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Abstract

Suppose G is a bipartite graph with two partite sets
of equal size. G is said {o be strongly hamiltonian-
laceable if there ts a hamiltonian path between ev-
ery two vertices that belong to different partite sets,
and there is a path of (mazimal) length N — 2 be-
tween every two vertices that belong to the same par-
tite set, where N is the order of G. The star graph
is known to be bipartite. In this paper, we show that
the n-dimensional star graph, where n > 4 1s strongly
hamiltonian-laceable.

1 Introduction

Usually when the hamiltonicity of a graph G is con-
cerned, it is investigated whether GG is hamiltonian or
hamiltonian-connected. A cycle (path) in G is called
a hamiltonian cycle (path) if it contains every ver-
tex of G exactly once. @ is said to be hamiltonian
if it contains a hamiltonian cycle, and hamiltonian-
connected if there exists a hamiltonian path between
every two vertices of G. Since a bipartite graph is
not hamiltonian-connected, Wong {5] has introduced
the concept of hamiltonian-laceability for the class of
bipartite graphs. A bipartite graph G = (V1,V2, E)
with |V1| = |V2| is hamiltonian-laceable if there is a
hamiltonian path between every vertex of V3 and every
vertex of Vo, where V1 and V3 are the two partite sets
of G. We note that any path between two vertices of
the same partite set has length at most |V1]|+|V2|-2.

It is meaningful to extend the concept of
hamiltonian-laceability so that the lengths of the
paths between two vertices of the same partite set are
specified and the edge faults are considered. We say
that a hamiltonian-laceable graph G = (V1,V2,E)
is strongly if G additionally owns the property that
there is a path of length |V1}+ [V 2| —2 between every
two vertices of the same partite set. Further, G is &k
edge fault-tolerant strongly hamiltonian-laceable if it
remains strongly hamiltonian-laceable after removing
at most k edges. In other words, there is a longest path
between every two vertices of a k edge fault-tolerant
strongly hamiltonian-laceable graph &, even if at most
k edges of G are removed. The longest path has length
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[V1]+ |V2| — 1 if the two vertices belong to different
partite sets, and |[V1| + |V2| — 2 if the two vertices
belong to the same partite set.

The star graph [1], which belongs to the class of
Cayley graphs, has been recognized as an attractive
alternative to the hypercube. It possesses many nice
topological properties, e.g., recursiveness, vertex and
edge symmetry, maximal fault tolerance, sublo arlth—
mic degree and diameter, and strong resiliencegf
which are desirable when we are building an mtercon-
nection topology for parallel and distributed systems.
In [3], Jwo, Lakshmivarahan, and Dhall have shown
that the star graph is bipartite. Besides, its two par-
tite sets have equal size. In this paper we show that
the n-dimensional star graph is strongly hamiltonian-
laceable when n > 4.

2 Prelimiaries

The n-dimensional star graph, denoted by S,, is
defined as follows.

Definition 1 The wverter set of S, is denoted by
{a1az...a,} a1a,.. .ap 18 @ permutation of {1,2,. n}}
Vertex adjacency is defined as follows: ayas...an ts
adjacent to a;as...q;-1a1@i41...an for all 2 < ¢ < n.
The vertices of S, are n! permutations of {1,2, . n},
and there is an edge between two verlices of Sn if
and only if they can be obtained from each other
by swapping the leftmost number with one of the
other n — 1 numbers. For convenience we refer to
the position of a; in aias...a, as the ith dimen-
sion, and (a1ay...an, @;0y...0;_1410i41...0y ) as the ith-
dimensional edge.

Definition 2 There are embedded S,’s contained in
Sn, where 1 < r < n. An embedded S, can be con-
vemently represented by < s153...5n >, where 51 = x,
si €{*,1,2,..,n} for all2 < i < n, and ezactly r of
s1, 82, .-, sn are * (¥ denotes a "don't care’ > symbol).

Definition 3 An i-partition on < s1s9...5, >, parii-
tions < $183...8, >, into r embedded S._,s, denoted
by < 5189...8i_19841...80 >,_;, where 2 < ¢ < n,
si=x*, and ¢ € {1,2,...,n} ~ {s1,52,...,8,}.



