Hamiltonian-Laceability of Star Graphs

Sun-yuan Hsieh
Dept. of Computer Science \& Info. Engg.
National Taiwan University, Taiwan
e-mail: d3506013@csie.ntu.edu.tw

Gen-Huey Chen
Dept. of Computer Science \& Info. Engg.
National Taiwan University, Taiwan
e-mail: ghchen@csie.ntu.edu.tw

Chin-Wen Ho
Dept. of Computer Science \& Info. Engg.
National Central University, Taiwan
e-mail: hocw@csie.ncu.edu.tw

Abstract

Suppose G is a bipartite graph with two partite sets of equal size. G is said to be strongly hamiltonianlaceable if there is a hamiltonian path between every two vertices that belong to different partite sets, and there is a path of (maximal) length $N-2$ between every two vertices that belong to the same partite set, where N is the order of G. The star graph is known to be bipartite. In this paper, we show that the n-dimensional star graph, where $n \geq 4$ is strongly hamiltonian-laceable.

1 Introduction

Usually when the hamiltonicity of a graph G is concerned, it is investigated whether G is hamiltonian or hamiltonian-connected. A cycle (path) in G is called a hamiltonian cycle (path) if it contains every vertex of G exactly once. G is said to be hamiltonian if it contains a hamiltonian cycle, and hamiltonianconnected if there exists a hamiltonian path between every two vertices of G. Since a bipartite graph is not hamiltonian-connected, Wong [5] has introduced the concept of hamiltonian-laceability for the class of bipartite graphs. A bipartite graph $G=(V 1, V 2, E)$ with $|V 1|=|V 2|$ is hamiltonian-laceable if there is a hamiltonian path between every vertex of V_{1} and every vertex of V_{2}, where V_{1} and V_{2} are the two partite sets of G. We note that any path between two vertices of the same partite set has length at most $|V 1|+|V 2|-2$.

It is meaningful to extend the concept of hamiltonian-laceability so that the lengths of the paths between two vertices of the same partite set are specified and the edge faults are considered. We say that a hamiltonian-laceable graph $G=(V 1, V 2, E)$ is strongly if G additionally owns the property that there is a path of length $|V 1|+|V 2|-2$ between every two vertices of the same partite set. Further, G is k edge fault-tolerant strongly hamiltonian-laceable if it remains strongly hamiltonian-laceable after removing at most k edges. In other words, there is a longest path between every two vertices of a k edge fault-tolerant strongly hamiltonian-laceable graph G, even if at most k edges of G are removed. The longest path has length
$|V 1|+|V 2|-1$ if the two vertices belong to different partite sets, and $|V 1|+|V 2|-2$ if the two vertices belong to the same partite set.

The star graph [1], which belongs to the class of Cayley graphs, has been recognized as an attractive alternative to the hypercube. It possesses many nice topological properties, e.g., recursiveness, vertex and edge symmetry, maximal fault tolerance, sublogarithmic degree and diameter, and strong resilience [1] [2], which are desirable when we are building an interconnection topology for parallel and distributed systems. In [3], Jwo, Lakshmivarahan, and Dhall have shown that the star graph is bipartite. Besides, its two partite sets have equal size. In this paper we show that the n-dimensional star graph is strongly hamiltonianlaceable when $n \geq 4$.

2 Prelimiaries

The n-dimensional star graph, denoted by S_{n}, is defined as follows.
Definition 1 The vertex set of S_{n} is denoted by $\left\{a_{1} a_{2} \ldots a_{n} \mid a_{1} a_{2} \ldots a_{n}\right.$ is a permutation of $\left.\{1,2, \ldots, n\}\right\}$. Vertex adjacency is defined as follows: $a_{1} a_{2} \ldots a_{n}$ is adjacent to $a_{i} a_{2} \ldots a_{i-1} a_{1} a_{i+1} \ldots a_{n}$ for all $2 \leq i \leq n$. The vertices of S_{n} are n ! permutations of $\{1,2, \ldots, n\}$, and there is an edge between two vertices of S_{n} if and only if they can be obtained from each other by swapping the leftmost number with one of the other $n-1$ numbers. For convenience we refer to the position of a_{i} in $a_{1} a_{2} \ldots a_{n}$ as the ith dimension, and ($a_{1} a_{2} \ldots a_{n}, a_{i} a_{2} \ldots a_{i-1} a_{1} a_{i+1} \ldots a_{n}$) as the ithdimensional edge.
Definition 2 There are embedded S_{r} 's contained in S_{n}, where $1 \leq r \leq n$. An embedded S_{r} can be conveniently represented by $\left\langle s_{1} s_{2} \ldots s_{n}\right\rangle_{r}$, where $s_{1}=*$, $s_{i} \in\{*, 1,2, \ldots, n\}$ for all $2 \leq i \leq n$, and exactly r of $s_{1}, s_{2}, \ldots, s_{n}$ are $*$ ($*$ denotes a "don't care" symbol).
Definition 3 An i-partition on $\left\langle s_{1} s_{2} \ldots s_{n}\right\rangle_{r}$ partitions $\left\langle s_{1} s_{2} \ldots s_{n}\right\rangle_{r}$ into r embedded S_{r-1}^{\prime}, denoted by $\left\langle s_{1} s_{2} \ldots s_{i-1} q s_{i+1} \ldots s_{n}\right\rangle_{r-1}$, where $2 \leq i \leq n$, $s_{i}=*$, and $q \in\{1,2, \ldots, n\}-\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$.

Definition $4 A n$

$\left(i_{1}, i_{2}, \ldots, i_{m}\right)-$
partition on $\left\langle s_{1} s_{2} \ldots s_{n}\right\rangle_{r}$ performs an i_{1}-partition, an i_{2}-partition, ..., an i_{m}-partition, sequentially, on $<s_{1} s_{2} \ldots s_{n}>_{r}$, where $i_{1} i_{2} \ldots i_{m}$ is a permutation of m elements from $\{2,3, \ldots, n\}$.

