
A High Performance Dynamic Token- ased Distributed §ynchroni~ation
Algorithm

Alexander I-Chi Lai and Chin-Laung Lei
Dept. of Electrical Engineering

National Taiwan University
Taipei, Taiwan, R. 0. C.

Email: alex@ fractal.ee.ntu.edu.tw, lei @cc.ee.ntu.edu.tw

Abstract

In this paper we propose a new dynamic token-based
distributed synchronization algorithm that utilizes a new
technique called optimistic broadcasting (optcasting) to
improve efficiency. Briefly, an optcast message is a
reliable unicast one that can also be heard by nodes other
than its designated destination. Our algorithm manages
pending token requesters by a distributed queue, and
optcasts a direction towards the current queue end to
help new requesters finding the queue end more quickly.
Simulated experimental results indicate that our optcast
algorithm outpelforms the already fast Chang-Singhal-
Liu (CSL) algorithm by up to 36%, especially for large
systems of many processor nodes and under high
synchronization loads. In addition, optcasting is highly
robust and resistant to message loss, retaining at least
63% coverage even when the message loss, rate
approaches 100%.

1 Introduction

Synchronization is one of the most fundamental and
vital activities in distributed computation. A distributed
computation consists of several concurrent processes that
cooperate for a common goal. During the computation,
processes may contend for some resources that must be
used exclusively. If these competing processes were not
well coordinated, the final computation result is
unpredictable and probably incorrect. To avoid such a
situation, a process must enter a critical section (i.e.
synchronize with others) to obtain an exclusive privilege
of access to those resources; such a privilege can be
represented by holding a unique token, being granted
permission globally, positioning first in a total ordering,

1087-4089/97 $10.00 0 1997 IEEE

and so on. Because synchronization plays such an
important role in distributed computing, many researchers
have been devoted to develop efficient distributed
synchronization algorithms.

In this paper we present a new technique called
optcasting (which stands for optimistic broadcasting) for
optimizing token-based distributed synchronization
algorithms. Unlike reliable broadcasting / multicasting [3 ,
211 or lossy multicasting [8, 111, an opfcast message is a
reliable unicast message that can also be heard by nodes
other than its designated destination. It is optimistic in the
sense that while acknowledgement from the destination
node is required, other receiving nodes need not send
back any response. Note that an optcast message can
deliver information to multiple nodes without any extra
communication traffic than a regular reliable unicast
message. Therefore, optcast is most useful under the
circumstances that spreading certain information is
beneficial but not obligatory; that is, such information can
be promptly used by networked computers which have
optcast copies, while the original one is still accessible
via a less efficient route.

We propose a new token-based dynamic distributed
synchronization algorithm that utilizes optcasting. In our
algorithm a distributed queue is used to manage pending
token requesters. In addition, each node maintains a guess
of the probable token owner. If a node wishes to get the
token, it sends the request to the probable owner first. The
request will be forwarded elsewhere in the same pattern
until either it is put at the end of the requesting queue, or
the token is found eventually. Clearly, since a more
accurate guess of the probable owner means fewer
forwarding steps and higher synchronization efficiency,
the information related to the token position is a good
candidate of optcasting. Indeed, our approach optcasts a
direction towards the current queue end to help new

150

requesters finding the queue end more quickly. Our
simulation results indicate that this technique is very
efficient especially for large systems with many processor
nodes and under heavy synchronization conditions,
reducing up to 36% of messages of previous dynamic
algorithms [l, 61 which have already achieved very good
performance. Furthermore, by mathematical analysis we
find that optcasting is highly robust and resistant to
message loss, retaining at least 63% coverage even when
the message loss rate approaches 100%. This is also
supported by simulation results in which the performance
gain over earlier algorithms only slightly degrades by 3 to
5 percents under 60% message loss.

The remainder of this paper is organized as follows.
In Section 2 we survey previous approaches of distributed
synchronization. Section 3 describes the technical details
of our optcast dynamic synchronization algorithm.
Section 4 presents simulated performance results of our
optcast algorithm. Finally, conclusions and future works
are summarized in Section 5.

2 Previous researches

This section summarizes previous distributed
synchronization approaches. Some excellent overviews
on these different approaches can be found in the
literature [14, 16, 201.

2.1 Centralized approach

The most straightforward way to achieve mutual
exclusion in a distributed environment is to let one single
node handle all synchronization requests. This can be
done by assigning one dedicated node as the coordinator
to arbitrate synchronization requests from other nodes.
Each process that wants to execute in the critical section
sends a request to the coordinator. When the node
receives a reply from the coordinator, it can proceed and
enter the critical section.

Clearly this approach guarantees mutual exclusion.
Also, no starvation will occur if the scheduling policy
within the coordinator is fair (first-come-first-serve, for
example). This approach, however, is not suitable for
large distributed systems because the coordinator is an
obvious performance bottleneck that causes poor
scalability and high vulnerability.

