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Abstract 
Suppose G is a bipartite graph with two partite sets 

of equal size. G is said t o  be strongly hamiltonian- 
laceable i f  there is a hamiltonian path between ev- 
ery two vertices that belong to diflerent partite sets, 
and there is a path of (maximal) length N - 2 be- 
tween every two vertices that belong t o  the same par- 
tite set, where N is the order of G. The star graph 
is known t o  be bipartite. In  this paper, we show that 
the n-dimensional star graph, where n 2 4 is strongly 
hamilt orxian-laceable. 

1 Introduction 
Usually when the hamiltonicity of a graph G is con- 

cerned, it is investigated whether G is hamiltonian or 
hamiltonian-connected. A cycle (path) in G is called 
a hamiltonian cycle (path) if it contains every ver- 
tex of G exactly once. G is said to be hamiltonian 
if it contains a hamiltonian cycle, and hamiltonian- 
connected if there exists a hamiltonian path between 
every two vertices of G. Since a bipartite graph is 
not hamiltonian-connected, Wong [5] has introduced 
the concept of hamiltonian-laceability for the class of 
bipart.ite graphs. A bipartite graph G = ( V l ,  V 2 ,  E )  
with lVll = IV21 is ha,miltonian-laceable if there is a 
hamiltonian path between every vertex of VI and every 
vertex of Vz, where VI and V2 are the two partite sets 
of G. We note that any path between two vertices of 
the same partite set has length at most IVll+/V21-2. 

It is meaningful to extend the concept of 
hamiltonian-laceability so that the lengths of the 
paths between two vertices of the same partite set are 
specified and the edge faults are considered. We say 
that a hamiltonian-laceable graph G = ( V l ,  V2, E )  
is strongly if G additionally owns the property that 
there is a path of length 1Vl)+IV21-2 between every 
two vertices of the same partite set. Further, G is le 
edge fault-tolerant strongly hamiltonian-laceable if it 
remains strongly hamiltonian-laceable after removing 
at most L edges. In other words, there is a longest path 
between every two vertices of a le edge fault-tolerant 
strongly hamiltonian-laceable graph G, even if at  most 
L edges of G are removed. The longest path has length 

lVll+ 1V21 - 1 if the two vertices belong to  different 
partite sets, and 1Vl1 + 1V21 - 2 if the two vertices 
belong to the same partite set. 

The star graph [ l ] ,  which belongs to  the class of 
Cayley graphs, has been recognized, as an attractive 
alternative to the hypercube. It possesses many nice 
topological properties, e.g., recursiveness, vertex and 
edge symmetry, maximal fault tolerance, sublo arith- 
mic degree and diameter, and strong resilience f l ]  [a ] ,  
which are desirable when we are building an intercon- 
nection topology for parallel and didributed systems. 
In [3],  Jwo, Lakshmivarahan, and Dhall have shown 
that the star graph is bipartite. Besides, its two par- 
tite sets have equal size. In this paper we show that 
the n-dimensional star graph is strongly hamiltonian- 
laceable when n 2 4. 
2 Prelimiaries 

The n-dimensional star graph, denoted by S,, is 
defined as follows. 

Definition 1 The vertex set of S, is denoted b y  
{alaz...anl ala2  ... a ,  is a permutation of {I,  2 ,  ..., n}} .  
Vertex adjacency is defined as follows: ala2 ... a,  is 
adjacent to aia2 ... ai-lalai+l ... a ,  for all 2 5 i 5 n.  
T h e  vertices of S, are n! permutations of { 1 , 2 ,  ..., n},, 
and there is an edge  between two vertices of S, if 
and only if they can be obtained from each other 
b y  swapping the leftmost number with one of the 
other n - 1 numbers. For convenience we refer to 
the position of ai in ala2 ... a ,  as the i th dimen- 
sion, and ( a l a 2  ... a,,aiaz ... ai- la la i t l  ... a,) as the ith- 
dimensional edge.  

Definition 2 There are embedded S,’s contained in 
S,, where 1 5 r 5 n. A n  embedded S,. can be con- 
veniently represented b y  < s1s2 ... s, >,., where s1 = *, 
si E {*, 1 , 2 ,  ..., n} f o r  all 2 5 i 5 n, and exactly r of 
SI, sa, ..., s, are * (* denotes a ”don’t care” symbol). 

Definition 3 A n  i-partition on < s1sz ... s, >,. parti- 
tions < s1s2 ... s, >,. into r embedded S:-ls, denoted 
b y  < S1sz...si-1qsi+l...sn >,.-l, where 2 5 i 5 n,  
si = *, and q E { 1 , 2 ,  ..., n } -  {s1,sZl ..., s,}. 
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Definition 4 A n  
partition on < s1s2 ... s, >, performs an il-partition, 
an iz-partition, . .., an, ir,-partition, sequentially, on 
< s1s2 ... sn >,., where 2122  ... 2, is a permutation of m 
elements from {2 ,3 ,  ..., n ) .  
Definition 5 Two embedded S,.'s < s1sz ... s, >,. and 
< tltz ... tn  >, are said t o  be adjacent if s j  # *, t j  # *, 
and sj # t j  for some 2 5 j 5 n, and si = ti for  all 
1 5 i 5 n and i # j .  Moreover, the position j is 
denoted b y  d i f (<  s1sz ... s, >,, < t l t 2  ... tn >,.). 