Definition 4 An (11,92, .oy b )-
partition on < $182...8, >, performs an iy-partition,
an iy-partition, ..., an iy,-partition, sequentially, on
< 8182...8n >,, where i112...2,, 15 a permulation of m
elements from {2,3,...,n}.

Definition 5 Two embedded S, ’s < s183...5, >, and
< tity..tn >, are said to be adjacent if s; £ *, {; £ x,
and s; £ t; for some 2 < j < n, and s; = ¢; for all
1 <1< nandi# j. Moreover, the position j is
denoted by dif(< s183...8n >, < tita.. .t >,).

Definition 6 Let A1, A2, ..., Aptn-1)(n-2).(r+1)
represent those embedded S,’s that are oblained by
executing an (i1, g, ..., in-r)-partition on S,, where
1 <r <n-—1 They form an r-path, denoted by
P =[Ay, Az, . Apn-1)(n=2)-(r4+1)], if Ai is adjacent
to Ajp1 forall<i<n(n—1)(n—2)---(r+1)-1.
Each vertex of P, i.e., A;, ts called an r-verter, and
each edge of Pr, i.e., (A;, Aiy1), is called an r-edge.

Definition 7 An t-partition
on P, = [A1, Az, ..., An(n-1)(n=2)..(r+1)] performs an
i-partition on Ay, A, ..., An(n-1)(n-2)-(r+1), TSPEC-
tively, where 2 < ¢ < n and r > 2. Afier an i-
partition, each A; is partitioned into r (r—1)-vertices,
where 1 <j<n(n—1)(n—2)---(r+1). Since every
two of the r (v — 1)-vertices are joined with an (r —1)-
edge, each A; can be viewed as a complete graph of r
(r—1)-vertices. Throughout this paper, we refer to the
complete graph as K'=1. We note that each verter of
KI=1 is an (r—1)-vertex and each edge of K1 ™1 is an
(r—1)-edge.
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3 Hamiltonian-Laceability Star

Graphs
In this section we show S, with n > 4 is strongly
hamiltonian-laceable.

Lemma 3.1 Suppose U < ULUY... Uy >y, V
< V9.V, >, and W o= < wiws..w, >, are arbi-
trary three consecutive r-vertices in a Pr, where r > 2.
Let p = dif(U,V) and q = dif(V,W). If up # wy,
then after exzecuting a partition on the P, each (r—1)-
verter of V is connected to U or W.

Proof: Without loss of generality, we assume that a
Jj-partition is executed on the P, where 2 < j < n.
Hence, uj = v = Wy = k. Since p= dzf(U,V) # 1
and ¢ = dif(V,W) # 1, we have u, # v,, v4 # wy,
u, = v; forall 1 < ¢ < nandi{ # p, and v; = wy;
for all 1 < ¢ < n and ¢ # ¢. Suppose conversely
u, # w, and there exists an (r — 1)-vertex, say

1 = < V102...0j-12Vj41...Un >, _;, of V which is not
connected to either of U and W. Thus, z = u,, for
otherwise V) is adjacent to some (r — 1)-vertex of U.
Similarly, z = w,. This implies u, = w,, which con-
tradicts our assumption. Q.E.D.

Lemma 3.2 Suppose v and v are arbitrary two dis-
tinct vertices of S, with n > 4. There exists a P,
whose first (n — 1)-vertex contains u and whose last
(n — 1)-vertez contains v.
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Proof: Suppose u U Us... Uy, and v = v 0y...05.
Without loss of generality, we assume u; # v; for some
2 < j < n. After a j-partition, S,, is partitioned into
n (n — 1)-vertices, which form a KZ~!. Clearly, u and
v belong to two different vertices, say U and V, of
the K71, The desired P,.; can be constructed as a
hamiltonian path from U to V in the K2~1. Q.E.D.

In the rest of this paper, we suppose u and v are the
beginning vertex and the ending vertex, respectively,
of a path. We call an r-vertex the beginning r-vertex
(ending r-vertex) if it contains u (v). Besides, a path
from U to V is abbreviated to a U — V' path.

Lemma 3.3 A P._1 whose first (r — 1)-verter is the
beginning (r — 1)-vertex and whose last (r — 1)-vertex
ts the ending (r — 1)-verter can be obtained from a
P, whose first r-vertex is the beginning r-vertex and
whose last r-verler is the ending r-verter, where 4 <
r<n—1andn>bH.