2.2 Causality and timestamps

Another way to arbitrate contending access requests
is ordering them by causality, Just as in the human world,
causality is a powerful concept for determining and

analyzing inferences of a distributed computation.
However, there is an important difference: in the human
world we use a global and natural time to deduce
causality, but distributed computing environments have
no global clock. Hence an artificial logical clock scheme
must be used instead for timestamping and ordering
events in a distributed system.

2.2.1 Scalar timestamps

The first timestamp approach was proposed by
Lamport [9]. In this approach, each process PI maintains a
non-negative, monotonically increasing scalar Ti as the
timestamp. Each Pi updates its own timestamp by
executing the following rules:
0 Before executing an event, process Pi updates

Ti=Ti+d (b o) and piggybacks the timestamp onto the
outgoing message;
When a message of timestamp T, is received, Let
Ti=max(Ti, T,,).
The Lamport algorithm requires 3*(n- 1) messages

per request, where n is number of processes. Several
improvements of Lamport's algorithm have been
proposed to reduce the number of messages, including a
2*(n-1) messages per request approach suggested by
Ricart and Agrawala [17'1, an n messages per request one
presented by Suzuki and1 Kasami [I81 with the drawback
that the sequence numbers contained in the message
headers are unboundeld, and an O(A) messages
algorithm proposed by Maekawa [121.

2.2.2 Vector timestamps

Although scalar timestamping is effective and
relatively simple, it is nlot strictly consistent because the
global and local clocks are squashed into one single
integer, losing the dependency relations. A solution to
this problem is to augment the single scalar into a vector
[2, 161. In this scheme, each process P I maintains a non-
negative, monotonically increasing integer vector vt[] as
the timestamp. Each P I updates its own timestamp by
executing the following rules:

Before executing an event, process P I updates
vl[i]=vl[i]+d (d>O) and piggyback the timestamp
vector onto the outgoing message;
When a message or timestamp vt[] is received, let
vtl[k]=max(vtl[k], v t [k]) (Iskinumber of processes).
The direct implementation of vector timestamping

requires at least n spaces of messages for n processors.
Several improvements anld efficient implementations have
been proposed, including Singnal and Kshemkalyani's
differential technique [191, Fowler and Zwaenepoel's

151

dependency technique [4], and Jard-Jourdan's adaptive
approach [5].

2.3 Token-based algorithms

In token-based algorithms, a unique mark (the token)
is shared among the processes. Mutual exclusion is
trivially guaranteed because a process may only enter it's
critical section if it possesses the token. This principle can
be implemented by either broadcasting to other processes
when requesting a token (either to a statically or
dynamically chosen set of nodes) or by deploying a
logical structure on the nodes, which may also be static or
dynamic.

2.3. I Broadcasting algorithms

These kinds of algorithms do not impose a
communication structure on the processes and therefore
must send request messages via broadcasting. These
algorithms may be static or dynamic: static algorithms do
not record the recent location of the token and hence must
broadcast the request to all other processes, while
dynamic algorithms are keeping track of the recent
locations of the token and therefore request messages
may be sent only to possible token owners.

At the first glance, broadcasting should be efficient
because only 1 message is required to inform all nodes.
However, acknowledge responses are indispensable as the
network is unreliable. Therefore, both static and dynamic
broadcasting algorithms require O(n) messages per
synchronization request for an n-node system [20].

2.3.2 Static logical-structured algorithms

To avoid broadcasting overheads, logical-structured
algorithms impose some virtual communication topology
among processes and make the token traverse through
predefined routes. The logical structure can be either
static (fixed) or dynamic. In static approaches, typical
candidates of structure include rings [lo] and trees [15].
In ring based algorithms, the token circulates on the ring
permanently from process to process. This requires O(n)
messages per synchronization request for an n-node
system. Another family of algorithms, the tree based
approaches in which the token travels along the virtual
tree edges, are more complicated yet possibly more
efficient. For example, Raymond [151 proposed a binary-
tree algorithm in which each node keeps a queue to store
pending requests and a pointer (served as a guess of
possible token owner) to its ascendant or one of its
descendants. A request is sent and forwarded through that

pointer, until it reaches the token holder or is blocked and
put into the queue by another requesting node. Each node
will flip the direction of that pointer when the token
walks through. Raymond showed that for an n-node
system, the number of message exchanges is O(1og n) in
general, whereas under high load only four messages are
required per request. Neilsen and Mizuno [13] also
presented a modified Raymond's algorithm that allows the
token to go to the requester directly rather than travel
along the tree edges.

