomplete rotator graphs have been suggested.

In this paper, a broadcasting algorithm for the incomplete WK-recursive net-
works is proposed. Since the structures of the incomplete WK-recursive networks
can be expressed as multistage graphs, the broadcasting problem is reduced to
constructing spanning trees for the representative multistage graphs. The proposed
broadcasting algorithm has optimal message complexity. Besides, extensive
experiments were made to verify its efficiency. The rest of this paper is organized as
follows. In the next section, the incomplete WK-recursive networks are formally
defined and their multistage graph representations are introduced. Broadcastings
for two special situations are first described in Sections 3 and 4, respectively. Then,
broadcasting for a general situation is described in Section 5. The performance of
the broadcasting algorithm is evaluated in Section 6 with extensive experiments.
Finally, this paper is concluded in Section 7.

2. INCOMPLETE WK-RECURSIVE NETWORKS AND THEIR
MULTISTAGE GRAPH REPRESENTATIONS

In this section we first review the structures of the WK-recursive networks. Some
notations and definitions related to the WK-recursive networks are also introduced.
In terms of graph [3], the incomplete WK-recursive networks are induced sub-
graphs of the WK-recursive networks. In this paper, graphs and networks are used
interchangeably. The diameters, connectivities, and hamiltonian circuits of the
incomplete WK-recursive networks were computed in [31]. A shortest-path routing
algorithm for the incomplete WK-recursive networks was presented in [30].

The WK-recursive networks can be constructed recursively by grouping basic
building blocks. Any complete graph can serve as a basic building block. For
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convenience, let K(d, t) denote a WK-recursive network of level t whose basic building
blocks are each a d-node complete graph, where d >1 and t�1. K(d, 1), which is
the basic building block, is a d-node complete graph, and K(d, t) for t�2 can be
constructed by connecting d K(d, t&1)'s as a d-supernode complete graph (each
K(d, t&1) is regarded as a supernode). Each node of K(d, t) is associated with a
t-digit identifier. The following definition is due to Chen and Duh [4].

Definition 2.1. The node set of K(d, t) is denoted by [at&1at&2 } } } a1 a0 |
ai # [0, 1, ..., d&1] for 0�i�t&1]. Node adjacency is defined as follows:
at&1 at&2 } } } a1a0 is adjacent to (1) at&1at&2 } } } a1 b, where 0�b�d &1 and b{a0 ,
and (2) at&1at&2 } } } aj+1aj&1(a j )

j if aj {aj&1 and aj&1=aj&2= } } } =a1=a0 ,
where 1� j�t&1 and (aj )

j represents j consecutive a j 's. The links of (1), which
are labeled 0, are called substituting links. The links of (2), which are labeled j, are
called j - flipping links (or simply flipping links). Besides, there are open links whose
one end node is (a)t, where 0�a�d &1, and the other end node is unspecified.
The open links are labeled t.

K(d, t) contains d t nodes. Since each node is incident with d &1 substituting
links and one flipping link (or open link), K(d, t) has degree d. The structures of
K(4, 1) and K(4, 3) are illustrated in Fig. 1. The substituting links are within basic
building blocks, whereas each j-flipping link connects two embedded K(d, j)'s. The
open links are left for future expansion. For example, let us consider the incident
links of node 311 in Fig. 1. The one to node 133 is a 2-flipping link; the others are
substituting links.

Definition 2.2. Define ct&1ct&2 } } } cm } K(d, m) to be the induced subgraph
of K(d, t) by [ct&1ct&2 } } } cmam&1 } } } a1a0 | a j # [0, 1, ..., d &1] for 0� j�m&1],
where 1�m<t and ct&1 , ct&2 , ..., cm are all integers from [0, 1, ..., d &1]. That is,
ct&1ct&2 } } } cm } K(d, m) is an embedded K(d, m) with identifier ct&1ct&2 } } } cm . For
example (refer to Fig. 1), 31 } K(4, 1) is the induced subgraph of K(4, 3) by [310,
311, 312, 313].

Definition 2.3. Node at&1at&2 } } } a1a0 is a k- frontier if ak&1= } } } =a1=a0 ,
where 1�k�t.

By Definition 2.3, a k-frontier is automatically an l-frontier for 1�l<k. Both end
nodes of a k-flipping link are k-frontiers. An embedded K(d, m) contains one
(m+1)-frontier and d &1 m-frontiers. These d frontiers are 2m&1 distant from
each other.

The incomplete WK-recursive networks, which were originally defined in [30],
are induced subgraphs of the WK-recursive networks. If we number the nodes
of K(d, t) according to their lexicographical order, then an N-node incomplete
WK-recursive network is the subgraph of K(d, t) induced by the first N nodes.
Throughout this paper, we use IK(d, t) to denote an N-node incomplete WK-recur-
sive network, where d t&1<N<d t and N is a multiple of d.
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FIG. 1. The structures of (a) K(4, 1) and (b) K(4, 3). Figure 1b also shows the spanning tree rooted
at 032 that results from Chen and Duh's broadcasting algorithm.