Definition 5 Two embedded S_{r} 's $\left.<s_{1} s_{2} \ldots s_{n}\right\rangle_{r}$ and $<t_{1} t_{2} \ldots t_{n}>_{r}$ are said to be adjacent if $s_{j} \neq *, t_{j} \neq *$, and $s_{j} \neq t_{j}$ for some $2 \leq j \leq n$, and $s_{i}=t_{i}$ for all $1 \leq i \leq n$ and $i \neq j$. Moreover, the position j is denoted by dif $\left(<s_{1} s_{2} \ldots s_{n}>_{r},<t_{1} t_{2} \ldots t_{n}>_{r}\right)$.

Definition 6 Let $A_{1}, A_{2}, \ldots, A_{n(n-1)(n-2) \cdots(r+1)}$ represent those embedded S_{r} 's that are obtained by executing an $\left(i_{1}, i_{2}, \ldots, i_{n-r}\right)$-partition on S_{n}, where $1 \leq r \leq n-1$. They form an r-path, denoted by $P_{r}=\left[A_{1}, A_{2}, \ldots, A_{n(n-1)(n-2) \cdots(r+1)}\right]$, if A_{i} is adjacent to A_{i+1} for all $1 \leq i \leq n(n-1)(n-2) \cdots(r+1)-1$. Each vertex of P_{r} i.e., A_{i}, is called an r-vertex, and each edge of P_{r}, i.e., $\left(A_{i}, A_{i+1}\right)$, is called an r-edge.
Definition $7 A n$
i-partition on $P_{r}=\left[A_{1}, A_{2}, \ldots, A_{n(n-1)(n-2) \cdots(r+1)}\right]$ performs an i-partition on $A_{1}, A_{2}, \ldots, A_{n(n-1)(n-2) \cdots(r+1)}$, respectively, where $2 \leq i \leq n$ and $r \geq 2$. After an i partition, each A_{j} is partitioned intor $r(r-1)$-vertices, where $1 \leq j \leq n(n-1)(n-2) \cdots(r+1)$. Since every two of the $r(r-1)$-vertices are joined with an $(r-1)$ edge, each A_{j} can be viewed as a complete graph of r $(r-1)$-vertices. Throughout this paper, we refer to the complete graph as K_{r}^{r-1}. We note that each vertex of K_{r}^{r-1} is an $(r-1)$-vertex and each edge of K_{r}^{r-1} is an $(r-1)$-edge.

3 Hamiltonian-Laceability of Star Graphs

In this section we show S_{n} with $n \geq 4$ is strongly hamiltonian-laceable.

Lemma 3.1 Suppose $U=\left\langle u_{1} u_{2} \ldots u_{n}\right\rangle_{r}, V=$ $\left\langle v_{1} v_{2} \ldots v_{n}\right\rangle_{r}$, and $W=\left\langle w_{1} w_{2} \ldots w_{n}\right\rangle_{r}$ are arbitrary three consecutive r-vertices in a P_{r}, where $r \geq 2$. Let $p=\operatorname{dif}(U, V)$ and $q=\operatorname{dif}(V, W)$. If $u_{p} \neq w_{q}$, then after executing a partition on the P_{r} each $(r-1)$ vertex of V is connected to U or W.
Proof: Without loss of generality, we assume that a j-partition is executed on the P_{r}, where $2 \leq j \leq n$. Hence, $u_{j}=v_{j}=w_{j}=*$. Since $p=\operatorname{dif}(\bar{U}, V) \neq 1$ and $q=\operatorname{dif}(V, W) \neq 1$, we have $u_{p} \neq v_{p}, v_{q} \neq w_{q}$, $u_{i}=v_{i}$ for all $1 \leq i \leq n$ and $i \neq p$, and $v_{i}=w_{i}$ for all $1 \leq i \leq n$ and $i \neq q$. Suppose conversely $u_{p} \neq w_{q}$ and there exists an $(r-1)$-vertex, say $V_{1}=\left\langle v_{1} v_{2} \ldots v_{j-1} z v_{j+1} \ldots v_{n}\right\rangle_{r-1}$, of V which is not connected to either of U and W. Thus, $z=u_{p}$, for otherwise V_{1} is adjacent to some $(r-1)$-vertex of U. Similarly, $z=w_{q}$. This implies $u_{p}=w_{q}$, which contradicts our assumption.
Q.E.D.

Lemma 3.2 Suppose u and v are arbitrary two distinct vertices of S_{n} with $n \geq 4$. There exists a P_{n-1} whose first $(n-1)$-vertex contains u and whose last ($n-1$)-vertex contains v.

Proof: Suppose $u=u_{1} u_{2} \ldots u_{n}$ and $v=v_{1} v_{2} \ldots v_{n}$. Without loss of generality, we assume $u_{j} \neq v_{j}$ for some $2 \leq j \leq n$. After a j-partition, S_{n} is partitioned into $n(n-1)$-vertices, which form a K_{n}^{n-1}. Clearly, u and v belong to two different vertices, say U and V, of the K_{n}^{n-1}. The desired P_{n-1} can be constructed as a hamiltonian path from U to V in the K_{n}^{n-1}. Q.E.D.

In the rest of this paper, we suppose u and v are the beginning vertex and the ending vertex, respectively, of a path. We call an r-vertex the beginning r-vertex (ending r-vertex) if it contains $u(v)$. Besides, a path from U to V is abbreviated to a $U-V$ path.

Lemma 3.3 A P_{r-1} whose first $(r-1)$-vertex is the beginning ($r-1$)-vertex and whose last $(r-1)$-vertex is the ending $(r-1)$-vertex can be obtained from a P_{r} whose first r-vertex is the beginning r-vertex and whose last r-vertex is the ending r-vertex, where $4 \leq$ $r \leq n-1$ and $n \geq 5$.