Proof: Suppose P, =
[A41, As, ..., An(n-1)(n-2).-(r+1)], where A; is the begin-
ning r-vertex and An(n_l)(n_g)...(rﬂ) is the ending r-
vertex. After executing a partition on the P,, each A;
formsa KI~1, where 1 <i < n(n—1)(n—2)---(r+1).
Since each A; contains at least three (r — 1)-vertices,
we can select two distinct (r — 1)-vertices, say X; and
Yi, from each A; so that X, is the beginning (r — 1)-
vertex; Yo (n—1)(n-2)--(r+1) 18 the ending (r —1)-vertex,
and for 2 < j < n(n—-D(n—-2)---(r +1) - 1,
X; and Y; are adjacent to Y;_; and X1, respec-
tively. Since there exists a hamiltonian X; — Y; path
in the KI~! formed by A;, the desired P._; can be
obtained by concatenating all the hamiltonian paths
interleaved with (r — 1)-edges (Y1, X2), (Y2, X3), ..,
(Ya(n—1)(n=2)(r4+1)=1, Xn(n=1)(n=2)- (r+1))- .

In the rest of this paper, X; and Y; as specified
above are referred to as the entry (r — 1)-vertex and
the exit (r — 1)-vertex of A;, respectively.

Lemma 3.4 A P5; whose first b-verter is the begin-
ning b-verter and whose last 5-vertex is the ending
b-verter can be obtained in S, withn > 5.

A Pr = [Al,Az, H-;An(n—l)(n—2)~~»(r+1)] in Sn,
where 2 < r < n — 1, is said to be good if it satis-
fies the following three conditions.

(Cond. 1) Ay and Ap(n_1)(n—2).-(r+1) are the begin-
ning and ending r-vertices, respectively.

(Cond. 2) For arbitrary three consecutive r-vertices
X = <zix3..2n>,, Y = <91¥2..Yn >,, and Z =
< z129...zp, >, 10 the P, Tdif(X,Y) F Zdif(Y,Z) holds.
éCond. 3) After executing a k-partition on the P,
or some 2 < k < n, the beginning (ending) (r — 1)-
vertex in Ay (An(n—1)(n-2).-(r+1)) 18 Ot connected to

Az (An(n-t)n-2) (r41)~1)-

In the rest of this section we show that a good Ps
can be obtained in S,. Given arbitrary two vertices of
Sn, a longest path between them can be constructed
from a good Pj.



Lemma 3.5 A good Py can be obtained from a Ps
whose first 5-vertex is the beginning J-verter and
whose last 5-vertex is the ending 5-vertex.

Proof: We suppose Ps = [Ay, A2, ..., Ap(n—1)(n-2)- 6],
where Ay and Ap(n—1)(n—2)..6 are the beginning and
ending 5-vertices. Without loss of generality, we as-
gume that the Ps is obtained from S, by executing
an (a1, ag, ..., dn—s)-partition, where a;as...an 5 is_an
arrangement out of {2,3,...,n}. Let j € {2,3,...,n} —
{a1,as, ..., an_s}. First, a j-partition is executed on
the Ps, and so each A; forms a K2, where 1 < ¢ <
n(n —1)(n —2)---6. In the rest of the proof we con-
struct a good Py from the Ps by establishing a hamil-
tonian path for each K3.