Definition 6 Let A I ,  A z ,  ..., An(n-l)(n-2)...(,.tl) 
represent those embedded Sr's that are obtained b y  
executing an ( i l ,  i z ,  ..., i,-,)-partition on S,, where 
1 5 r 5 n - 1. They form an r-path, denoted b y  
P,. = [A1 , Az, ... , An(,-1)(,-2)...(,+l)], if Ai is adjacent 
t o  Ai+l f o r  all  1 5 i 5 n(n - l ) (n  - 2 ) .  . . (r + 1) - 1. 
Each vertex of P,. i.e., Ai, is called an r-vertex, and 
each edge  of P,., i.e.,  (Ai,  Aa+l), is called an r-edge. 

Definition 7 A n  i- par t i t ion 
on Pr = [Ai, Az, ..., An(n-l)(,-2).. .(Ttl)] performs an 
i-partition on A I ,  A2, ..., A,(,-l)(,-2).,.(T+1), respec- 
tively, where 2 5 i 5 n and r 2 2. After an i- 
partition, each Aj is partitioned into r ( r  - 1)-vertices, 
where 1 5 j 5 n(n - l ) (n  - 2 ) .  . . ( r  + 1). Since every 
two of the r (r - 1)-vertices are joined with an ( r  - 1)- 
edge, each Aj can be viewed as a complete graph of r 
( r  - 1)-vertices. Throughout this paper, we refer to the 
complete graph as I<:-'. We note that each vertex of 

( r  - 1)-edge. 

( i l l  i 2 ,  ..., im)- 

I<'-1 ,. is an ( r -  1)-vertex and each edge of I<:-' is an 

3 Hamiltonian-Laceability of Star 

In this section we show S,, with n 2 4 is strongly 
hamiltonian-laceable. 
Lemma 3.1 Suppose U = < u1uz ... U ,  >,, V = 
< 211212 ... vn >,., and W = < w1wz ... w, >, are arbi- 
trary three consecutive r-vertices in a P,., where r 2 2.  
Let p = d i f ( U , V )  and q = dif(V, W ) .  If up # w q ,  
then after executing a partition on the P,. each (r - 1)- 
vertex of V is connected to U or W .  
Proof: Without loss of generality, we assume that a 
j-partition is executed on the P,, where 2 5 j 5 n. 
Hence, uj = v j  = wj = *. Since p = d i f ( U , V )  # 1 
and q = dif(V, W )  # 1 ,  we have U # u p ,  vq # w q ,  
ui = U; for all 1 5 i 5 n and i p p ,  and vi = wi 
for all 1 5 i 5 n and i # q. Suppose conversely 
U # wq and there exists an (r - 1)-vertex, say J: = < 211212 ... ~ j - i ~ U j + i  ... U ,  > r - l J  of V which is not 
connected to either of U and W .  Thus, z = u p ,  for 
otherwise VI is adjacent to some ( r  - 1)-vertex of U .  
Similarly, z = wq. This implies up = wq,  which con- 
tradicts our assumption. Q.E.D. 
Lemma 3.2 Suppose U and v are arbitrary two dis- 
tinct vertices of S, with n 2 4. There exists a Pn-l 
whose first ( n  - 1)-vertex contains U and whose last 
( n  - 1)-vertex contains U .  

Graphs 

Proof: Suppose U == u1u2 ... u, and U = v1v2 ... vn. 
Without loss of generality, we assume u,j # vj for some 
2 5 j 5 n. After a j-partlition, S, is partitioned into 
n ( n  - 1)-vertices, which form a I<:-'. Clea.rly, U and 
U belong to two different vertices, say U and V ,  of 
the I<,"-1. The desired Pn-l can be constructed as a 
hamiltonian path from U to V in the I<:-'. Q.E.D. 

In the rest of this paper, we suppose U and v are the 
beginning vertex and the ending vertex, respectively, 
of a path. We call an r-vertex the beginning r-vertex 
(ending r-irertex) if it, contains U (U). Besides, a path 
from U to V is abbreviated to  a U - V path. 

Lemma 3.3 A PT-l whose first ( r  - 1)-vertex is the 
beginning ( r  - l)-veriex and whose last (r - 1)-vertex 
is the ending ( r  - l)-vertex can be obtained from a 
P,. whose first r-vertiex is the beginning r-vertex and 
whose last r-vertex is the ending r-vertex, where 4 5 
r l n - 1  a n d n 2 5 .  