Proof: Suppose $\quad P_{r}=$ $\left[A_{1}, A_{2}, \ldots, A_{n(n-1)(n-2) \cdots(r+1)}\right]$, where A_{1} is the beginning r-vertex and $A_{n(n-1)(n-2) \cdots(r+1)}$ is the ending r vertex. After executing a partition on the P_{r}, each A_{i} forms a K_{r}^{r-1}, where $1 \leq i \leq n(n-1)(n-2) \cdots(r+1)$. Since each A_{i} contains at least three $(r-1)$-vertices, we can select two distinct ($r-1$)-vertices, say X_{i} and Y_{i}, from each A_{i} so that X_{1} is the beginning ($r-1$)vertex, $Y_{n(n-1)(n-2) \cdots(r+1)}$ is the ending $(r-1)$-vertex, and for $2 \leq j \leq n(n-1)(n-2) \cdots(r+1)-1$, X_{j} and Y_{j} are adjacent to Y_{j-1} and X_{j+1}, respectively. Since there exists a hamiltonian $X_{i}-Y_{i}$ path in the K_{r}^{r-1} formed by A_{i}, the desired P_{r-1} can be obtained by concatenating all the hamiltonian paths interleaved with $(r-1)$-edges $\left(Y_{1}, X_{2}\right),\left(Y_{2}, X_{3}\right), \ldots$, $\left(Y_{n(n-1)(n-2) \cdots(r+1)-1}, X_{n(n-1)(n-2) \cdots(r+1)}\right)$. Q.E.D.

In the rest of this paper, X_{i} and Y_{i} as specified above are referred to as the entry $(r-1)$-vertex and the exit $(r-1)$-vertex of A_{i}, respectively.

Lemma 3.4 A P_{5} whose first 5-vertex is the beginning 5 -vertex and whose last 5 -vertex is the ending 5 -vertex can be obtained in S_{n} with $n>5$.

$$
\text { A } P_{r}=\left[A_{1}, A_{2}, \ldots, A_{n(n-1)(n-2) \cdots(r+1)}\right] \text { in } S_{n}
$$ where $2 \leq r \leq n-1$, is said to be good if it satisfies the following three conditions.

(Cond. 1) A_{1} and $A_{n(n-1)(n-2) \cdots(r+1)}$ are the beginning and ending r-vertices, respectively.
(Cond. 2) For arbitrary three consecutive r-vertices $X=\left\langle x_{1} x_{2} \ldots x_{n}>_{r}, Y=\left\langle y_{1} y_{2} \ldots y_{n}\right\rangle_{r}\right.$, and $Z=$ $<z_{1} z_{2} \ldots z_{n}>_{r}$ in the $P_{r}, x_{d i f(X, Y)} \neq z_{d i f(Y, Z)}$ holds. (Cond. 3) After executing a k-partition on the P_{r} for some $2 \leq k \leq n$, the beginning (ending) $(r-1)$ vertex in $A_{1}^{-}\left(A_{n(n-1)(n-2) \cdots(r+1)}^{-}\right)$is not connected to $A_{2}\left(A_{n(n-1)(n-2) \cdots(r+1)-1}\right)$.

In the rest of this section we show that a good P_{3} can be obtained in S_{n}. Given arbitrary two vertices of S_{n}, a longest path between them can be constructed from a good P_{3}.

Lemma 3.5 A good P_{4} can be obtained from a P_{5} whose first 5 -vertex is the beginning 5 -vertex and whose last 5-vertex is the ending 5-vertex.

Proof: We suppose $P_{5}=\left[A_{1}, A_{2}, \ldots, A_{n(n-1)(n-2) \cdots 6}\right]$, where A_{1} and $A_{n(n-1)(n-2) \cdots 6}$ are the beginning and ending 5 -vertices. Without loss of generality, we assume that the P_{5} is obtained from S_{n} by executing an ($a_{1}, a_{2}, \ldots, a_{n-5}$)-partition, where $a_{1} a_{2} \ldots a_{n-5}$ is an arrangement out of $\{2,3, \ldots, n\}$. Let $j \in\{2,3, \ldots, n\}-$ $\left\{a_{1}, a_{2}, \ldots, a_{n-5}\right\}$. First, a j-partition is executed on the P_{5}, and so each A_{i} forms a K_{5}^{4}, where $1 \leq i \leq$ $n(n-1)(n-2) \cdots 6$. In the rest of the proof we construct a good P_{4} from the P_{5} by establishing a hamiltonian path for each K_{5}^{4}.

Suppose $u=u_{1} u_{2} \ldots u_{n}$ and $v=v_{1} v_{2} \ldots v_{n}$ are the beginning and ending vertices, respectively. A hamiltonian path for the K_{5}^{4} formed by A_{1} can be established as follows. Let $X_{1}=\left\langle x_{1} x_{2} \ldots x_{n}\right\rangle_{4}$ be the beginning 4 -vertex (in A_{1}), T be the 4 -vertex of A_{1} that is not connected to A_{2}, and $W=\left\langle w_{1} w_{2} \ldots w_{n}\right\rangle_{4}$ be a 4 -vertex of A_{1} which is different from X_{1} and has $w_{j}=u_{k}$ for some $k \in\{2,3, \ldots, n\}-\left\{j, a_{1}, a_{2}, \ldots, a_{n-5}\right\}$. Since there are four 4-edges between A_{1} and A_{2}, there exists a 4-vertex $Y_{1} \notin\left\{X_{1}, W\right\}$ which is connected to A_{2}. If $X_{1}=T$ or $\left(X_{1} \neq T\right.$ and $\left.T=W\right)$, a hamiltonian $X_{1}-Y_{1}$ path can be established as $\left(X_{1}, W\right)+P\left[W, Y_{1}\right]$, where $P\left[W, Y_{1}\right]$ denotes a $W-Y_{1}$ path passing all the vertices of the K_{5}^{4} but X_{1} exactly once. Otherwise, if $X_{1} \neq T$ and $T \neq W$, a hamiltonian $X_{1}-Y_{1}$ path can be established as $\left(X_{1}, W\right)+$ $(W, T)+P\left[T, Y_{1}\right]$, where $P\left[T, Y_{1}\right]$ denotes a $T-Y_{1}$ path passing all the vertices of the K_{5}^{4} but X_{1} and W exactly once. Then we continue to establish a hamiltonian path for the K_{5}^{4} formed by $A_{n(n-1)(n-2) \cdots 6}$. The construction of the hamiltonian path is similar to the situation of A_{1}. Let $Y_{n(n-1)(n-2) \cdots 6}$ be the ending 4 -vertex (in $A_{n(n-1)(n-2) \cdots 6}, C$ be the 4 -vertex of $A_{n(n-1)(n-2) \cdots 6}$ that is not connected to $A_{n(n-1)(n-2) \cdots 6-1}$, and $D=\left\langle d_{1} d_{2} \ldots d_{n}\right\rangle_{4}$ be the 4 -vertex of $A_{n(n-1)(n-2) \cdots 6}$ that is different from $Y_{n(n-1)(n-2) \cdots 6}$ and has $d_{j}=v_{k}$ (here, k is identical with that k appearing in the situation of A_{1}). There exists a vertex $X_{n(n-1)(n-2) \cdots 6} \notin\left\{D, Y_{n(n-1)(n-2) \cdots 6}\right\}$ which is connected to $A_{n(n-1)(n-2) \cdots 6-1}$. If $Y_{n(n-1)(n-2) \cdots 6}=C$ or $Y_{n(n-1)(n-2) \cdots 6} \neq C$ and $C=$ D), a hamiltonian $X_{n(n-1)(n-2) \cdots 6}-Y_{n(n-1)(n-2) \cdots 6}$ path can be established as $P\left[X_{n(n-1)(n-2) \cdots 6}, D\right]+$ $\left(D, Y_{n(n-1)(n-2) \cdots 6}\right)$, where $P\left[X_{n(n-1)(n-2) \cdots 6}, D\right]$ denotes an $X_{n(n-1)(n-2) \cdots 6}-D$ path passing all the vertices of the K_{5}^{4} but $Y_{n(n-1)(n-2) \cdots 6}$ exactly once. Otherwise, if $Y_{n(n-1)(n-2) \cdots 6} \neq C$ and $C \neq D$, a hamiltonian $X_{n(n-1)(n-2) \cdots 6}-Y_{n(n-1)(n-2) \cdots 6}$ path can be established as $P\left[X_{n(n-1)(n-2) \cdots 6}, C\right]+(C, D)+$ $\left(D, Y_{n(n-1)(n-2) \cdots 6}\right)$, where $P\left[X_{n(n-1)(n-2) \cdots 6}, C\right]$ denotes an $X_{n(n-1)(n-2) \cdots 6}-C$ path passing all the vertices of the K_{5}^{4} but D and $Y_{n(n-1)(n-2) \cdots 6}$ exactly once.