Suppose u = ujus...un and v = v1v3...0, are the be-
ginning and ending vertices, respectively. A hamilto-
nian path for the K2 formed by A; can be established
as follows. Let X; = < z1Z2...2, >4 be the begin-
ning 4-vertex (in Ai), T be the 4-vertex of A; that
is not connected to Az, and W = < wiws...w, >4 be
a 4-vertex of Ay which is different from X; and has
w; = uy forsome k € {2,3,..,n}—{j,a1,a2,...,an_s}.
Since there are four 4-edges between A; and Ay, there
exists a 4-vertex Y1 € {Xi,W} which is connected
to Ay. If X3 = Tor (X1 # T and T = W),
a hamiltonian X; — Y; path can be established as
(X1, W)+ P[W,Y1], where P[W,Y1] denotes a W — Y}
path passing all the vertices of the K¢ but X; exactly
once. Otherwise, if X; # T and T # W, a hamilto-
nian X; — Y7 path can be established as (X;, W)+
(W, T) + P[T,Y:], where P[T,Y;] denotes a T' — Y}
path passing all the vertices of the K2 but X; and W
exactly once. Then we continue to establish a hamil-
tonian path for the K2 formed by An(n—1)(n=2)6-
The construction of the hamiltonian path is simi-
lar to the situation of A;. Let Yi(n_1)n-2).6 be
the ending 4-vertex (in A,m_1)n-2)..6, C be the
4-vertex of Apn-1)n-2).6 that is not connected
to An(n—l)(n—Z)---6—17 and = <d1d2...dn >4 be
the 4-vertex of An(n_1)(n-2) ¢ that is different from
Yn(n-1)(n-2)-6 and has d; = v; (here, k 1s identical
with that & appearing in the situation of 4;). There
exists a vertex Xp(n—1)(n-2)-6 € {D, Yn(n-1)(n—2)..6}
which is connected to Ajpm_1)(n—2).-6-1-
Yn(n—l)(n—2)m6 =C or Yn(n~1)(n—2)~-»6 75 C and C =
D), a hamiltonian Xn(n_l)(n_g)ms — Yn(n_l)(n_z),,.(;
path can be established as P[X,mn-1)(n-2)6, D] +
(D,Yn(n_l)(n_g)...g), where P[ n(n_l)(n_g).A.G,D] de-
notes an Xp(n-1)(n-2).-6 — path passing all the
vertices of the K2 but Yo(n-1)(n-2) ¢ exactly once.
Otherwise, if Yn(n_l)(n_g)...e # Cand C # D, a
hamiltonian X, (n-1)(n-2)-6 — Yn(n—1)(n—2) 6 path
can be established as P[X,,(n—1)(n—2).6, C]+(C, D)+
(DaYn(n—l)(n-2)---6)a where P[Xn(77,—1)(n~2)v~6:c] de-
notes an Xn(n_1)(n—2).-6 — C path passing all the ver-
tices of the K¢ but D and Yy, (,_1y(n—2)..¢ exactly once.
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In the discussion above, X3 and Y1 (Xp(n-1)(n—2)- 6
and Y, (n_1)(n-2).-6 are the entry and exit 4-vertices
of A1 (An(n=1)(n-2)--6), respectively. Additionally, we
use X; and Y; to denote the entry and exit 4-vertices
of A;, respectively, for 2 <i < n(n—1)(n—2)---6-1.
Let L; (Q;) be the 4-vertex of A; that 1s not connected
to A;—1 (4i41). A hamiltonian X; —Y; path in the
Kg* formed by A; can be established according to the
following four cases. Case 1. @; = X; and L; =
Y;. A hamiltonian X; — Y; path can be established
easily. Case 2. Q; # X; and L; =Y;. A hamiltonian
X; —Y; path can be established as (X;, @;)+ P[Qs, Y3,
where P[Q;,Y;] denotes a @); — Y; path passing all
the vertices of the K but X; exactly once. Case 3.
@:; = X; and L; £ Y;. A hamiltonian X; —Y; path can
be established as P[X;, Li] + (L;, Y:), where P[X;, L]
denotes an X; — L; path passing all the vertices of
the K2 but Vi exactly once. Case 4. Q; = X; and
L; # Y. If Q; = L;, a hamiltonian X; — Y; path can
be established as (X;,U;, Li, V;,Y:), where U; and V;
are the other two 4-vertices of A; than X;, Y;, and
L;. If Q; # Li, a hamiltonian X; — Y; path can be
established as (X;, @y, U;, Li, Y;), where U; is the other
4-vertex of A; than X;, Y;, [y, and @Q;.