- Proof: Suppose PT - 
[Ai, Az, ..., A n ( n - l ) ( n ~ - ~ ) . . . ( ~ t l ) ] ,  where A1 is the begin- 
ning r-vertex and An,~,-~)(,-2)...(,.t1) is the ending r- 
vertex. After executing a partition on the P,., each Ai 
forms a I<:-', where 1 5 i 5 n(n-l ) (n-2)  
Since each Ai contains at  least three ( r  - 1)-vertices, 
we can select two dist,inct (r - 1)-vertices, say X i  and x, from each Ai so tlhat X1 is the beginning (r - 1)- 
vertex, Y,,(,-1)(,-2)...(,.+1) is the ending (r- 1)-vertex, 
and for 2 5 j 5 n(n - 1)(n - 2 ) . . . ( r  + 1) - 1, 
X j  and Yj are adjacent to Yj-1 and X , + l ,  respec- 
tively. Since there exists a hamiltonian ki - path 
in the I<;-' formed by Ai, the desired P,.-1 can be 
obtained by concatenating all the hamiltonian paths 
interleaved with (r - 1)-edges (YI, X z ) ,  (Y2,X3j1 ..., 

In the rest of this; paper, Xi  and yi as specified 
above are referred to as the entry ( r  - 1)-vertex and 
the exit (r - 1)-vertex of Ai,  respectively. 

Lemma 3.4 A Ps whose first 5-vertex is the begin- 
ning &vertex and whose last 5-vertex is the ending 
5-vertex can be obtained in S, with n > 5. 

(Y,(,-l)(,-2)...(r+l)-11 Xn(n- l ) (n - z ) , , , ( r t l ) ) .  Q.E.D. 

A Pr = [ A I ~ A z ,  . . . ,An(n-l)(n-2). . . (r+l)]  in S n ,  
where 2 5 r 5 n - 1, is said to be good if it satis- 
fies the following three conditions. 
(Cond. 1 )  A1 and A;,(,-l)(,-2)...(,+1) are the begin- 
ning and ending r-vertices, respectively. 
(Cond. 2) For arbitrary three consecutive r-vertices 
X < ... 2, >,, Y = < YIYz . . .Yn  >,., and 2 = 
< z1z2 ... z ,  >, in the P,., x d i f ( ~ , y )  # z d i f ( y , ~ )  holds. 

3) After executing a &partition on the P,. 
or some 2 5 IC 5 n,  the beginning (ending) ( r  - 1)- 

vertex in A1 (An(,-l)(,-2),..(,.+l)) is not connected to 

In the rest of this section we show that a good P3 
can be obtained in S,, . Given arbitrary two vertices of 
S,, a longest path between them can be constructed 
from a good P3. 

ond. r" 
A2 (An(n-l)(n-2)...(Tt.l)-1). 
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Lemma 3.5 A good P4 can be obtaaned from a Ps 
whose f irst  $-vertex as the begannang 5-vertex and 
whose last 5 -ver tex  as the endanq 5-vertex.  

Proof: We suppose P5 = [ A I ,  Az, ..., An(,-,1)(,-2)..,6I, 

where A1 and A,(,-1)(~-2)...6 are the beginning and 
ending 5-vertices. Without loss of generality, we as- 
sume that the P5 is obtained from s, by executing 
an ( u l ,  u2, ...) a,_s)-partition, where ala2 ... an-5 is an 
arrangement out of {2,3,  ..., n}. Let j E { 2 , 3 ,  ..., n }  - 
{ a l ,  a2, ..., a,-5}. First, a j-partition is executed on 
the Ps, and so each Ai forms a IC:, where 1 5 i 5 
n(n - l ) ( n  - 2 ) .  . . 6 .  In the rest of the proof we con- 
struct a good P4 from the P5 by establishing a hamil- 
tonian path for each IC:. 

Suppose U = uluz ... un and v = v1vz ... vu, are the be- 
ginning and ending vertices, respectively. A hamilto- 
nian path for the IC: formed by AI can be established 
as follows. Let XI = < 2122 ... 2, >4 be the begin- 
ning 4-vertex (in A I ) ,  T be the 4-vertex of AI that 
is not connected to Az, and W = < W ~ W Z  ... w, >4 be 
a 4-vert,ex of AI which is different from X I  and has 
wj = uk for some k E { 2 , 3 ,  ..., n }  - { j ,  al,  a2, ...) an-5}. 
Since there are four 4-edges between A1 and Az, there 
exists a 4-vertex Y1 $ {XI, W }  which is connected 
to Az. If X1 = T or ( X I  # T and T = W ) ,  
a hamiltonian XI - U1 path can be established as 
( X I ,  W )  + P[W, Y I ] ,  where P[W, YI] denotes a TV - YI 
path passing all the vertices of the IC: but XI exactly 
once. Otherwise, if XI # T and T # W, a hamilto- 
nian X I  - 1'1 pat8h can be established as ( X I ,  W )  + 
(W, T )  + P[T, Y l ] ,  where P[T, Yl] denotes a T - Yl 
path passing all the vertices of the IS: but X1 and W 
exactly once. Then we continue to establish a hamil- 
tonian path for the IC; formed by A n ( n - ~ ) ( ? - ~ )  . .6.  