In the discussion above, X_{1} and $Y_{1}\left(X_{n(n-1)(n-2) \cdots 6}\right.$ and $Y_{n(n-1)(n-2) \cdots 6}$ are the entry and exit 4 -vertices of $A_{1}\left(A_{n(n-1)(n-2) \cdots 6}\right)$, respectively. Additionally, we use X_{i} and Y_{i} to denote the entry and exit 4-vertices of A_{i}, respectively, for $2 \leq i \leq n(n-1)(n-2) \cdots 6-1$. Let $L_{i}\left(Q_{i}\right)$ be the 4-vertex of A_{i} that is not connected to $A_{i-1}\left(A_{i+1}\right)$. A hamiltonian $X_{i}-Y_{i}$ path in the K_{5}^{4} formed by A_{i} can be established according to the following four cases. Case 1. $Q_{i}=X_{i}$ and $L_{i}=$ Y_{i}. A hamiltonian $X_{i}-Y_{i}$ path can be established easily. Case 2. $Q_{i} \neq X_{i}$ and $L_{i}=Y_{i}$. A hamiltonian $X_{i}-Y_{i}$ path can be established as $\left(X_{i}, Q_{i}\right)+P\left[Q_{i}, Y_{i}\right]$, where $P\left[Q_{i}, Y_{i}\right]$ denotes a $Q_{i}-Y_{i}$ path passing all the vertices of the K_{5}^{4} but X_{i} exactly once. Case 3 . $Q_{i}=X_{i}$ and $L_{i} \neq Y_{i}$. A hamiltonian $X_{i}-Y_{i}$ path can be established as $P\left[X_{i}, L_{i}\right]+\left(L_{i}, Y_{i}\right)$, where $P\left[X_{i}, L_{i}\right]$ denotes an $X_{i}-L_{i}$ path passing all the vertices of the K_{5}^{4} but Y_{i} exactly once. Case 4. $Q_{i}=X_{i}$ and $L_{i} \neq Y_{i}$. If $Q_{i}=L_{i}$, a hamiltonian $X_{i}-Y_{i}$ path can be established as ($X_{i}, U_{i}, L_{i}, V_{i}, Y_{i}$), where U_{i} and V_{i} are the other two 4 -vertices of A_{i} than X_{i}, Y_{i}, and L_{i}. If $Q_{i} \neq L_{i}$, a hamiltonian $X_{i}-Y_{i}$ path can be established as $\left(X_{i}, Q_{i}, U_{i}, L_{i}, Y_{i}\right)$, where U_{i} is the other 4-vertex of A_{i} than X_{i}, Y_{i}, L_{i}, and Q_{i}.