The coefficient vector of IK(d, t) is uniquely defined as a (t&1)-vector
(bt&1 , bt&2 , ..., b1) such that N=bt&1 d t&1+bt&2 d t&2+ } } } +b1 d. IK(d, t) with
coefficient vector (bt&1 , bt&2 , ..., b1) contains bm embedded K(d, m)'s with iden-
tifiers bt&1bt&2 } } } bm+10, bt&1bt&2 } } } bm+11, ..., and bt&1bt&2 } } } bm+1 (bm&1),
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respectively, where 1�m�t&1. For example, IK(5, 6) with coefficient vector (2, 3,
0, 4, 2) contains the following embedded K(d, m)'s:

0 } K(5, 5), 1 } K(5, 5)

20 } K(5, 4), 21 } K(5, 4), 22 } K(5, 4)

2300 } K(5, 2), 2301 } K(5, 2), 2302 } K(5, 2), 2303 } K(5, 2)

23040 } K(5, 1), 23041 } K(5, 1)

Figure 2 shows the structure of IK(4, 3) with coefficient vector (3, 2). In the rest of
this paper, a coefficient vector (bt&1 , bt&2 , ..., b1) is written as (bt&1 , bt&2 , ..., bi , V),
where 1�i�t&1, provided bi {0 and bi&1=bi&2= } } } =b1=0. For example,
(2, 3, 0, 4, 0) is written as (2, 3, 0, 4, V), and (2, 3, 4) is written as (2, 3, 4, V).

Let Sm represent the subgraph of IK(d, t) with coefficient vector (bt&1 , bt&2 , ...,
bi , V) induced by the nodes of bt&1bt&2 } } } bm+10 } K(d, m), bt&1bt&2 } } } bm+11 }
K(d, m), ..., and bt&1 bt&2 } } } bm+1(bm&1) } K(d, m), where i�m�t&1. That is,

FIG. 2. The structure of IK(4, 3) with coefficient vector (3, 2).

276 SU, CHEN, AND DUH



Sm contains bm embedded K(d, m)'s with identifiers bt&1bt&2 } } } bm+1 0, bt&1bt&2 } } }
bm+11, ..., and bt&1bt&2 } } } bm+1(bm&1), respectively. We note that there is an
m-flipping link between any two of these bm embedded K(d, m)'s. For example, the
IK(5, 6) with coefficient vector (2, 3, 0, 4, 2, V) mentioned above has S5 containing
0 } K(5, 5) and 1 } K(5, 5), S4 containing 20 } K(5, 4), 21 } K(5, 4), and 22 } K(5, 4),
S3 empty, S2 containing 2300 } K(5, 2), 2301 } K(5, 2), 2302 } K(5, 2), and 2303 }
K(5, 2), and S1 containing 23040 } K(5, 1) and 23041 } K(5, 1).

According to the discussion above, the structure of IK(d, t) with coefficient vec-
tor (bt&1 , bt&2 , ..., bi , V) can be expressed as a (t&i)-stage graph, regarding each
Sm as a stage. The (t&i)-stage graph is denoted by St&1+St&2+ } } } +Si . For
example, IK(5, 6) with coefficient vector (2, 3, 0, 4, 2, V) can be expressed as a five-
stage graph as shown in Fig. 3. For simplicity each embedded K(d, m) within Sm

is drawn as a circle, and the one with identifier bt&1 bt&2 } } } bm+1 j, where
0� j�bm&1 , is denoted by C j

m . All the m-flipping links between these circles are
omitted for conciseness. Also note that for t&1�m�n�i, Sm+Sm&1+ } } } +Sn

itself forms an embedded IK(d, m+1) with coefficient vector (bm , bm&1 , ..., bn , V),
in which each node has its identifier prefixed with bt&1bt&2 } } } bm+1.

There are min[bm , bm&1] m-flipping links between Sm and Sm&1 , each connecting
C j

m and C j
m&1 for some 0� j�min[bm , bm&1]&1. Besides, for t&1�u>v�i and

u&v>1, there may exist a u-flipping link between Su and Sv . If such a link exists,

FIG. 3. The multistage graph representation of IK(6, 5) with coefficient vector (2, 3, 0, 4, 2).
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it is called a jumping u- flipping link. A necessary and sufficient condition for the
existence of jumping flipping links was suggested in [30] as follows.

Theorem 2.1 [30]. For IK(d, t) with coefficient vector (bt&1 , bt&2 , ..., bi , V),
one jumping u- flipping link exists between Su and Sv if and only if bu>bu&1=
bu&2= } } } =bv+1<bv , where t&1�u>v�i and u&v>1. Moreover, this jumping
flipping link connects C e

u and C e
v , where e=bu&1=bu&2= } } } =bv+1 .

According to Theorem 2.1, there is a simple method to determine all jumping
flipping links from the coefficient vector (bt&1 , bt&2 , ..., bi , V). We only need to
examine (bt&1 , bt&2 , ..., b i , V) from the left to the right, and a jumping u-flipping
link exists between C e

u and C e
v if u&v>1 and bu>bu&1=bu&2= } } } =bv+1<bv ,

where e=bu&1=bu&2= } } } =bv+1 . In the rest of this paper we use J e
u, v to denote

the jumping u-flipping link between C e
u and C e

v (refer to Fig. 3 for illustration).
The structure of St&1+St&2+ } } } +Si is further detailed as follows. Since each