The construction of the hamiltonian path is simi- 
lar to the situation of A l .  Let Yn(n - l ) (n -2 ) . . . 6  be 
the ending 4-vertex (in An(n-l)(n-2)...6, C be the 
4-vert3ex of An(,-1)(,-2)...6 that is not connected 
to A n ( n - l ) ( n - ~ ) . . . 6 - ~ ,  and D = < dldz ... d, >4 be 
the 4-vertex of A , ( , - I ) ( ~ - ~ )  . .6 that is different from 
Yn(n-l)(n-z)...6 and has dj = V k  (here, k is identical 
with that k appearing in the situation of A I ) .  There 
exists a vertex Xn(,-1)(,-2)...6 @ { D ,  Yn(,-l)(,-2)...6} 
which is connected to A,(,-1)(,-2)...6-1. If 
Y,,(,-1)(,-2).. .6 = C or Y,(,-1)(,-2)...6 # C and C = 
D ) ,  a hamiltonian Xn(n-l)(,-2)...6 - Yn(n-l)(n-2)...6 
path can be established as P[Xn(n-l)(n-z) ... 6 ,  D] + 
( D ,  Yn(n-l)(n-2)---6), where P[dYn(n-l)(n-2)-..6, D] de- 
notes an Xn(,-1)(,-z)...6 - D path passing all the 
vertices of the 11; but Y, ( , - I ) (~ -~ )  6 exactly once. 
Otherwise, if Ya(,-l)(,-2)...6 # c and c # D ,  a 
hamiltonian Xn(n,-l)(n-2)...6 - Yn(,-1)(,-2)...6 path 
can be established as P[Xn(n-1)(n-2). . .6,  C] +(C,  D)+ 
( D ,  yn( n - I)(  n - 2 ) .  . -6 ) , where P [Xn( n - 1 )( n - 2) .  . . 6 ,  c] de- 
notes an &(n- . l ) (n-z ) . . .6  - C path passing all the ver- 
tices of the Itr: but D and Yn(n-l)(n-2)...6 exactly once. 

In the discussion above, X1 and y1 (X,(,-I)(,-Z)...~ 
and Yn(n--l)(n-2)...6 are the entry and exit 4-vertices 
of A1 (An(n-l)(n-~) . . .6) ,  respectively. Additionally, we 
use Xi  and yi to denote the entry and exit 4-vertices 
o f A i ,  respectively, for 2 5 i 5 n ( n - l ) ( n - 2 ) . . . 6 - 1  . 
Let Li (Qi)  be the 4-vertex of Ai that is not connected 
to Ai-1 (Ai+l). A hamiltonian Xi - path in the 
IC: formed by Ai can be established according to  the 
following four cases. Case 1. Qi = Xi and Li = 
E. A hamiltonian Xi - Y,  path can be established 
easily. Case 2. Qi # Xi and Li = X. A hamiltonian 
Xi  -yi path can be established as ( X i ,  Qi)+P[Qi, y i ] ,  
where P[Qi ,y i ]  denotes a Qi - yi path passing all 
the vertices of the I<: but Xi  exactly once. Ca.se 3.  
Qi = X i  and Li # Yi. A hamiltonian X i  -x path can 
be established as P[Xi, Li] + ( L i , x ) ,  where P [ X ; ,  Li] 
denotes an Xi  - Li path passing all the vertices of 
the I<: but exactly once. Case 4. Qi = X i  and 
Li # yi.  If Qi = Li, a hamiltonian Xi - yi path can 
be established a,s ( X i , U i , L i ,  K,x), where Vi and V;: 
are the other two 4-vertices of Ai than X i ,  Yi, and 
Li. If Qi # Li,  a hamiltonian Xi - yi path can be 
established as ( X i ,  Qi,  U; ,  L; ,  x), where U; is the other 
4-vertex of Ai than X i ,  Y , ,  Li, and Qi.  

Clearly the hamiltonian paths obtained above 
interleaved with 4-edges (Y1, X Z ) ,  ( Y z , X s ) ,  ..., 