Clearly the hamiltonian paths obtained above interleaved with 4 -edges $\left(Y_{1}, X_{2}\right), \quad\left(Y_{2}, X_{3}\right), \ldots$, $\left(Y_{n(n-1)(n-2) \cdots 6-1}, X_{n(n-1)(n-2) \cdots 6}\right)$ form a P_{4}. Next, we show the P_{4} good. (Cond. 1) holds because X_{1} is the beginning 4 -vertex and $Y_{n(n-1)(n-2) \cdots 6}$ is the ending 4 -vertex. (Cond. 3) holds for the reason as follows. Recall that $w_{j}=u_{k}$ for some $k \in$ $\{2,3, \ldots, n\}-\left\{j, a_{1}, a_{2}, \ldots, a_{n-5}\right\}$. After executing a k-partition on the $P_{4}, X_{1}=\left\langle x_{1} x_{2} \ldots x_{n}\right\rangle_{4}$ forms a K_{4}^{3}. Since $x_{k}=u_{k}=w_{j}$, the beginning 3 -vertex is not connected to W. Similarly, the ending 3vertex is not connected to D. In the following, we show (Cond. 2) holds. Let $X=\left\langle x_{1} x_{2} \ldots x_{n}\right\rangle_{4}$, $Y=\left\langle y_{1} y_{2} \ldots y_{n}\right\rangle_{4}$, and $Z=\left\langle z_{1} z_{2} \ldots z_{n}\right\rangle_{4}$ be arbitrary three consecutive 4-vertices in the P_{4}. Assuming $p=\operatorname{dif}(X, Y)$ and $q=\operatorname{dif}(Y, Z)$, we show $x_{p} \neq z_{q}$ according to three cases. If X is the exit 4 -vertex of A_{i} for some $1 \leq i \leq n(n-1)(n-2) \cdots 6-1$, then Y is the entry $\overline{4}$-vertex of A_{i+1} and Z is the second 4 -vertex in the hamiltonian path established for the K_{5}^{4} formed by A_{i+1}. Besides, $p \neq j=q$. Suppose conversely $x_{p}=z_{q}$. Then, Z is not connected to A_{i} (recall that the pair of 4 -vertices in A_{i} and A_{i+1} that are not adjacent are $<x_{1} \ldots x_{q-1} z_{p} x_{q+1} \ldots x_{n}>_{4}$ and $<z_{1} \ldots z_{q-1} x_{p} z_{q+1} \ldots z_{n}>_{4}$, respectively, where $x_{q}=$ $z_{p} \neq x_{p}=z_{q}$ and $x_{i}=z_{i}$ for all $1 \leq i \leq n$ and $i \neq\{p, q\}$). According to our construction for the P_{4}, Z should be the third or fourth or fifth 4 -vertex in the hamiltonian path established for the K_{5}^{4} formed by A_{i+1}, which is a contradiction. If Z is the entry 4-vertex of A_{i} for some $1<i \leq n(n-1)(n-2) \cdots 6$, then $x_{p} \neq z_{q}$ can be shown similarly. Otherwise, if X, Y, and Z belong to the same 4 -vertex, then $p=\operatorname{dif}(X, Y)=\operatorname{dif}(X, Z)=\operatorname{dif}(Y, Z)=q$. Since X and Z are different 4 -vertices, we have $x_{p} \neq z_{q}$. This completes the proof.
Q.E.D.

As with similar arguments to prove the above, we can show the following lemmas. Due to space limitation, the details are omitted.

Lemma 3.6 A good P_{3} can be obtained from a good P_{4}.

Proof: We suppose $P_{4}=\left[A_{1}, A_{2}, \ldots, A_{n(n-1)(n-2) \cdots 5}\right]$. Without loss of generality, we assume that the P_{4} is obtained from S_{n} by executing an $\left(a_{1}, a_{2}, \ldots, a_{n-4}\right)$ partition, where $a_{1} a_{2} \ldots a_{n-4}$ is an arrangement out of $\{2,3, \ldots, n\}$. Since the P_{4} is good, there exists $j \in\{2,3, \ldots, n\}-\left\{a_{1}, a_{2}, \ldots, a_{n-4}\right\}$ so that after executing a j-partition on the P_{4}, the beginning (ending) 3-vertex in $A_{1}\left(A_{n(n-1)(n-2) \cdots 5}\right)$ is not adjacent to $A_{2}\left(A_{n(n-1)(n-2) \cdots 5-1}\right)$. Besides, each A_{i} forms a K_{4}^{3}, where $1 \leq i \leq n(n-1)(n-2) \cdots 5$. In the rest of the proof, we construct a good P_{3} from the P_{4} by establishing a hamiltonian path for each K_{4}^{3}. Suppose $u=$ $u_{1} u_{2} \ldots u_{n}$ and $v=v_{1} v_{2} \ldots v_{n}$ are the beginning and ending vertices, respectively. We establish a hamiltonian path for the K_{4}^{3} formed by A_{1} as follows. Let X_{1} be the beginning 3 -vertex (in A_{1}) and $W=\left\langle w_{1} w_{2} \ldots w_{n}\right\rangle_{3}$ be a 3 -vertex in A_{1} which is different from X_{1} and has $w_{j}=u_{k}$ for some $k \in\{2,3, \ldots, n\}-\left\{j, a_{1}, a_{2}, \ldots, a_{n-4}\right\}$. We note that X_{1} is not connected to A_{2}. Since there are three 2 -edges between A_{1} and A_{2}, there is another 3 -vertex $Y_{1} \notin\left\{X_{1}, W\right\}$ in A_{1} which is connected to A_{2}. A hamiltonian $X_{1}-Y_{1}$ path can be established as $\left(X_{1}, W\right)+P\left[W, Y_{1}\right]$, where $P\left[W, Y_{1}\right]$ denotes a $W-Y_{1}$ path passing all the vertices of the K_{4}^{3} but X_{1} exactly once.

Then we continue to establish a hamiltonian path for
the K_{4}^{3} formed by $A_{n(n-1)(n-2) \cdots 5}$. Let $Y_{n(n-1)(n-2) \cdots 5}$ be the ending 3 -vertex (in $A_{n(n-1)(n-2) \cdots 5}$) and $D=$ $<d_{1} d_{2} \ldots d_{n}>_{3}$ be the 3 -vertex in $A_{n(n-1)(n-2) \cdots 5}$ that is different from $Y_{n(n-1)(n-2) \cdots 5}$ and has $d_{j}=$ v_{k} (here, k is identical with that k appearing in the situation of A_{1}). There exists a 3 -vertex $X_{n(n-1)(n-2) \cdots 5} \neq D$ in $A_{n(n-1)(n-2) \cdots 5}$ which is connected to $A_{n(n-1)(n-2) \cdots 5-1}$. A hamiltonian $X_{n(n-1)(n-2) \cdots 5}-Y_{n(n-1)(n-2) \cdots 5}$ path can be established as $P\left[X_{n(n-1)(n-2) \cdots 5}, D\right]+\left(D, Y_{n(n-1)(n-2) \cdots 5}\right)$, where $\quad P\left[X_{n(n-1)(n-2) \cdots 5}, D\right]$ denotes an $X_{n(n-1)(n-2) \cdots 5}-D$ path passing all the vertices of the K_{4}^{3} but $Y_{n(n-1)(n-2) \cdots 5}$ exactly once. In the discussion above, X_{1} and $Y_{1}\left(X_{n(n-1)(n-2) \cdots 5}\right.$ and $Y_{n(n-1)(n-2) \cdots 5)}$ are the entry and exit 3 -vertices of A_{1} $\left(A_{n(n-1)(n-2) \cdots 5}\right)$, respectively. By X_{i} and Y_{i} we denote the entry and exit 3 -vertices of A_{i}, respectively, for $2 \leq i \leq n(n-1)(n-2) \cdots 5-1$. Let $L_{i}\left(Q_{i}\right)$ be the 3 -vertex in A_{i} that is not connected to $A_{i-1}\left(A_{i+1}\right)$. A hamiltonian $X_{i}-Y_{i}$ path for the formed by A_{i} can be established according to the following four cases.