C j
m , where t&1�m�i and 0� j�bm&1, is a K(d, m), the links inside C j

m are
subject to Definition 2.1. On the other hand, the links incident to C j

m include (1)
bm&1 m-flipping links connecting C 0

m , C 1
m , ..., C j&1

m , C j+1
m , ..., and C bm&1

m , respec-
tively; (2) one m-flipping link connecting C j

m&1 if j�bm&1&1, or one jumping
m-flipping link connecting C j

l , where l<m&1, if j=bm&1=bm&2= } } } =bl+1<bl ;
(3) one (m+1)-flipping link connecting C j

m+1 if j�bm+1&1, or one jumping
h-flipping link connecting C j

h , where h>m+1, if bh>bh&1=bh&2= } } } =
bm+1= j. Both end nodes of (1) are bt&1bt&2 } } } bm+1 j(x)m # C j

m and bt&1bt&2 } } }
bm+1x( j)m # C x

m , where 0�x�bm&1 and x{ j. Both end nodes of (2) are
bt&1 bt&2 } } } bm+1 (bm)m # C j

m and bt&1bt&2 } } } bm+1bm( j)m # C j
m&1 (or #C j

l ). Both
end nodes of (3) are bt&1bt&2 } } } bm+2 j(bm+1)m+1 # C j

m+1 (or bt&1bt&2 } } }
bh+1 j(bh)h # C j

h) and bt&1bt&2 } } } bm+2bm+1( j)m+1 # C j
m .

Since the structure of IK(d, t) can be expressed as a multistage graph, message-
optimal broadcasting in IK(d, t) is equivalent to constructing a spanning tree for
the multistage graph. The spanning tree is also referred to as broadcasting tree
when broadcasting is concerned. Suppose the source node is r # Sz and broadcasting
is performed on IK(d, t) with coefficient vector (bt&1 , bt&2 , ..., bi , V), where
t&1�z�i. The resulting spanning tree is denoted by ST (t&1, i, r, z). In subse-
quent sections, without loss of generality, we describe the broadcasting algorithm
by explaining how to construct ST (m, n, r, z) in Sm+Sm&1+ } } } +Sn , where
t&1�m�z�n�i. In the next two sections, we first construct ST (m, n, r, z) for
two special cases: z=m and z=n. Then, constructing ST (m, n, r, z) for arbitrary
z ranging from n to m is discussed in Section 5.

3. CONSTRUCTING ST (m, n, r, m)

Several basic dissemination patterns lay the foundation of our construction algo-
rithm for ST (m, n, r, m). The purpose of this section is to introduce them and show
how they can be used to construct ST (m, n, r, m). First of all, we have to review
Chen and Duh's broadcasting algorithm [4] for K(d, t) because the algorithm will
be executed by the dissemination patterns. Chen and Duh's algorithm requires a
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stack of length t+1 (a bit array of length t+1 for real implementation), which
keeps the labels of links, to be carried with the message. Initially, the source node
pushes the label t into the stack and disseminates the message over all its incident
links but the one with label t. Once a node receives the message via its one incident
link with label, say k, it further disseminates the message by executing the steps:

1. Pop elements of the stack until the top element is greater than k.

2. Push k into the stack.

3. Disseminate the message over those incident links whose labels do not
appear in the stack.

For illustration, Fig. 1(b) shows with bold lines the broadcasting tree that results
from executing Chen and Duh's algorithm on K(4, 3) with source node 032 (that
is, the spanning tree rooted at node 032). The following lemma was proved in [4].

Lemma 3.1 [4]. Starting from any node, Chen and Duh's algorithm can dis-
seminate a message to each node of K(d, t) exactly once. Moreover, the resulting
spanning tree has height at most 2t&1, which is the diameter of K(d, t).

With slight modification, Chen and Duh's algorithm can disseminate a message
within any embedded K(d, l ), where 1�l<t. We assume r=rt&1rt&2 } } } r1r0 .
A spanning tree of rt&1rt&2 } } } rl+1rl } K(d, l ) rooted at node r can be obtained by
executing Chen and Duh's algorithm, provided step 3 is modified as

3$. Disseminate the message over those incident links whose labels are smaller
than l and do not appear in the stack.

The modified step 3$ restricts the message dissemination inside the embedded
K(d, l ). Hence, the following lemma holds as a consequence of Lemma 3.1.

Lemma 3.2. Starting from any node of an embedded K(d, l ), where 1�l<t, the
modified Chen and Duh's algorithm can disseminate a message to each node of the
embedded K(d, l ) exactly once. Moreover, the resulting spanning tree has height at
most 2l&1.

In the following we show that all spanning trees for K(d, t) induced by Chen and
Duh's algorithm have minimum heights.

Lemma 3.3. When applying Chen and Duh's algorithm to K(d, t), all t- frontiers
can receive the message from the source node r via the shortest paths.

Proof. It is trivial to see that this lemma holds for t=1, 2. Hence we assume the
lemma holds for t�s, where s�2 is a positive integer. We now consider the situation
of t=s+1. Without loss of generality, assume r # x } K(d, s), where 0�x�d&1.
By assumption the (s+1)-frontier (x)s+1 can receive the message from r via the
shortest path. According to Chen and Duh's broadcasting algorithm, the message
enters each y } K(d, s), where 0�y�d&1 and y{x, via the s-flipping link (x( y)s,
y(x)s). So, the transmission path from r to each (s+1)-frontier ( y)s+1, where
0�y�d&1 and y{x, can be expressed as r � } } } � x( y)s � y(x)s � } } } �
( y)s+1, where the two subpaths r � } } } � x( y)s and y(x)s � } } } � ( y)s+1 are the
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shortest by assumption. The entire transmision path can be guaranteed the shortest
if the shortest path from r to ( y)s+1 contains a unique s-flipping link, i.e., (x( y)s,
y(x)s). The latter can be easily proved by contradiction as follows.