Clearly the hamiltonian paths obtained above
interleaved with 4-edges (Y1,X2), (V2,X3), ..,
(Yn(n_l)(n_Q).us_l,Xn(n_l)(n_z)ms) form a P4. Next,
we show the P; good. (Cond. 1) holds because
X1 is the beginning 4-vertex and Y,(n_1)(n-2).6 18
the ending 4-vertex. (Cond. 3) holds for the rea-
son as follows. Recall that w; = wuy for some k& €
{2,3,...,n} — {j,a1,a2,...,an-5}. After executing a
k-partition on the Py, X1 = < z1x9...x, >4 forms a
K3. Since zj = u; = wj, the beginning 3-vertex
is not connected to W. Similarly, the ending 3-
vertex is not connected to D). In the following, we
show (Cond. 2) holds. Let X = < zizg..z, >y,
Y = < y1y2.-.Yn >4, and Z = < z122...2n >4 be arbi-
trary three consecutive 4-vertices in the Py. Assuming
p=dif(X)Y) and ¢ = dif(Y,Z), we show &, # z,
according to three cases. If X is the exit 4-vertex of
A; for some 1 < 7 < n(n—1)(n—-2)---6 — 1, then
Y is the entry 4-vertex of A;y; and Z is the second
4-vertex in the hamiltonian path established for the
K& formed by A;y1. Besides, p # j = q. Suppose
conversely &, = z,. Then, Z is not connected to A;
(recall that the pair of 4-vertices in A; and A;4;. that
are not adjacent are < ry..Ty-12p%g41...2 >, and
< 21..Zg-1TpZg41.-2n >,, Tespectively, where z, =
zp # xp = zg and 7; = z forall 1 < ¢ < n and
i #{p,q}). According to our construction for the Py,
Z should be the third or fourth or fifth 4-vertex in
the hamiltonian path established for the K} formed
by Aiy1, which is a contradiction. If Z is the entry
4-vertex of A; for some 1 < i < n(n~1)(n-—2)---6,
then x, # 2z, can be shown similarly. Otherwise,
if X, {}, and Z belong to the same 4-vertex, then
p=dif(X,Y)=dif(X,Z) = dif(Y,Z) = q. Since X
and Z are different 4-vertices, we have x, # z,. This
completes the proof. E.D.



As with similar arguments to prove the above, we
can show the following lemmas. Due to space limita-
tion, the details are omitted.

Lemma 3.6 A good Ps can be obtained from a good
Py.

Proof: We suppose Py = [A1, A2, ..., Ap(n-1)(n—2)-5]-
Without loss of generality, we assume that the P, is
obtained from S,, by executing an (ay,as, ..., @n-4)-
partition, where ajas...ap_4 is an arrangement out
of {2,3,...,n}. Since the P, is good, there exists
J €12,3,..,n} — {ai,as, ..., an—a} so that after ex-
ecuting a j-partition on the Py, the beginning (end-
ing) 3-vertex in A; (An(n—1)(n-2).-5) is not adjacent to
As (An(n-1)(n—2)..5—1). Besides, each A; forms a K3,
where 1 < ¢ < n(n—1)(n —2)---5. In the rest of the
proof, we construct a good Ps from the P4 by estab-
lishing a hamiltonian path for each K. Suppose u =
U1tg...Un and ¥ = v1v3...0, are the beginning and end-
ing vertices, respectively. We establish a hamiltonian
path for the Kff formed by A, as follows. Let X; be the
beginning 3-vertex (in A;) and W = < wyws...w, >3
be a 3-vertex in A; which s different from X; and has
w; = ug forsome k € {2,3,...,n}—{j, ar,as, ..., an_s}.
We note that X; is not connected to A,. Since there
are three 2-edges between A; and Aj, there is another
3-vertex Y1 ¢ {X;,W} in A; which is connected to
As. A hamiltonian X; — Y] path can be established as
(X1, W)+ P[W,Y1], where P[W, Y]] denotes a W —Y)
path passing all the vertices of the K3 but X; exactly
once.

Then we continue to establish a hamiltonian path
for
the .Kg formed by An(n—l)(n—2)~--5- Let Yn(n_l)(n_z)“.f,
be the ending 3-vertex (in Ap(n-1)(n-2)..5) and D =
< dyds...dn >3 be the 3-vertex in Ap(n-1)n-2)-5
that is different from Yy (n-1)(n-2).5 and has d; =
vr (here, k is identical with that k appearing in
the situation of A;).  There exists a 3-vertex
Xn(n_l)(n._g)u.g, #: D in An(n—l)(n—2)~~~5 which s
connected to Ap(n-1)(n-2).5-1- A hamiltonian
Xn(n-1)(n-2)5 = Yn(n-1)(n-2)-5 path can be estab-
lished as P[Xn(n—l)(n—2)~-5a D] -+ (D, Yn(n—l)(n—2)~~5)7
where P[Xn(n—l)(n—2)~--5a D]
denotes an X, (n,_1)(n-2)..5 — D path passing all the
vertices of the K2 but Yo(n-1)(n—2). 5 exactly once. In
the discussion above, X; and Y1 (X, (n-1)(n-2)..5 and
Yiu(n~1)(n—2)..5) are the entry and exit 3-vertices of 4;
(An(n-1)(n-2).-5), respectively. By X; and Y; we de-
note the entry and exit 3-vertices of A;, respectively,
for2<i<n(n—1)(n—2)---5—1. Let L; (Q;) be the
3-vertex in A; that is not connected to A;_1 (A;41).
A hamiltonian X; — Y; path for the formed by A4; can
be established according to the following four cases.