Case 1. $Q_{i}=X_{i}$ and $L_{i}=Y_{i}$. A hamiltonian $X_{i}-Y_{i}$ path can be established easily.

Case 2. $Q_{i} \neq X_{i}$ and $L_{i}=Y_{i}$. A hamiltonian $X_{i}-Y_{i}$ path can be established as $\left(X_{i}, Q_{i}\right)+P\left[Q_{i}, Y_{i}\right]$,
where $P\left[Q_{i}, Y_{i}\right]$ denotes a $Q_{i}-Y_{i}$ path passing all the vertices of the K_{4}^{3} but X_{i} exactly once.

Case 3. $Q_{i}=X_{i}$ and $L_{i} \neq Y_{i}$. A hamiltonian $X_{i}-Y_{i}$ path can be established as $P\left[X_{i}, L_{i}\right]+\left(L_{i}, Y_{i}\right)$, where $P\left[X_{i}, L_{i}\right]$ denotes an $X_{i}-L_{i}$ path passing all the vertices of the K_{4}^{3} but Y_{i} exactly once.

Case 4. $Q_{i} \neq X_{i}$ and $L_{i} \neq Y_{i}$. Since the P_{4} is good, Lemma 3.1 assures that each 3 -vertex of A_{i} is connected to A_{i-1} or A_{i+1}. Hence, $Q_{i} \neq$ L_{i}. A hamiltonian $X_{i}-Y_{i}$ path can be established as $\left(X_{i}, Q_{i}, L_{i}, Y_{i}\right)$. The hamiltonian paths obtained above interleaved with 3 -edges $\left(Y_{1}, X_{2}\right),\left(Y_{2}, X_{3}\right), \ldots$, $\left(Y_{n(n-1)(n-2) \cdots 5-1}, X_{n(n-1)(n-2) \cdots 5}\right)$ form a P_{3}. Moreover, the P_{3} is good, with the same arguments as the proof of Lemma 3.5.
Q.E.D.

Lemma 3.7 There is a good P_{3} in S_{5}.

Proof: Suppose $u=u_{1} u_{2} u_{3} u_{4} u_{5}$ and $v=v_{1} v_{2} v_{3} v_{4} v_{5}$ are the beginning and ending vertices, respectively. We assume $u_{i} \neq v_{i}$ for $i \in\left\{a_{1}, a_{2}, \ldots, a_{k}\right\} \subseteq$ $\{1,2,3,4,5\}$ and $u_{i}=v_{i}$ otherwise, where $2 \leq k \leq \overline{5}$ and $a_{1}<a_{2}<\cdots<a_{k}$. First, an a_{k}-partition is executed on S_{5}, and so a K_{5}^{4} results. We use U_{4} and V_{4} to denote the beginning and ending 4 -vertices, respectively. In the following, we construct a good P_{3} according to the values of k.

Case 1. $k=2$. We assume $a_{1} \neq 1$. The discussion for $a_{1}=1$ is very similar. For ease of explanation, we assume, without loss of generality, $a_{1}=2$ and $a_{2}=3$. We then arbitrarily select $l=4$ from the set $\{2,3,4,5\}-\left\{a_{1}, a_{2}\right\}=\{4,5\}$, and let $S=\left\langle s_{1} s_{2} s_{3} s_{4} s_{5}>_{4}=<* * s_{3} * *>_{4}\right.$ be the vertex of the K_{5}^{4} with $\left(s_{a_{2}}==\right) s_{3}=u_{4}\left(=u_{l}\right)$. Since there are five vertices in the K_{5}^{4}, we can find a 4 -vertex $Z=<z_{1} z_{2} z_{3} z_{4} z_{5}>_{4}=<* * z_{3} * *>_{4} \notin\left\{U_{4}, S, V_{4}\right\}$ with $\left(z_{a_{2}}=\right) z_{3} \neq v_{1}$. Let T be the other vertex than U_{4}, S, Z, and V_{4} in the K_{5}^{4}. A hamiltonian path for the K_{5}^{4} can be established as $\left(U_{4}, S, T, Z, V_{4}\right)$, which constitutes a $P_{4}=\left[U_{4}, S, T, Z, V_{4}\right]$. An l-partition is then executed on the P_{4}, and so each 4 -vertex of the P_{4} forms a K_{4}^{3}. By establishing a hamiltonian path for each K_{4}^{3}, a good P_{3} can be obtained as follows.

First we establish a hamiltonian path for the K_{4}^{3} formed by V_{4}. Let $V_{3}=\left\langle * * v_{3} v_{4} *\right\rangle_{3}$ be the ending 3 -vertex (in V_{4}) and $D=<d_{1} d_{2} d_{3} d_{4} d_{5}>_{3}=$ $<* * v_{3} d_{4} *>_{3}$ be the 3 -vertex of V_{4} that is not connected to Z. Since $\left.s_{a_{2}}=u_{l}=v_{l}=\right) v_{4} \neq z_{3}\left(=z_{a_{2}}\right)$, V_{3} is connected to Z. So, $D \neq V_{3}$. Moreover, since there are three 3 -edges between Z and V_{4}, there exists a 3 -vertex $X \neq V_{3}$ in V_{4} which is connected to Z. A hamiltonian path for the K_{4}^{3} can be established as $P[X, D]+\left(D, V_{3}\right)$, where $P[X, D]$ denotes an $X-D$ path passing all the vertices of the K_{4}^{3} but V_{3} exactly once.