2.3.3 Dynamic algorithms

Alternatively, some synchronization algorithms may
dynamically change their logical communication
topology. Such approaches usually deliver higher
performance by using aggressive path compression
techniques to accelerate the token-locating (which is often
the most time-consuming) phase of the algorithms. The
representative of this algorithm class is the one proposed
by Chang, Singhal and Liu [I] (abbreviated as CSL
algorithm), which is generally the most efficient
algorithm among proposed approaches, to our best
knowledge. For a system of n nodes, the CSL algorithm
generates O(log n) messages per request, and the actual
number of messages are usually far fewer than that
upperbound due to its use of path compression.

The key idea of CSL algorithm is described as
follows. Each node maintains a guess (called dir) of the
possible token owner. If a node neither holding nor
requesting the token receives a request, it forwards this
request to the node indicated by dir, and then sets d i r
to point to the new requester (since it will eventually be
the one which holds the token). When a node requests the
token, it sends a request message to the node indicated by
d i r . It then sets an additional pointer, next, to NIL. If a
node that holds or is waiting for the token receives a
request, and its next pointer is NIL, it sets next to
point to the new requester. Otherwise, it forwards the
request to the node indicated by d i r , and sets d i r to the
requesting node to compress the path. When the token
holder releases the token, it sends the token to the node
pointed to by next, if next is not NIL. Otherwise, the
token holder keeps the token.

There are other dynamic approaches, too. For
example, Johnson and Newman-Wolfe [6, 71 proposed an
algorithm called List-Lock which inserts the new
requesters amid the waiting queue and yields a similar
performance with less than one extra message typically.

3 The optcast distributed synchronization
algorithm

152

In this section we present a dynamic, token-based
distributed synchronization algorithm that is inspired by
the CSL algorithm. We first describe the technical details,
then verify the correctness of our algorithm.

3.1 Algorithm description

to the next pending requester, sets the next pointer to
NIL, and becomes an IDLE node.

OPTCAST

The main feature of our algorithm is the utilization of
the optimistic broadcasting, or optcasting technique. As
we mentioned before, an optcast message is a reliable
unicast message that can also be heard by nodes other
than its designated destination. Since acknowledgement
will not be sent by non-destination nodes, an optcast
message can deliver information to multiple nodes at
exactly the same communication cost of a regular reliable
unicast message. On many popular media such as
Ethernet, fast Ethernet, and wireless communications,
virtually all transmissions can be easily augmented into
optcast ones. Thus, the key issue is to find an appropriate
use of optcasting. Because pending token requesters are
managed by a distributed queue, our algorithm optcasts a
direction towards the current queue end to help new
requesters finding the queue end more quickly.

In our optcast algorithm, each node respectively
keeps two pointers: a dir pointer recording a guess of
the possible token owner, and a next pointer forming a
queue of pending token requesters. Initially, one node is
arbitrarily chosen as the token owner, and all nodes set
their next pointer to NIL and dir pointer to the token
owner, respectively. In addition, each node maintains a
vector timestamp which will be advanced by every
incoming and outgoing messages. In our algorithm, such
a timestamp is not for capturing the global causality; the
actual usage is described later. Any implementation of
vector timestamping mechanism described previously
should be sufficient for our use.

The actions of each node in the system can be
modeled by a finite state machine as depicted in Figure 1.
Each node is in one of four states: IDLE, REQUESTING,
TOKEN, and TOKENIDLE, which represents the state of
idling, requesting the token, using the token, and keeping
the token without locking it up, respectively. When an
IDLE node requests the token, it enters the
REQUESTING state by sending a request message to the
node indicated by dir, setting its next and dir
pointers to NIL, and waiting until the token is received.

Fiqure 1: Finite State Machine of Optcast

Upon receiving a token request from other nodes, the
receiving node takes different moves according to its own
state. If the receiving node is in TOKENIDLE state (i.e.
inactively keeps the tolken), it makes the requester enter
TOKEN state by transferring the token to the requester,
and itself becomes an IDLE node. Otherwise, if the
receiving node is in REQUESTING state and its next
pointer is NIL, it hooks the new requester behind itself by
setting the next pointer to indicate the new requester. In
all other cases, the receiving node forwards this request to
the node indicated by dir. Finally, the receiving node
sets its own dir to indicate the new requester, just as
other path compression algorithms do.

The most important step of our algorithm occurs at
the time of token transFerring. When the token owner at
the waiting queue head has finished its use of the token, it
optcasts its current di jr pointer while passing the token
to the next requester in the queue. This can be done by
appending the dir pointer of the old token owner to the
token message to be optcast. Since an optcast message is
also a reliable unicast message, the next node in the queue
will receive the token, and all other nodes have chances to
hear of the optcast dir of the old token owner. Upon
receiving the optcast message, each non-requesting node
checks if the timestamp of its own dir is older than that
of the old token owner's dir. If so, the node updates its
dir to be the same as tlhe old token owner's dir. Since a
newer timestamp means that the node pointed by the
optcast dir is probably nearer the end of the waiting
queue, such an update can help the future requesters to
find the queue end more: quickly.