we show the P4 good. (Cond. 1) holds because 
X1 is the beginning 4-vertex and Yn(n-l)(n-~) . . .6  is 
t,he ending 4-vertex. (Cond. 3 )  holds for the rea- 
son as follows. Recall that wj = U L  for some IC E 
{ 2 , 3 ,  ..., n }  - { j ,  a l ,  a2, ..., an-5}. After executing a 
k-partition on the P4, X1 = < ~ 1 x 2  ... x ,  >4 forms a 
IC:. Since xk = U S  = wj, the beginning 3-vertex 
is not connected to W .  Similarly, the ending 3- 
vertex is not connected to D.  In the following, we 
show (Cond. 2 )  holds. Let X = < ~ 1 x 2  ...x, > 4 ,  
Y = < y1y2 ...y, >4,. and 2 = < z1z2 ... z,  >4 be arbi- 
trary three consecutive 4-vertices in the P4. Assuming 
p = d i f ( X ,  U )  and q = d i f ( Y ,  Z), we show xp # zq 
according to three cases. If X is the exit 4-vertex of 
Ai for some 1 5 i 5 n(n - 1)(n - 2 ) . . . 6  - 1, then 
Y is the entry 4-vertex of Ai+l and 2 is the second 
4-vertex in the hamiltonian path established for the 
11: formed by Ai+l. Besides, p # j = q .  Suppose 
conversely xp = z q .  Then, 2 is not connected to  A; 
(recall that the pair of 4-vertices in Ai and Ai+l that 
are not adjacent are < xl...xq-lzpxq+l...x, >4 and 
< z1 ... zq-lxpzq+l ... zn >4, respectively, where x q  = 
zp  # xp 1 zq and xi = z; for a.11 1 5 i 5 n and 
i # { p ,  q } ) .  According to our construction for the P4, 
2 should be the third or fourth or fifth 4-vertex in 
the hamiltonian path established for the I<: formed 
by Ai+l, which is a contradiction. If 2 is the entry 
4-vertex of Ai for sorpe 1 < i 5 n(n, - l ) ( n  - 2 )  " ' 6 ,  
then II: # zq can be shown similarly. Otherwise, 
if X ,  e, and 2 belong to the same 4-vertex, then 
p = d i f ( X ,  Y = d i f ( X ,  2) = d i f ( Y ,  2) = q .  Since ,Y 

Q.E.D. completes the proof. 

(y~(n-l)(n-Z)- . .6- l ,  Xn(n-l)(n-Z)..6) form a p4. Next, 

and 2 are di B erent 4-vertices, we have xp # zp.  This 
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As with similar arguments to prove the above, we 
can show the following lemmas. Due to space limita- 
tion, the details are omitted. 

Lemma 3.6 A good P3 can be obtained from a good 
p4. 

Proof: We suppose P4 = [ A I ,  A2, ..., An(,-1)(,-z)...5]. 

Without loss of generality, we assume that the P4 is 
obtained from S, by executing an (u1 ,  az, ... ,an-& 
partition, where ala2  ... an-4 is an arrangement out 
of {2,3,  ..., n}. Since the P4 is good, there exists 
j E {2,3, ..., n}  .-. { U I ,  az, ..., an-4} so that after ex- 
ecuting a j-partition on the P4, the beginning (end- 
ing) 3-vertex in AI (An(n-1)(n-2)...5) is not adjacent to 
A2 (A,(,-l)(,-2).. .5-l). Besides, each Ai forms a IC:, 
where 1 5 i 5 n(n - l ) (n  - 2). . '5 .  In the rest of the 
proof, we construct a good P3 from the P4 by estab- 
lishing a hamiltonian path for each I<:. Suppose U = 
u1uz ... U,, and v = v1v2 ... v, are the beginning and end- 
ing vertices, respectively. We establish a hamiltonian 
path for the I<: formed by A1 as follows. Let X1 be the 
beginning 3-vertex (in A I )  and W = < w1wz ... w, >3 
be a 3-vertex in A1 which is different from X1 and has 
wj = U k  for some k E {2,3,  ..., n } - { j ,  a l ,  U Z ,  ..., an-4}. 
We note that X1 is not connected to Az. Since there 
are three 2-edges between A1 and A2, there is another 
3-vertex Y1 4 { X I ,  W }  in AI which is connected to 
A2. A hamiltonian XI - Y1 path can be established as 
( X I  , W )  + P[W, Y I ] ,  where P[W, Yl] denotes a W - Y1 
path passing all the vertices of the 11': but X1 exactly 
once. 

Then we continue to  establish a hamiltonian path 
for 
the I<: formed by An(n--l)(n-~)...5. Let Y,(,,-l)(,,-z). .5 

be the ending 3-vertex (in A,(,-1)(~-2)...5) and D = 
< d ld2  ... d ,  >3 be the 3-vertex in An(,,-1)(,,-2)...5 
that is different from Yn(,T1)(n-2) . . .5  and has d j  = 
v k  (here, k is identical with that k appearing in 
the situation of AI) .  There exists a 3-vertex 
X,,(n-1)(n-2)...5 # D in A,(,,-1)(~-2)...5 which is 
connected to An(n-I)(n--2)...5-1. A hamiltonian 
Xn(n-l)(n-2) . . .5  - Y n ( n - ~ ) ( n - 2 ) . . . 5  path can be estab- 
lished as P[Xn(n - l ) (n -2 ) . . . 5 ,  D1+ ( D ,  Yn(n-l)(n-2) . . .5) ,  

where P[X71(n-l)(?l-2)~. 51 Dl 
denotes an Xn(n-l)(n-2)...5 - D path passing all the 
vertices of the I<: but Yn(,,-1)(,-2)...5 exactly once. In 
the discussion above, X I  and YI (Xn.(,,-1)(,,-2)...5 and 
Yn(n-l)(n-2).,.5) are the entry and exit 3-vertices of A1 