Case 1. @; = X; and L; = ¥;. A hamiltonian
X; — Y; path can be established easily.

Case 2. @; # X; and L; = Y;. A hamiltonian
X; —Y; path can be established as (X;, Q:)+ P[Q;, Yi],
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where P[Q;,Y;] denotes a @Q); —Y; path passing all the
vertices of the K43 but X; exactly once.

Case 3. @; = X; and L; # Y;. A hamiltonian
X; —Y; path can be established as P[X;, L;]+(L;,Y;),
where P[X;, L;] denotes an X; — L; path passing all
the vertices of the K3 but Y; exactly once.

Case 4. (; # X; and L; # Y;. Since the P,
is good, Lemma 3.1 assures that each 3-vertex of
A; is connected to A;_; or A;yy. Hence, @Q; #
L;. A hamiltonian X; — Y; path can be established
as {X;,Qi, L;,Y;). The hamiltonian paths obtained
above interleaved with 3-edges (Y1, X3), (Y2, X3), ...,
(Yn(n~1)(n—'2)»»~5—17 Xn(n—l)(n—?)-~-5) form a Pg. More-
over, the Ps is good, with the same arguments as the
proof of Lemma 3.5. Q.E.D.

Lemma 3.7 There 1s a good Ps in Ss.

Proof: Suppose u = ujusugugus and v = v1v2v3v45
are the beginning and ending vertices, respectively.
We assume u; # v for i € {aj,a9,...,a1} C
{1,2,3,4,5} and u; = v; otherwise, where 2 < k <5
and @; < @z < --- < ag. First, an aj-partition 1s
executed on Sy, and so a K¢ results. We use U, and
V4 to denote the beginning and ending 4-vertices, re-
spectively. In the following, we construct a good Ps
according to the values of k.

Case 1. k = 2. We assume a3 # 1. The
discussion for a;" = 1 is very similar. For ease of
explanation, we assurne, without loss of generality,
a1 = 2 and as = 3. We then arbitrarily select { = 4
from the set {2,3,4,5} — {a1,a2} = {4,5}, and let
S = < 5152538485 >4 =< * % 83 % x >4 be the vertex
of the K2 with (sq, =)s3 = us(= w). Since there
are five vertices in the Kg, we can find a 4-vertex
Z = < 212923724725 >g= < k k23 x % >4 & {Us, S, Va}
with (z4, =)z3 # v1. Let T be the other vertex than
Us, S, Z, and V4 in the K. A hamiltonian path for
the K2 can be established as (Ui, S, T, Z, V), which
constitutes a Py = [U4,S,T,Z,Vs]. An l-partition is
then executed on the P4, and so each 4-vertex of the
P, forms a K3. By establishing a hamiltonian path
for each K;Z’ , a good Pj3 can be obtained as follows.

First we establish a hamiltonian path for the K3
formed by Vi. Let V3 = < % % vgugx >3 be the end-
ing 3-vertex (in V3) and D = < dydadadads >3=
< * % v3dg* >3 be the 3-vertex of V; that is not con-
nected to Z. Since sq, = w = vy =)vq # 23(= Za,),
V3 is connected to Z. So, D # V3. Moreover, since
there are three 3-edges between Z and V4, there ex-
ists a 3-vertex X # V3 in V4 which is connected to Z.
A hamiltonian path for the K3 can be established as
P[X, D)+ (D, V3), where P[X, D] denotes an X — D
path passing all the vertices of the K3 but V3 exactly
once.