Suppose the shortest path from r to ( y)s+1 passes through z } K(d, s), where
0�z�d&1, z{x, and z{ y. Since any two s-frontiers within the same embedded
K(d, s) have a distance of 2s&1 (see [4]), the length of the shortest path is at least
1+(2s&1)+1+(2s&1)=2s+1, which contradicts the diameter of K(d, s+1). The
latter was proved to be 2s+1&1 in [4]. Q.E.D.

Lemma 3.4. All spanning trees for K(d, t) induced by Chen and Duh's algorithm
have minimum heights.

Proof. Without loss of generality, assume the source node r # x } K(d, t&1),
where 0�x�d&1, and T is the spanning tree induced by Chen and Duh's broad-
casting algorithm. Let F be the set of the farthest nodes from r in T. Lemma 3.2
assures us that all nodes in F are outside x } K(d, t&1). Suppose conversely that T
does not have minimum height. Then, for each node p # F we have l(r, p)>d(r, p),
where l(r, p) is the length of the path from r to p in T. Without loss of generality,
assume p # y } K(d, t&1), where 0�y�d&1 and y{x. According to Chen and
Duh's broadcasting algorithm, we have l(r, p)�l(r, ( y)t ), which means that the
t-frontier ( y)t also belongs to F. However, by Lemma 3.3 we have l(r, ( y)t )=
d(r, ( y)t ). This is a contradiction. Q.E.D.

Now we are going to construct ST (m, n, r, m) in IK(d, t) (=St&1+St&2+ } } }
+Si ), where t&1�m�n�i. Recall that Sm contains bm embedded K(d, m)'s that
are completely connected by m-flipping links. Moreover, since r # Sm , we have
r=rt&1rt&2 } } } rm+1rm } } } r1r0 # bt&1bt&2 } } } bm+1rm } } } r1r0 # bt&1bt&2 } } } bm+1 rm }
K(d, m), where 0�rm�bm&1. By the aid of the modified Chen and Duh's algorithm,
ST (m, m, r, m), i.e., a spanning tree of Sm rooted at node r, can be constructed as
the union of the components:

v A spanning tree of bt&1bt&2 } } } bm+1rm } K(d, m) rooted at node r.

v Link set [(bt&1bt&2 } } } bm+1rm(x)m, bt&1bt&2 } } } bm+1 x(rm)m) | 0�x�
bm&1 and x{rm].

v Spanning trees of bt&1bt&2 } } } bm+1x } K(d, m) rooted at bt&1bt&2 } } }
bm+1x(rm)m for all 0�x�bm&1 and x{rm .

Constructing ST (m, n, r, m) for m>n proceeds with examining Sm+Sm&1+ } } }
+Sn from the left to the right and recursively executing the following five dis-
semination patterns.

Pattern A. If rm�bm&1&1, then ST (m, n, r, m) is constructed as the union of
the components (refer to Fig. 4(a)).

v ST (m, m, r, m).

v Link (bt&1bt&2 } } } bm+1rm(bm)m, bt&1bt&2 } } } bm+1bm(rm)m).

v ST (m&1, n, r$, m&1), where r$=bt&1bt&2 } } } bm+1bm(rm)m.
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Pattern B. If rm=bm&1 and there exists one jumping flipping link from Sm

to some Sl (i.e., J bm&1
m, l ), where m&1>l�n, then by Theorem 2.1 we have

bm>bm&1=bm&2= } } } =b l+1<bl , and ST (m, n, r, m) is constructed as the union
of the components (refer to Fig. 4(b)):

v ST (m, m, r, m).

v Jumping flipping link (bt&1bt&2 } } } bm+1rm(bm)m, bt&1 bt&2 } } } bm+1bm(rm)m).

v ST (m&1, n, r$, l ), where r$=bt&1bt&2 } } } bm+1bm(rm)m=
bt&1 bt&2 } } } bl+1(rm) l+1.

Pattern C. If rm>bm&1 and there exists one jumping flipping link from Sm to
some Sl , where m&1>l�n, then ST (m, n, r, m) is constructed as the union of the
components (refer to Fig. 4(c)):

v ST (m, m, r, m).

v Link set [(bt&1 bt&2 } } } bm+1x(bm)m, bt&1bt&2 } } } bm+1bm(x)m) | 0�x�
bm&1&1].

v Spanning trees of bt&1bt&2 } } } bm+1bmx } K(d, m&1) rooted at bt&1bt&2 } } }
bm+1bm(x)m for all 0�x�bm&1&1].

v Jumping flipping link (bt&1 bt&2 } } } bm+1bm&1(bm)m, bt&1bt&2 } } }
bm+1bm(bm&1)m).

v ST (m&2, n, r$, l ), where r$=bt&1bt&2 } } } bm+1bm(bm&1)m=bt&1bt&2 } } }
bl+1(bm&1) l+1.

Pattern D. If rm�bm&1 and there is no jumping flipping link from Sm to some Sl ,
where m&1>l�n, then we determine the leftmost jumping flipping link, say J e

u, v ,
in Sm+Sm&1+ } } } +Sn , if it exists. Since J e

u, v is the leftmost one, by Theorem 2.1
we have bm>(rm�)bm&1�bm&2� } } } �bu>bu&1=bu&2= } } } =bv+1<bv and
e=bu&1=bu&2= } } } =bv+1 . Then ST (m, n, r, m) is constructed as the union of
the components (refer to Fig. 4(d)):

v ST (m, m, r, m).

v Link sets [(bt&1 bt&2 } } } bj+1x(bj )
j, bt&1 bt&2 } } } bj+1bj (x) j ) | 0�x�bj&1

&1] for all u� j�m.

v Spanning trees of bt&1bt&2 } } } } bj+1bj x } K(d, j&1) rooted at bt&1bt&2 } } }
bj+1bj (x) j for all 0�x�b j&1&1 and all u� j�m.

v Jumping flipping link (bt&1bt&2 } } } bu+1e(bu)u, bt&1bt&2 } } } bu+1bu(e)u).

v ST (u&2, n, r$, v), where r$=bt&1bt&2 } } } bu+1bu(e)u=bt&1bt&2 } } } bv+1(e)v+1.