(An(n-l)(n-2). . .5)r respectively. By X i  and Y,  we de- 
note the entry and exit 3-vertices of Ai, respectively, 
for 2 5 i 5 n(n - l ) (n -2 ) . . . 5 -1  . Let Li ( Q i )  be the 
3-vertex in Ai that is not connected to Ai-1 (A i t l ) .  
A hamiltonian X i  - yi path for the formed by Ai can 
be established according to the following four cases. 

Case 1. Q i  = X; and L; = Y;. A hamiltonian 
X; - x path can be established easily. 

Case 2.  A hamiltonian 
Xi-Yi path can be established as ( X i ,  Qi)+P[Qi,Y,] ,  

Qi # Xi and Li = E:. 

where P[Qi, x ]  denotes a Q; - Y; path passing all the 
vertices of the I<: but Xi  exactly once. 

Case 3. Qi = X i  and Li # x. A hamiltonian 
Xi - path can be established as P[Xi  , Li] + (Li , x), 
where P [ X i , L i ]  denotes an X i  - Li path passing all 
the vertices of the IC: but E exactly once. 

Case 4. Qi # X i  and Li # yi. Since the P4 
is good, Lemma 3.1 assures that each %vertex of 
Ai is connected to A i - 1  or Ai t l .  Hence, Qi # 
Li.  A hamiltonian X.; - Y; path can be established 
as ( X i ,  Q i ,  L i ,  Y; . The hamiltonian paths obtained 

(Yn(,,-1)(,,:2)...5-l, X n , ; n - l ) ( n - 2 ) . . . 5 )  form a P3. More- 
over, the P3 is good, with the same arguments as the 
proof of Lemma 3.5. Q.E.D. 

Lemma 3.7 There is a good P3 in S5. 

Proof: Suppose U = C ~ ~ U Z U ~ U ~ U ~  and v = ~ 1 ~ 2 ~ 3 ~ 4 ~ 5  
are the beginning and ending vertices, respectively. 
We a,ssume U ;  # vi for i E { a 1 , a 2 ,  . . . , a k }  
{ 1,2 ,3 ,4 ,5}  and ui = vi otherwise, where 2 5 k 5 5 
and a1 < a2 < . . .  <: U k .  First, an ak-partition is 
executed on 5'5, and so a I<: results. We use U4 and 
V4 to denote the beginning and ending 4-vertices, re- 
spectively. In the following, we construct a good P3 
according to the values of 6. 

Case 1. k = 2. We assume a1 # 1. The 
discussion for al' = I. is very similar. For ease of 
explanation, we assume, without loss of generality, 
a1 = 2 and a2 = 3. VVe then arbitrarily select 1 = 4 
from the set {2,3,4,51} - {a1 ,a2}  = {4,5}, and let 
S = < S ~ S Z S ~ S ~ S ~  >4 =< * * s3 t t >4 be the vertex 
of the I<: with ( saz  -=)ss = u4(= U,). Since there 
are five vertices in the I<:, we can find a 4-vertex 

with (za2 =)z3 # V I .  ]Let T be the other vertex than 
U4, S, 2, and V4 in the I<;. A hamiltonian path for 
the Kt can be establiished as (U4,  S, T ,  2, V4), which 
constitutes a P4 = [U',, SIT, 2, V4]. An 1-partition is 
then executed on the P 4 ,  and so each 4-vertex of the 
P4 forms a I<:. By establishing a hamiltonian path 
for each I<:, a good P:3 can be obtained as follows. 

First we establish a hamiltonian path for the K: 
formed by &. Let V3 = < * * v3v4* > 3  be the end- 
ing 3-vertex (in V4) and D = < dld2d3d4d5 >3= 
< * * v3d4* >3 be the 3-vertex of V4 that is not con- 
nected to 2. Since sa,2 = U( = 01 =)v4 # z3(= fa,), 
V3 is connected to 2. So, D # V3. Moreover, since 
there are three 3-edges between 2 and V4, there ex- 
ists a 3-vertex X # V3 in V4 which is connected to 2. 
A hamiltonian path for the I<: can be established as 
P [ X ,  D] + ( D ,  V3), where P [ X ,  D] denotes an X - D 
path passing all the vertices of the I<: but V3 exactly 
once. 