We then continue to establish a hamiltonian path
for the K3 formed by Us. We have d; v, for
some r € {2,3,4,5} ~ {az,I} = {2,5}. We note
r # 1 because D is the 3-vertex in V4 that is not
connected to Z (which implies d; = 24, # v1). Let
Us = < ##*usugx >3 be the beginning 3-vertex (in



Us) and W = < wiWaWaWaws >3=< * % Uglhg* >3 be
the 3-vertex in U, that is different from Us and has
(w; =)ws = u,. We note that Us is not connected to
S because (s,, =)s3 = ug{= ). So, there exists an-
other 3-vertex Y ¢ {Us, W} in Uy which is connected
to S. A hamiltonian path for the K3 can be estab-
lished as (Us, W)+ P[W,Y], where P[W,Y] denotes a
W — Y path passing all the vertices of the K3 but Us
exactly once.

Since there are three 3-edges between every two ad-
jacent 4-vertices of the Py, distinct entry and exit 3-
vertices can be determined for §, T, and Z. Then, a
hamiltonian path from the entry 3-vertex to the exit 3-
vertex can be established for each K3 formed by them,
similar to the proof of Lemma 3.6, in order to satisfy
(Cond. 2). The obtained hamiltonian paths inter-
leaved with used 3-edges form a P3 = [A1, Ag, ..., Agq),
where A; = Us, Ay = W, A19 = D, and Ay = V3. In
the following we show that the Ps is good.

Clearly, (Cond. 1) holds, and with the same ar-
guments as the proof of Lemma 3.5, (Cond 2) also
holds. After executing an r-partition on the Ps, each
A; forms a K2, where 1 < 4 < 20. Without loss of gen-
erality, we assume r = 2. Let Us = < *ususus* >,
(in A;) and V2 < *UgvgUgx >4 (In Agg) be the
beginning and ending 2-vertices, respectively. Since
(up =)us = wa(= Wi = Wgsf(4,,4,)), U2 is not con-
nected to W = As. Similarly, since (v, =)vy = da(=
d] = ddif(Aw,Azo))? Vz is not connected to D = Alg.
Thus, (Cond. 3) holds.

Case 2. k = 3. The method for constructing a good
Ps is almost the same as Case 1, but & is changed to 3
and [ is selected from the set {2,3,4,5}— {a1, a2, as}.

Case 3. k = 4. We assume u; = v, where
1€ {1,2,3,4,5} — {a1,a2,a3,a4}. X up # vy, uy #
Vay, and vy # u,, for some t € {ay,a3,a3} — {1},
then two 4-vertices @ = < ¢1¢293g4¢5 >, and =
< hihohghahs >4 with ¢4, = u; and h,, = v are
determined. A hamiltonian path for the K¢ can be
established as (Uy, @, T, H,V,), where T is the other
4-vertex than Uy, @), H, and V4. The hamiltonian path
forms a good Py = (U4, Q,T, H, V4] for the following
reasons. {Cond. 1) and (Cond 2) hold with the same
reasons as Case 1. (Cond. 3) holds as a consequence
of executing a t-partition onthe P4. By Lemma 3.6,
a good P3 can be obtained from the Pj.

Otherwise, if there exists no ¢ € {a1,a,a3} — {1}
satisfying u; # vy, Ut # Va,, and vy # ug,, thenay =1,
which implies { # 1. The method for constructing a
good Pj is almost the same as Case 1, but k is changed
to 4 and [ is unique.

Case 4. k = 5. There exists a number { €
{a1, az,as, a4} — {1} satisfying wy # v¢, Uy # va,, and
vt # Ugy. A good Pz can be obtained similar to Case

. Q.E.D.

We note that S5 forms a cycle of length six. The

following two: lemmas have been shown in [4].

Lemma 3.8 [4] Suppose X and Y are two adjacent
3-vertices in a P3, and let (co,cq,...,c5) denote the
cycle formed by X. Then, the vertices of X that are
connected toY are ¢; and c(j y3ymods for some 0 < j <
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Lemma 3.9 [{] Suppose X = < z1z9...Tp, >3, ¥ =
< Y1Y2...Yn >g, and £ = < zy29...2, >3 are arbitrary
three consecutive 3-vertices in a P3. If Taif(XY) *
Zdif(v,7), then the two vertices of Y that are connected

to X are disjoint from the two of Y that are connected
to 7.