If J e
u, v does not exist, then ST (m, n, r, m) is constructed as the union of the first

three components above, with substituting n+1 for u.
Note that the last components in Patterns B, C, and D are spanning trees of the

form ST (m$, n, r$, k), where m$=k or m$>k and bm$=bm$&1= } } } =bk+1<bk . If
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FIG. 4. Five dissemination patterns for constructing ST (m, n, r, m): (a) Pattern A, (b) Pattern B,
(c) Pattern C, (d) Pattern D, (e) Pattern E.

m$=k, ST (m$, n, r$, k) is constructed recursively. Otherwise, ST (m$, n, r$, k) is con-
structed as

Pattern E. ST (m$, n, r$, k), where bm$=bm$&1= } } } =bk+1<bk and m$>k�n,
is constructed as the union of the components (assuming h=bm$=bm$&1= } } }
=bk+1) (refer to Fig. 4(e)):

v ST (k, n, r$, k).

v Link sets [(bt&1bt&2 } } } bj+1bj (x) j, bt&1 bt&2 } } } bj+1x(bj )
j | 0�x�h&1]

for all k< j�m$.
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FIG. 4��Continued

v Spanning trees of bt&1bt&2 } } } bj+1x } K(d, j) rooted at bt&1bt&2 } } }
bj+1x(bj )

j for all 0�x�h&1 and all k< j�m$.

With these patterns, ST (m, n, r, m), where m>n, can be constructed recursively.
For example, let us consider IK(d, 11) with d >5 and coefficient vector (4, 5, 4, 2,
2, 4, 2, 2, 1, 5, V). Assuming r # 453 } K(d, 8), ST (8, 2, r, 8) can be constructed as
follows (refer to Fig. 5(a)). First, Pattern C is applied because r8=3>2=b7 and
there exists one jumping flipping link from S8 to S5 . A spanning tree of S8+S7

rooted at r is thus obtained. Then Pattern E is applied to construct ST (6, 2, r$, 5),
where r$=454(2)8=45422(2)6, and the spanning tree of S8+S7 rooted at r grows
by augmenting ST (5, 2, r$, 5) and the nodes of S6 . ST (5, 2, r$, 5) can be obtained
by applying Pattern D.
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FIG. 5. Examples: (a) ST (8, 2, r, 8), where r belongs to 453 } K(d, 8); (b) ST (9, 4, r, 4), where r
belongs to 4542240 } K(d, 4).

4. CONSTRUCTING ST (m, n, r, n)

In this section, we aim to construct ST (m, n, r, n). The construction algorithm
contains three basic dissemination patterns: Pattern F, Pattern G, and Pattern H.
A variable w is used by the algorithm. Initially, w is set to rn , where r=
rt&1rt&2 } } } r1r0 is assumed, and ST (n, n, r, n) is constructed as an initial spanning
tree. The current spanning tree, assuming ST ( j, n, r, n) and n� j<m, will grow
toward the left when the patterns are applied. The details are shown.

Pattern F. If bj�bj+1 , then ST ( j, n, r, n) grows into ST ( j+1, n, r, n) by
augmenting the components (refer to Fig. 6(a)):
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FIG. 6. Three dissemination patterns for constructing ST (m, n, r, n): (a) Pattern F, (b) Pattern G,
(c) Pattern H.

v Link set [(bt&1bt&2 } } } bj+2 bj+1(x) j+1, bt&1bt&2 } } } bj+2x(bj+1) j+1) | 0�
x�bj&1].

v Spanning trees of bt&1 bt&2 } } } bj+2 x } K(d, j+1) rooted at bt&1bt&2 } } }
bj+2x(bj+1) j+1 for all 0�x�bj&1.

v Link set [(bt&1bt&2 } } } bj+2w( y) j+1, bt&1 bt&2 } } } bj+2 y(w) j+1) | bj�y�
bj+1&1].

v Spanning trees of bt&1bt&2 } } } bj+2 y } K(d, j+1) rooted at bt&1bt&2 } } }
bj+2 y(w) j+1 for all bj�y�bj+1&1.

The subnetwork bt&1bt&2 } } } bj+2w } K(d, j+1) is responsible for disseminating
the message to bt&1bt&2 } } } bj+2 y } K(d, j+1) for all bj�y�bj+1&1. They are not
allowed to receive the message directly from Sj .

285INCOMPLETE WK-RECURSIVE NETWORKS



Pattern G. If bj>bj+1 and there is no jumping flipping link from Sj to some Sl ,
where m�l> j+1, then ST ( j, n, r, n) grows into ST ( j+1, n, r, n) by augmenting
the components (refer to Fig. 6(b)):

v Link set [(bt&1bt&2 } } } bj+2 bj+1(x) j+1, bt&1bt&2 } } } b j+2x(bj+1) j+1) | 0�
x�bj+1&1].

v Spanning trees of bt&1 bt&2 } } } bj+2 x } K(d, j+1) rooted at bt&1bt&2 } } }
bj+2x(b j+1) j+1 for all 0�x�bj+1&1.