We then continue to establish a hamiltonian path 
for the I<: formed by U4. We have dl = U,. for 
some T E { 2 , 3 , 4 , 5 }  - { a z l l }  = { 2 , 5 } .  We note 
T # 1 because D is .the 3-vertex in V4 that is not 
connected to 2 (which implies dl = z,, # w1). Let 
U3 = < t * u3'114* >3 be the beginning 3-vertex (in 

above interleave d with. 3-edges (YI ,  X z ) ,  (Y2, X 3 ) ,  ..., 

2 = < Z 1 2 2 Z 3 Z q Z g  >4:= < * * 23 * * >4 $! {u4,s, v4) 
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U4) and W = < w1w2w3w4w5 >3=< * * u3w4* >3 be 
the 3-vertex in U4 that is different from U3 and has 
(wf =)w4 = U,. We note that U3 is not connected to 
S because ( s a z  =)s3 = u4(= u f ) .  So, there exists an- 
other %vertex Y @ {Us, W }  in U4 which is connected 
to S. A hamiltonian path for the 1.2 can be estab- 
lished as (Us, W )  + P[W, Y ] ,  where P[W, Y ]  denotes a 
W - Y path passing all the vertices of the K: but U3 
exactly once. 

Since there are three 3-edges between every two ad- 
jacent 4-vertices of the P 4 ,  distinct entry and exit 3- 
vertices can be determined for S, T, and 2. Then, a 
hamiltonian path from the entry 3-vertex to the exit 3- 
vertex can be established for each formed by them, 
similar to the proof of Lemma 3.6, in order to satisfy 
(Cond. 2). The obtained hamiltonian paths inter- 
leaved with used 3-edges form a P3 = [AI, A2, ..., Am], 
where AI = U3, A2 = W, A19 = D ,  and A20 = Vi. In 
the following we show that the P3 is good. 

1) holds, and with the same ar- 
guments as the proof of Lemma 3.5, (Cond 2) also 
holds. After executing an r-partition on the P3, each 
A, forms a K z ,  where 1 5 i 5 20. Without loss of gen- 
erality, we assume r = 2. Let U2 = < * U Z U ~ U ~ *  > 2  
(in AI) and % = < *v2v3?4* > z  (in Azo) be the 
beginning and ending 2-vertices1 respectively. Since 
(U, =)u2 = w4(= uII = Wd,f(A1,Az)) ,  U2 is not con- 
nected to W = A2. Similarly, since (U,. =)v2 = d4(= 
dl = d d z f ( A 1 9 , ~ z o ) ) ,  V2 is not connected to D = A19. 

Thus, (Cond. 3) holds. 
Case 2.  IC = 3. The method for constructing a good 

P3 is almost the same as Case 1, but k is changed to  3 
and 1 is selected from the set {2 ,3 ,4 ,5)  - { a l l  a2, a3). 

Case 3. IC = 4. We assume uf  = wf, where 
If U t  # U t ,  U t  # 

vu4 ,  and ut # U,, for some t E {ai ,a2,a3} - {l}, 
then two 4-vertices Q = < qlq2q3q4q5 >4 and H = 
< h lh~h3h4h5  >4 with qar = ut and ha, = ut are 
determined. A hamiltonian path for the K: can be 
established as (U4, Q,  T, H ,  V4), where T is the other 
4-vertex than U4, Q, H, and V4. The hamiltonianpath 
forms a good P4 = [U4, Q,T, H, V4] for the following 
reasons. (Cond. 1) and (Cond 2) hold with the same 
reasons as Case 1. (Cond. 3) holds as a consequence 
of executing a t-partition on the P4. By Lemma 3.6, 
a good P3 can be obtained from the P4. 

Otherwise, if there exists no t E {all a2, u3) - (1) 
satisfying ut # u t ,  ut $3 v a 4 ,  and ut # t i a r t  then al.  = 1, 
which implies 1 # 1. The method for constructing a 
good P3 is almost the same as Case 1, but IC is changed 
to 4 and 1 is unique. 

Case 4. IC = 5. There exists a number t E 
{ai, az, a3, a4) - { 1) satisfying ut # u t ,  ut # va,, and 
vt # ua5. A good P3 can be obtained similar to Case 
3 .  Q.E.D. 

We note that S3 forms a cycle of length six. The 
following two lemmas have been shown in [4]. 

Lemma 3.8 [4] Suppose X and Y are t w o  adjacent 
3-vertzces zn a P3, and let ( c o , c ~ ,  ..., c5) denote the 
cycle f o r m e d  by X .  T h e n ,  t he  vertaces of X tha t  are 
connected t o  Y are c, and C ( ~ + 3 ) m o d 6  f o r  s o m e  0 5 j 5 

Clearly, (Cond. 

E {1,2,3,4,5} - {alra2,a3,a4}. 

5. 

Lemma 3.9 [4] Suppose X = < 21x2 ... x, >3, Y = 
< y1y2 ...y, >3r and Z = < z1z2 ... z, >3 are arbztrary 
three consecutzve 3-vertaces zn a P3. I f  xdif(x,y) # 
z d , f ( Y , Z ) !  t h e n  the  t w o  vertzces of Y tha t  are connected 
t o  X are dasjoznt f r o m  t h e  t w o  of Y t h a t  are connected 
t o  2. 