We then continue to establish a hamiltonian path for the K_{4}^{3} formed by U_{4}. We have $d_{l}=v_{r}$ for some $r \in\{2,3,4,5\}-\left\{a_{2}, l\right\}=\{2,5\}$. We note $r \neq 1$ because D is the 3 -vertex in V_{4} that is not connected to Z (which implies $d_{l}=z_{a_{2}} \neq v_{1}$). Let $U_{3}=\left\langle * * u_{3} u_{4} *\right\rangle_{3}$ be the beginning 3 -vertex (in
$\left.U_{4}\right)$ and $W=<w_{1} w_{2} w_{3} w_{4} w_{5}>_{3}=<* * u_{3} w_{4} *>_{3}$ be the 3 -vertex in U_{4} that is different from U_{3} and has ($\left.w_{l}=\right) w_{4}=u_{r}$. We note that U_{3} is not connected to S because $\left(s_{a_{2}}=\right) s_{3}=u_{4}\left(=u_{l}\right)$. So, there exists another 3 -vertex $Y \notin\left\{U_{3}, W\right\}$ in U_{4} which is connected to S. A hamiltonian path for the K_{4}^{3} can be established as $\left(U_{3}, W\right)+P[W, Y]$, where $P[W, Y]$ denotes a $W-Y$ path passing all the vertices of the K_{4}^{3} but U_{3} exactly once.

Since there are three 3 -edges between every two adjacent 4-vertices of the P_{4}, distinct entry and exit 3vertices can be determined for S, T, and Z. Then, a hamiltonian path from the entry 3 -vertex to the exit 3vertex can be established for each K_{4}^{3} formed by them, similar to the proof of Lemma 3.6 , in order to satisfy (Cond. 2). The obtained hamiltonian paths interleaved with used 3-edges form a $P_{3}=\left[A_{1}, A_{2}, \ldots, A_{20}\right]$, where $A_{1}=U_{3}, A_{2}=W, A_{19}=D$, and $A_{20}=V_{3}$. In the following we show that the P_{3} is good.

Clearly, (Cond. 1) holds, and with the same arguments as the proof of Lemma 3.5, (Cond 2) also holds. After executing an r-partition on the P_{3}, each A_{i} forms a K_{3}^{2}, where $1 \leq i \leq 20$. Without loss of generality, we assume $r=\overline{2}$. Let $U_{2}=<* u_{2} u_{3} u_{4} *>_{2}$ (in A_{1}) and $V_{2}=\left\langle * v_{2} v_{3} v_{4} *\right\rangle_{2}$ (in A_{20}) be the beginning and ending 2-vertices, respectively. Since $\left(u_{r}=\right) u_{2}=w_{4}\left(=w_{l}=w_{d i f\left(A_{1}, A_{2}\right)}\right), U_{2}$ is not connected to $W=A_{2}$. Similarly, since ($\left.v_{r}=\right) v_{2}=d_{4}(=$ $\left.d_{1}=d_{d i f\left(\boldsymbol{A}_{19}, \boldsymbol{A}_{20}\right)}\right), V_{2}$ is not connected to $D=A_{19}$. Thus, (Cond. 3) holds.

Case 2. $k=3$. The method for constructing a good P_{3} is almost the same as Case 1 , but k is changed to 3 and l is selected from the set $\{2,3,4,5\}-\left\{a_{1}, a_{2}, a_{3}\right\}$.

Case 3. $k=4$. We assume $u_{l}=v_{l}$, where $l \in\{1,2,3,4,5\}-\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$. If $u_{t} \neq v_{t}, u_{t} \neq$ $v_{a_{4}}$, and $v_{t} \neq u_{a_{4}}$ for some $t \in\left\{a_{1}, a_{2}, a_{3}\right\}-\{1\}$, then two 4 -vertices $Q=\left\langle q_{1} q_{2} q_{3} q_{4} q_{5}\right\rangle_{4}$ and $H=$ $<h_{1} h_{2} h_{3} h_{4} h_{5}>_{4}$ with $q_{a_{4}}=u_{t}$ and $h_{a_{4}}=v_{t}$ are determined. A hamiltonian path for the K_{5}^{4} can be established as $\left(U_{4}, Q, T, H, V_{4}\right)$, where T is the other 4 -vertex than U_{4}, Q, H, and V_{4}. The hamiltonian path forms a good $P_{4}=\left[U_{4}, Q, T, H, V_{4}\right]$ for the following reasons. (Cond. 1) and (Cond 2) hold with the same reasons as Case 1. (Cond. 3) holds as a consequence of executing a t-partition on the P_{4}. By Lemma 3.6, a good P_{3} can be obtained from the P_{4}.

Otherwise, if there exists no $t \in\left\{a_{1}, a_{2}, a_{3}\right\}-\{1\}$ satisfying $u_{t} \neq v_{t}, u_{t} \neq v_{a_{4}}$, and $v_{t} \neq u_{a_{4}}$, then $a_{1}=1$, which implies $l \neq 1$. The method for constructing a good P_{3} is almost the same as Case 1 , but k is changed to 4 and l is unique.

Case 4. $k=5$. There exists a number $t \in$ $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}-\{1\}$ satisfying $u_{t} \neq v_{t}, u_{t} \neq v_{a_{5}}$, and $v_{t} \neq u_{a_{5}}$. A good P_{3} can be obtained similar to Case 3.

We note that S_{3} forms a cycle of length six. The following two lemmas have been shown in [4].

Lemma 3.8 [4] Suppose X and Y are two adjacent 3-vertices in a P_{3}, and let $\left(c_{0}, c_{1}, \ldots, c_{5}\right)$ denote the cycle formed by X. Then, the vertices of X that are connected to Y are c_{j} and $c_{(j+3) \bmod 6}$ for some $0 \leq j \leq$
5.

Lemma 3.9 [4] Suppose $X=\left\langle x_{1} x_{2} \ldots x_{n}\right\rangle_{3}, Y=$ $\left.<y_{1} y_{2} \ldots y_{n}\right\rangle_{3}$, and $Z=<z_{1} z_{2} \ldots z_{n}>_{3}$ are arbitrary three consecutive 3-vertices in a P_{3}. If $x_{\text {dif }(X, Y)} \neq$ $z_{d i f(Y, Z)}$, then the two vertices of Y that are connected to X are disjoint from the two of Y that are connected to Z.

Lemma 3.10 Suppose u and v are arbitrary two distinct vertices of S_{n} with $n \geq 4$. A longest $u-v$ path can be constructed from a good P_{3}. The longest path has length $n!-1$ if $\operatorname{dist}(u, v)$ is odd, and $n!-2$ if $\operatorname{dist}(u, v)$ is even, where dist (u, v) is the distance between u and v.