Pattern H. If bj>bj+1 and there exists one jumping flipping link from Sj to
some S l , where m�l>j+1, then ST ( j, n, r, n) grows into ST (l, n, r, n) by
augmenting the components (refer to Fig. 6(c), where e=bl&1=bl&2= } } } =bj+1

is assumed:

v Link sets [(bt&1bt&2 } } } bs+1 bs(x)s, bt&1bt&2 } } } bs+1x(bs)
s) | 0�x�e&1]

for all j<s�l.

v Spanning trees of bt&1bt&2 } } } bs+1x } K(d, s) rooted at bt&1bt&2 } } }
bs+1 x(bs)

s for all 0�x�e&1 and all j<s�l.

v Jumping flipping link (bt&1bt&2 } } } bl+1bl (e) l, bt&1bt&2 } } } b l+1e(b l )
l ).

v Spanning tree of bt&1bt&2 } } } bl+1 e } K(d, l ) rooted at bt&1bt&2 } } }
bl+1e(bl )

l.

v Link set [(bt&1bt&2 } } } bl+1e( y) l, bt&1bt&2 } } } bl+1 y(e) l ) | e+1� y�
bl&1].

v Spanning trees of bt&1bt&2 } } } bl+1 y } K(d, l ) rooted at bt&1bt&2 } } }
bl+1 y(e) l for all e+1� y�bl&1.

Besides, w is updated to e after Pattern H is executed. The purpose of this change
is to maintain the height of ST (m, n, r, n) as small as possible.

By the aid of the three patterns, ST (m, n, r, n) can be constructed from the right
to the left. For example, refer to Fig. 5(b), where r # 4542240 } K(d, 4) and ST (9, 4,
r, 4) is shown. The IK(d, t) has d >5, t=11, and coefficient vector (4, 5, 4, 2, 2,
4, 2, 2, 1, 5, V). Initially, ST (4, 4, r, 4) is constructed as an initial spanning tree and
w is set to r4=0. Since b4=2<4=b5 , Pattern F is first applied and ST (4, 4, r, 4)
grows into ST (5, 4, r, 4). Next, Pattern H is applied and the current spanning tree
becomes ST (8, 4, r, 4). Also w is updated to 2 (=b6=b7). Finally, ST (9, 4, r, 4)
results after Pattern F is applied.

5. CONSTRUCTING ST (m, n, r, z )

In this section, we explain how to broadcast in IK(d, t) by constructing ST (m,
n, r, z), where m�z�n. Since the two cases of z=m and z=n have been discussed
in the previous two sections, we only need to consider m>z>n. Without loss of
generality, we assume r # bt&1bt&2 } } } bz+1: } K(d, z), where 0�:�bz&1. First of
all, we have to determine whether or not there is a jumping flipping link passing Sz ,
i.e., whether or not some J e

u, v exists such that m�u>z>v�n. If not, ST (m, n, r, z)
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can be obtained by first constructing ST (z, n, r, z) and then expanding it to ST (m,
n, r, z). The former can be done in the same way as described in Section 3. The
latter can be done just like in Section 4, but ST (z, n, r, z), instead of ST (z, z, r, z),
is regarded as the initial spanning tree, and w is initialized with :.

If such a J e
u, v exists, by Theorem 2.1 we have bu>bu&1=bu&2= } } } =bv+1<bv

and e=bu&1=bu&2= } } } =bv+1 . ST (m, n, r, z) is constructed according to two
cases:

Case 1 (z=u&1). First, ST (u, n, r, z) is obtained by combining together the
components (refer to Fig. 7(a), where :=e&1 is assumed):

v ST (z, n, r, z).

v Link set [(bt&1 bt&2 } } } bu+1bu(x)u, bt&1 bt&2 } } } bu+1 x(bu)u) | 0�x�e&1].

v Spanning trees of bt&1bt&2 } } } bu+1x } K(d, u) rooted at bt&1bt&2 } } }
bu+1x(bu)u for all 0�x�e&1.

v Jumping flipping link (bt&1bt&2 } } } bu+1bu(e)u, bt&1bt&2 } } } bu+1e(bu)u).

v Spanning tree of bt&1 bt&2 } } } bu+1e } K(d, u) rooted at bt&1bt&2 } } }
bu+1e(bu)u.

v Link set [(bt&1 bt&2 } } } bu+1 :( y)u, bt&1bt&2 } } } bu+1 y(:)u) | e+1� y�
bu&1].

v Spanning trees of bt&1bt&2 } } } bu+1 y } K(d, u) rooted at bt&1bt&2 } } }
bu+1 y(:)u for all e+1� y�bu&1.

The subnetwork bt&1bt&2 } } } bu+1e } K(d, u) in Su receives the message via J e
u, v in

order to reduce the transmission length. Then, ST (u, n, r, z) grows into ST (m, n,
r, z) by augmenting the nodes of Sm+Sm&1+ } } } +Su+1 , which can be done
almost the same as in Section 4, except that ST (u, n, r, z) is regarded as the initial
spanning tree and w is initialized with :.