Lemma 3.10 Suppose U and v are arbztrary t w o  dzs- 
tznct vertzces of S, wzth n 2 4. A longest U - v pa th  
can be constructed f r o m  a good P3. T h e  longest pa th  
h a s  length n! - 1 zf d i s t ( u , v  zs odd, and n! - 2 af 
d is t (u ,v)  as even,  where d i s t  ? u ,v )  zs t he  dzstance be- 
tween  U and U. 

Proof: It is not difficult to check that this lemma 
holds for S4 (recall that S, is vertex symmetric). 
Hence, we assume n 2 5. According to Lemmas ?? 
and 3.7, a good P3 = [Al,Aa,...,A,(,-l)(,-2) 41 

can be obtained in S,. We use (cz,o, cZ,l ,  ..., ?,5) 
to denote the cycle formed by A,, where 1 5 z 5 
n(n - l ) ( n  - 2) S .  .4. According to Lemma 3.8, two 
vertices c1,j and Cl,(j+3)mod6 (C,(,-I)(,-Z) 4 ,k  and 

IC 5 5) are connected to  A2 (A,(,-l)(,-Z) 4-1). 

We have U # { ~ 1 , ~ , ~ ~ , ( , + 3 ~ ~ ~ ~ ~ } ,  for otherwise 
the beginning 2-vertex must be connected to  Az, 
which contradicts (Cond. 3). Similarly, v # 

A1 (An(,-1)(,-2) 4)  forms a cycle of length 6, U (v) 
is adjacent to  or C1,(3+3)mod6 (C,(,-I)(,-~) 4 , k  or 
c,(,.-1)(,-2) 4 , ( ~ + 3 ) ~ ~ d 6 ) .  Without loss of generality, 
we assume U is adjacent to ~ 1 , ~ .  We let 1c1 = U and 
y1 = , and select x, and y, , sequentially, for i = 
2,3,  ... , n(n - l ) (n  - 2) . . 4 - 1 from each A, so that x, 
is adjacent to  both y,-1 and y,, and yn(,-1)(,-z) 4-1 

is connected to  An(n-l)(n-2) 4. Lemmas 3.8 and 3.9 
assure the existence of x, and yz. Since A1 contains a 
hamiltonian U- y1 path and each A, contains a hamil- 
tonian ~c,-y, path, a hamiltonian u-y,(,-1)(,-2) 4-1 

path (of length n! - 6) for S, - {A,(,-l)(,-Z) 4 )  thus 
results. 

Next we augment the U - yn(,-1)(,-2) 4-1 path 
with a longest yn(,-1)(,-2) 4-1 - v path. Without 
loss of generality, we assume y,(,-1)(,-2) 4-1 is adja- 
cent to ~ , ( , - ~ ) ( , - 2 )  4 , k .  If d i s t ( u , v )  is odd, any U - v  
path has odd length because S, is bipartite. So, v # 

for otherwise there exists a U - v path of even length, 
which is a contradiction. Since we also have v # 

k(n-l)(n-2) 4,(k+3)mod6) for SOme 0 5 j 5 5 (0 5 

l)(n-2) 4 , k  1 %(n- l ) (n  - 2) 4,(  k+3)mod6}. Since 

Icn(n-l)(n-2) 4,(k+2)mod6t %(n-l)(n-Z) 4,(k-2)mod6),  

{%(?2-1)("-2) 4 , k ,  c?%(71-l)(n-2) 4,(k+3)mod6), 

be '%(fl-l)(,-Z) 4 , (k+l)mod6 
or c,(,-~)(,-z) In either case, there 
exists a hamiltonian cn(,-1)(,-2) 4 , k  - v path (of 
length 5) for An(,-1)(,-2) 4. Similarly, if dis t (u ,v )  

cn(,-1)(,-z) 4,(k-2)mod6. In either case, there ex- 
is even, should be c,(,-I)(~-z) 4,(k+2)mod6 or 
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ists a c ~ ( ~ . - I ) ( ~ . - ~ )  4,k - w path of length 4 in 
An(n-l)(n-a) 4. This completes the proof. Q.E.D. 

The following theorem holds as an immediate con- 
sequence of Lemma 3.10. 

Theorem 3.11 S, wath n 2 4 as strongly 
hamaltonaan-laceable. 

4 Concluding remarks 
In this paper we have introduced the concept 

of strongly hamiltonian-laceability for star graphs. 
By extanding our results, we can show that the n- 
dimensional star graph, where n 2 6, remains strongly 
hamiltonian-laceable, even if n - 4 random edge faults 
happen, and show that the n-dimensional star graph, 
where n 2 6, remains strongly hamiltonian-laceable, 
even if n - 3 random edge faults happen, exclusive of 
two exceptions in which there are at most two vertices 
missing from the longest paths. 
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