Lemma 3.10 Suppose u and v are arbitrary two dis-
tinct vertices of S, with n > 4. A longest v — v path
can be constructed from a good Ps. The longest path
has length n! — 1 if dist(u,v) is odd, and n! — 2 if
dist(u,v) is even, where dist(u,v) is the distance be-
tween u and v.

Proof: It is not difficult to check that this lemma
holds for S; (recall that S, is vertex symmetric).
Hence, we assume n > 5. According to Lemmas 77
and 3.7, a good Ps = [A1, Az, ..., An(no1)(n—-2)4]
can be obtained in S,. We use (¢io0,¢i1,....Ci5
to denote the cycle formed by A;, where 1 < ¢ <
n(n — 1)(n - 2)---4. According to Lemma 3.8, two
vertices c¢1; and €1 (j43)ymods (Cn(n-1)(n-2)..4,k and
Cn(n=1)(n—2).-4,(k+3)mods) for some 0 < j < 5 (0 <
k < 5) are connected to A (An(n-1)(n-2)-4-1)
We have u # {c1;,¢1,(j+3)mods}, for otherwise
the beginning 2-vertex must be connected to Aj,
which contradicts (Cond. 3). Similarly, v #
{Cn(n-«l)(n—2)~~4,k)Cn(n—1)(n—-2)~-4,(k+3)mod6}' Since
A1 (An(n-1)(n—2)-4) forms a cycle of length 6, u (v)
is adjacent to c1; OF ¢1,(j43)mods (Cn(n—1)(n—2)...4,k OF
cn(n_1)(n_2)...4,(k+3)m0d6). Without loss of generality,
we assume u is adjacent to ¢y ;. We let 1 = u and
Y1 = c1,;, and select z; and y;, sequentially, for 7 =
2,3,..,n(n=-1)(n—2):--4—1 from each A; so that z;
is adjacent to both y;_1 and y;, and yn(n_1)(n-2). 41
is connected t0 Ap(n_1)(n-2).4. Lemmas 3.8 and 3.9
assure the existence of z; and y;. Since A; contains a
hamiltonian u—1y; path and each A; contains a hamil-
tonian x;—y; path, a hamiltonian 4 —yn(n_1)(n-2).-4-1
path (of length n!—6) for S, —{Anm-1)(n-2)..4} thus
results.

Next we augment the u — yn(n-1)(n-2).4-1 path
with a longest yn(n—1)(n—2).4-1 — v path. Without
loss of generality, we assume Y, (n—1)(n—2) 41 is adja-
cent t0 en(n—1)(n-2)- 4,k If dist(u,v)is odd, any u—v
path has odd length because S, is bipartite. So, v #
{Cn(n—1)(n—2)-4,(k+2)mod6; Cn(n—1)(n~2)-4,(k—2)mod6 }
for otherwise there exists a u — v path of even length,
which is a contradiction. Since we also have v #

{Cn(n=1)(n-2)4,k> Cn(n—1)(n-2)4,(k+3)mods }, ¥ should
€ Cn{n—1)(n—2)4,(k+1)mods
OF Cp(n-1)(n-2)-4,(k—1)mods- 1N either case, there
exists a hamiltonian cpn-1)(n-2)..4x — v path (of
length 5) for An(n_1)(n-2)..4. Similarly, if dist(u,v)
1s even, v should be ch(n_1)(n-2).4,(k+2)mods OF
Cn(n—1)(n—2)-4,(k~2)mods- 1n either case, there ex-



ists a cpn-1)(n-2)-4% — v path of length 4 in
An(n-1)(n—2).4- This completes the proof. Q.E.D.

The following theorem holds as an immediate con-
sequence of Lemma 3.10.

Theorem 3.11 S, with n > 4 is strongly
hamiltonian-laceable.

4 Concluding remarks

In this paper we have introduced the concept
of strongly hamiltonian-laceability for star graphs.
By extanding our results, we can show that the n-
dimensional star graph, where n > 6, remains strongly
hamiltonian-laceable, even if n — 4 random edge faults
happen, and show that the n-dimensional star graph,
where n > 6, remains strongly hamiltonian-laceable,
even if n — 3 random edge faults happen, exclusive of
two exceptions in which there are at most two vertices
missing from the longest paths.
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