Case 2 (z<u&1). First, ST (u, n, r, z) is obtained by combining together the
components (refer to Fig. 7(b), where :=e&1 is assumed):

v ST (z, n, r, z).

v Link sets [(bt&1bt&2 } } } bj+1bj (x) j, bt&1 bt&2 } } } bj+1 x(bj )
j ) | 0�x�e&1]

for all z< j�u.

v Spanning trees of bt&1bt&2 } } } bj+1x } K(d, j) rooted at bt&1bt&2 } } }
bj+1x(b j )

j for all 0�x�e&1 and all z< j�u.

v Jumping flipping link (bt&1bt&2 } } } bu+1bu(e)u, bt&1bt&2 } } } bu+1e(bu)u).

v Spanning tree of bt&1bt&2 } } } bu+1e } K(d, u) rooted at bt&1bt&2 } } }
bu+1e(bu)u.

v Link set [(bt&1 bt&2 } } } bu+1 e( y)u, bt&1bt&2 } } } bu+1 y(e)u) | e+1� y�bu

&1].

v Spanning trees of bt&1bt&2 } } } bu+1 y } K(d, u) rooted at bt&1bt&2 } } }
bu+1 y(e)u for all e+1� y�bu&1.
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FIG. 7. Illustration of ST (m, n, r, z): (a) z=u&1, (b) z<u&1.

Like Case 1, ST (u, n, r, z) then grows into ST (m, n, r, z) by augmenting the
nodes of Sm+Sm&1+ } } } +Su+1 with ST (u, n, r, z) being the initial spanning tree
and e being the initial value of w.

A distributed algorithm (in pseudo codes) for broadcasting on IK(d, t) can be
found in [32].

6 EXPERIMENTS AND RESULTS

Clearly our broadcasting algorithm achieves optimal message complexity,
because each node receives the message exactly once. Besides, extensive experiments
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had been made to verify the efficiency. Four algorithms, as well as our broadcasting
algorithm, were implemented for the need of our experiments:

v Su, Chen, and Duh's algorithm for computing the diameter of IK(d, t) [31].
Using the prune-and-search technique [20], the algorithm can compute the
diameter of IK(d, t) in O(t) time. Moreover, the farthest pair of nodes can be deter-
mined simultaneously. Note that, although the diameter of IK(d, t) can be com-
puted, no formula is available for computing it.

v Su, Chen, and Duh's shortest-path routing algorithm for IK(d, t) [30]. With
O(d } t) time preprocessing performed by the source node, the algorithm takes O(t)
time for each intermediate node to determine the next node along the shortest path
to the destination node.

v Chen and Duh's shortest-path routing algorithm for K(d, t) [4]. The algo-
rithm can transmit a message from p to q in O(t+d ( p, q)) time, where p and q are
any two nodes of K(d, t) and d ( p, q) is their distance.

v Chen and Duh's broadcasting algorithm for K(d, t) [4]. The algorithm was
reviewed in the beginning of Section 3.

All the algorithms above were simulated using C programs on the PC. We first
compared the maximum transmission length, i.e., the height of ST (t&1, i, r, z),
with the diameter of IK(d, t). Table 1 shows the experimental result. For each of the
entries marked with V, the experiment was made exhaustively. That is, for each
d t&1<N<d t, we let each of the N nodes act as the source node and then deter-
mine the height of the corresponding ST (t&1, i, r, z). Our experimental result
shows that all ST (t&1, i, r, z)'s have their heights bounded above by the diameter.
The diameter was computed by Su et al.'s algorithm [31].

On the other hand, for each of the entries marked with 2, we randomly chose 105

experiment instances (instances for short). Here, an arbitrarily selected value of N
combined with an arbitrarily selected source node r forms an instance. Our
experimental result shows that their corresponding ST (t&1, i, r, z)'s have their
heights bounded above by the diameters. Moreover, the experiment was also made
by selecting peripheral nodes as r. A node in a network is said to be a peripheral
node [3] if the distance between it and its farthest node is equal to the diameter of

TABLE 1

Experimental Results about Maximum Transmission Length

t
2 3 4 5 6 7 8 9 10 11 12

d

3 V V V V V V V V V q q
4 V V V V V V V V q q q
5 V V V V V V q q q q q
6 V V V V V q q q q q q
7 V V V V V q q q q q q
8 V V V V q q q q q q q
9 V V V V q q q q q q q

10 V V V q q q q q q q q
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the network. Su et al.'s algorithm [31] can find two peripheral nodes as well. It is
clear that the height of ST (t&1, i, r, z) is at least the diameter if r is a peripheral
node. Our experimental result shows that the height of ST (t&1, i, r, z) for
peripheral node r is just the same as the diameter.

In addition to the maximum transmission length, we also investigated how close
to the shortest paths the transmission paths are. Figure 8 shows the average per-
centages of nodes that receive the message from the source node via the shortest
paths. Chen and Duh's broadcasting algorithm [4] for K(d, t) was adopted in the
experiment. The experiment proceeded as follows. First, 1000 instances were ran-
domly chosen for both IK(d, t) and K(d, t). Here a selected value of N combined
with a selected source node r forms an instance of IK(d, t), whereas a selected
source node alone forms an instance of K(d, t). For each of the chosen instances,
the percentage was computed by the aid of Su et al.'s algorithm [30] and Chen and
Duh's algorithm [4]. The two algorithms can compute the distance of two
arbitrary nodes in IK(d, t) and K(d, t), respectively. The average percentages for
IK(d, t) and K(d, t) were then computed for the 1000 instances (we found in the
experiment that all average percentages got stable after running 1000 instances).