Proof: It is not difficult to check that this lemma holds for S_{4} (recall that S_{n} is vertex symmetric). Hence, we assume $n \geq 5$. According to Lemmas ?? and 3.7, a good $P_{3}=\left[A_{1}, A_{2}, \ldots, A_{n(n-1)(n-2) \cdots 4}\right]$ can be obtained in S_{n}. We use ($c_{i, 0}, c_{i, 1}, \ldots, c_{i, 5}$) to denote the cycle formed by A_{i}, where $1 \leq i \leq$ $n(n-1)(n-2) \cdots 4$. According to Lemma 3. $\overline{8}$, two vertices $c_{1, j}$ and $c_{1,(j+3) \bmod 6}\left(c_{n(n-1)(n-2) \cdots 4, k}\right.$ and $\left.c_{n(n-1)(n-2) \cdots 4,(k+3) \bmod 6}\right)$ for some $0 \leq j \leq 5(0 \leq$ $k \leq 5)$ are connected to $A_{2}\left(A_{n(n-1)(n-2) \cdots 4-1}\right)$. We have $u \neq\left\{c_{1, j}, c_{1,(j+3) \text { mod } 6}\right\}$, for otherwise the beginning 2 -vertex must be connected to A_{2}, which contradicts (Cond. 3). Similarly, $v \neq$ $\left\{c_{n(n-1)(n-2) \cdots 4, k}, c_{n(n-1)(n-2) \cdots 4,(k+3) \bmod 6}\right\}$. Since $A_{1}\left(A_{n(n-1)(n-2) \cdots 4}\right)$ forms a cycle of length $6, u(v)$ is adjacent to $c_{1, j}$ or $c_{1,(j+3) \bmod 6}\left(c_{n(n-1)(n-2) \cdots 4, k}\right.$ or $\left.c_{n(n-1)(n-2) \cdots 4,(k+3) \bmod 6}\right)$. Without loss of generality, we assume u is adjacent to $c_{1, j}$. We let $x_{1}=u$ and $y_{1}=c_{1, j}$, and select x_{i} and y_{i}, sequentially, for $i=$ $2,3, \ldots, n(n-1)(n-2) \cdots 4-1$ from each A_{i} so that x_{i} is adjacent to both y_{i-1} and y_{i}, and $y_{n(n-1)(n-2) \cdots-1}$ is connected to $A_{n(n-1)(n-2) \cdots 4}$. Lemmas 3.8 and 3.9 assure the existence of x_{i} and y_{i}. Since A_{1} contains a hamiltonian $u-y_{1}$ path and each A_{i} contains a hamiltonian $x_{i}-y_{i}$ path, a hamiltonian $u-y_{n(n-1)(n-2) \cdots 4-1}$ path (of length $n!-6$) for $S_{n}-\left\{A_{n(n-1)(n-2) \cdots 4}\right\}$ thus results.

Next we augment the $u-y_{n(n-1)(n-2) \cdots 4-1}$ path with a longest $y_{n(n-1)(n-2) \cdots 4-1-v \text { path. Without }}$ loss of generality, we assume $y_{n(n-1)(n-2) \cdots 4-1}$ is adjacent to $c_{n(n-1)(n-2) \cdots, k, k}$. If $\operatorname{dist}(u, v)$ is odd, any $u-v$ path has odd length because S_{n} is bipartite. So, $v \neq$ $\left\{c_{n(n-1)(n-2) \cdots 4,(k+2) \bmod 6}, c_{n(n-1)(n-2) \cdots 4,(k-2) \text { mod } 6}\right\}$, for otherwise there exists a $u-v$ path of even length, which is a contradiction. Since we also have $v \neq$ $\left\{c_{n(n-1)(n-2) \cdots 4, k}, c_{n(n-1)(n-2) \cdots 4,(k+3) \text { mod } 6}\right\}, v$ should be $\quad c_{n(n-1)(n-2) \cdots 4,(k+1) \bmod 6}$ or $c_{n(n-1)(n-2) \cdots,(k-1) \bmod 6}$. In either case, there exists a hamiltonian $c_{n(n-1)(n-2) \cdots 4, k}-v$ path (of length 5) for $A_{n(n-1)(n-2) \cdots 4}$. Similarly, if $\operatorname{dist}(u, v)$ is even, v should be $c_{n(n-1)(n-2) \cdots 4,(k+2) \bmod 6}$ or $c_{n(n-1)(n-2) \cdots 4,(k-2) \bmod 6}$. In either case, there ex-
ists a $c_{n(n-1)(n-2) \cdots 4, k}-v$ path of length 4 in $A_{n(n-1)(n-2) \cdots 4}$. This completes the proof. Q.E.D.

The following theorem holds as an immediate consequence of Lemma 3.10.
Theorem 3.11 S_{n} with $n \geq 4$ is strongly hamiltonian-laceable.

4 Concluding remarks

In this paper we have introduced the concept of strongly hamiltonian-laceability for star graphs. By extanding our results, we can show that the n dimensional star graph, where $n \geq 6$, remains strongly hamiltonian-laceable, even if $n-\overline{4}$ random edge faults happen, and show that the n-dimensional star graph, where $n \geq 6$, remains strongly hamiltonian-laceable, even if $n=3$ random edge faults happen, exclusive of two exceptions in which there are at most two vertices missing from the longest paths.

References

[1] S. B. Akers, D. Harel and B. Krishnamurthy, "The star graph: an attractive alternative to the n cube," Proceedings of the International Conference on Parallel Processing, 1987, pp. 393-400.
[2] S. B. Akers, B. Krishnamurthy, "A group-theoretic model for symmetric interconnection networks," IEEE Transactions on Computers, vol. 38, no. 4, pp.555-566, 1989.
[3] J. S. Jwo, S. Lakshmivarahan, and S. K. Dhall, "Embedding of cycles and grids in star graphs," Journal of Circuits, Systems, and Computers, vol. 1, no. 1, pp.43-74, 1991.
[4] Y. C. Tseng, S. H. Chang, and J. P. Sheu, "Faulttolerant ring embedding in star graphs," Proceedings of the International Parallel Processing Symposium, 1996, pp. 660-665.
[5] S. A. Wong, "Hamiltonian cycles and paths in butterfly graphs," Networks, vol. 26, pp. 145-150, 1995.