For illustration, we show the experimental results for an instance of IK(6, 8) and
an instance of K(6, 8). We let 30120441 be the source node, and N=1506648. The
simulation program output 1,432,230 nodes and 1,578,344 nodes for the instance of
IK(6, 8) and K(6, 8), respectively, which received the messages via the shortest
paths. The percentages are 0.9506 and 0.9397, respectively.

The interested readers may wonder why the curves for IK(d, t) are above the
curves for K(d, t) in Fig. 8. Here we try to explain it with an example as follows.
Let us consider K(4, 3) and those IK(4, 3)'s with coefficient vectors (2, V), (2, 1, V),
(2, 2, V), (2, 3, V), (3, V), and (3, 1, V), respectively. The shortest path between nodes
032 and 133 in K(4, 3) is 032 � 033 � 300 � 301 � 310 � 311 � 133, which has
length 6. However, this shortest path is not existent again for those IK(4, 3)'s.
Instead, the distance between 032 and 133 increases to 7 for those IK(4, 3)'s.

FIG. 8. Average percentages of nodes that receive the message via the shortest paths: (a) d=4:
(b) d=5; (c) d=6.
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Assume 032 is the source node. The transmission path from 032 to 133 in K(4, 3)
induced by Chen and Duh's broadcasting algorithm [4] has length 7. On the other
hand, the transmision paths from 032 to 133 in those IK(4, 3)'s induced by our
broadcasting algorithm all have length 7, which is the distance between 032 and 133
in those IK(4, 3)'s.

Also a careful reader may find that the curves in Fig. 8 go upward as d increases.
This is a consequence of the following observation. Assume r belongs to some
K(d, z) of Sz . The closer to some z-frontier the root node r is, the smaller the
average percentage is. For example, refer to Fig. 2 again, where the structure of
IK(4, 3) with coefficient vector (3, 2, V) is shown. If r=032, which is one distant
from the nearest 2-frontier (i.e., 033), then all nodes but 133 in the IK(4, 3) can
receive the message from r via the shortest paths. On the other hand, if r=033 is
a 2-frontier, then three nodes 133, 132, and 131 cannot receive the message from r
via the shortest paths. Since the expected distance between r and the nearest z-fron-
tier increases as d grows, the curves in Fig. 8 go upward as d grows.

Figure 9 further shows the average deviations for the nonshortest transmission
paths. Similar to Fig. 8, 1000 randomly chosen instances were executed for both
IK(d, t) and K(d, t). For each nonshortest transmission path (from r to v, for example),
the deviation was computed as the ratio of its length to d(r, v). The average deviations
were then obtained each by taking the average of all deviations of nonshortest trans-
mission paths. Also note that the curves start with t=3 because the transmission
paths for t=2 are all shortest.

In Table 1 we have investigated the height of ST (t&1, i, r, z). However, since
different root nodes will lead to different tree heights, we are more concerned with
the percentage of ST (t&1, i, r, z)'s that have minimum heights. Figure 10 shows
our experimental result. Each percentage value for IK(d, t) was obtained by running
12,000 randomly chosen instances. It is observed that a high percentage of
ST (t&1, i, r, z)'s have minimum heights. Also note that all spanning trees for
K(d, t) induced by Chen and Duh's broadcasting algorithm [4] have minimum
heights. This can be assured by Lemma 3.4.

FIG. 9. Average deviations for nonshortest transmission paths: (a) d=4; (b) d=5; (c) d=6.
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FIG. 10. Percentages of ST (t&1, i, r, z)'s with minimum heights: (a) d=4; (b) d=5; (c) d=6.

7 CONCLUDING REMARKS

Almost all announced (complete) networks have suffered from a common
problem: the number of nodes is restricted to a set of specific values. Hence, several
incomplete networks, such as incomplete hypercubes [17], incomplete star
networks [18, 25], incomplete rotator graphs [23], and incomplete WK-recursive
networks [30], have been suggested as a solution to the problem.

Generally speaking, broadcasting on incomplete networks is more difficult than
on corresponding complete networks. For example, although several broadcasting
algorithms [22, 28] for the star networks have been proposed, the existing one
[18] for the incomplete star networks was designed only for those with size c } k!,
where 1<c�k. Furthermore, no broadcasting algorithms for the incomplete
rotator graphs and the incomplete WK-recursive networks were designed before.
We think, based on our experience of studying incomplete networks, the difficulty
has arisen mainly from the lack of unified representations for incomplete networks.
Unlike complete networks, incomplete networks of different sizes have a significant
difference in their topologies. For example, K(d, t) looks very similar to K(d, t&1),
whereas two IK(d, t)'s with different sizes may look very unlike in their topologies.
Thus, a unified representation is very helpful to the study of the incomplete WK-
recursive networks.

In this paper we have shown that the incomplete WK-recursive networks can be
conveniently represented with the multistage graphs, and thus broadcasting on the
incomplete WK-recursive networks is equivalent to constructing spanning trees for
the corresponding multistage graphs. The resulting broadcasting algorithm achieves
optimal message complexity. Besides, experimental results showed that (1) the max-
imum transmission length does not exceed the diameter, (2) a high percentage of
nodes can receive the message from the source node via the shortest paths, (3) the
deviations for those nonshortest transmission paths are small, and (4) a high per-
centage of the broadcasting trees have minimum heights.
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One of our further researches is first to look for unified representations for other
incomplete networks such as the incomplete star networks and the incomplete
rotator graphs, and then to develop broadcasting algorithms for them with the aid
of these representations.
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