When the token arrives, the REQUESTING node enters
the TOKEN state in which it locks up and uses the token
for a period of time (to execute a critical section). After
finishing its use of the token, the node either enters
TOKENIDLE state by keeping the token if there IS no
other pending requester, or passes the token immediately

3.2 Correctness

Theorem 1. The optcmt algorithm guarantees mutual
exclusion.

153

Proof (Sketch). Observe that a requesting processor node
obtains the token if and only if another processor
node (the retired token owner) releases the
ownership of the token. Since there is one and
only one token in the aptcast algorithm, mutual
exclusion is guaranteed.

Theorem 2. The optcast algorithm is deadlock-free.
Proof (Sketch). A deadlock occurs if and only if the

processor nodes are cyclically waiting one
another. Since token requests are propagated in
the direction pointed by the d i r pointers, a
processor P is deadlocked if and only if there
exist 0 or more nodes, say P,, P,,, etc., such that
P + P, 3 Py 3 3 P where 3 represents
the d i r pointer. We show that the optcasting
step in our algorithm never induces such a
waiting cycle. Consider an arbitrary live (not
deadlocked) IDLE node P that just receives an
optcast message indicating a node (say) P in the
waiting queue, while the current queue end is at
node (say) P,. Observe that for every node in the
queue, its d i r pointer is indicating another one
beyond itself and at most as far as the queue end.
Thus we get P 3 P 3 3 P, if P updates it
d i r pointer. Since &e d i r pointer of node P, is
NIL, we conclude that cyclic waiting will never
occur, and the system is deadlock-free as all
nodes are initially live.

Remark. In fact, our optcast algorithm is still deadlock-
free even if the d i r pointer of the queue end is
not NIL. We make such an arrangement because
it greatly simplifies the proof work.

4 .

4 Performance analysis

In this section we present performance results of our
optcast algorithm versus previous token-based
algorithms. We first describe the methodology of our
study, then present the performance results as well as
associated analyses and discussions.

4.1 Methodology

To investigate the effectiveness of the optcasting
technique, we conducted a simulation study for both our
optcast algorithm and previous non-optcast algorithms.
The algorithm we choose as the contrast is the CSL
algorithm. the most efficient algorithm among previous
approaches under most circumstances. Our simulator
models several processor connected by a common
network medium with the following assumptions:
e The network medium is not segmented, allowing

every node in the system to hear of every

transmission on the network without extra
communication cost. That is, there is no gateway,
switching hub, or any other facility to split the
network. If two or more nodes initiate transmission at
the same time, all of them must rollback and
reinitiate transmission later, just as in Ethernet.
The network is reliable and error-free; however, each
node i s subject to lose inbound messages
independently. That is, one message may be caught
by some nodes while being omitted by others.

a Acknowledgement is necessary for reliable
transmissions. That is, each unicast transmission
contains two messages (if there is no message loss
and retransmission). The purpose of this assumption
is to simulate the TCP transmission in TCPDP-based
network environment.
The simulator we constructed is controlled by the

following parameters:
a The number of processor nodes on the network;
0 The message transmission delay (mean value 1 clock

tick);
0 The token lockup time and the idle time between two

synchronization periods (explained below); and
a The individual loss rate of a message for each node.

Note that since the degree of overhead of a specific
algorithm is difficult to measure, it is improper to assume
that different algorithms have the same token lockup and /
or idle time. To address this problem, we take a concept
found in the literature [6] by defining a load factor L to
be L=n*(C/R) where n is the number of processors, C is
the token lockup (critical section execution) time, and R
is the idle time between two synchronization periods. In
this work we fix C=10 time ticks and let R be randomly
decided (with the average that matches a given load
factor). Note that the load factor can be greater than 1 in
our scheme, which means that there will be some nodes to
be expected to wait in the pending queue for the token.

e

4.2 Results and analyses

In our study we simulate four different levels of load
factors: one light-weight (75%), two medium-weight
(100% and 125%), and one heavy-weight (150%), for
varying numbers of processors and loss rates. The results
are depicted in Figures 2 to 5. From those results we first
noticed that the CSL algorithm delivers near 12 messages
for 256 processors in all lossless cases. Since in our
simulation one message becomes two because of one
acknowledgement (if no retransmission occurs), this
result is consistent with earlier results in the literature
where the CSL algorithm requires about 5 to 6 messages
per request for about several hundreds of processors.

154

When the load factor is low (Figure Z), we find that
the optcast algorithm performs marginally better than the
CSL algorithm, reducing up to 10% of messages for large
number of processors in the lossless case. When there are
only few processors, the optcast performs virtually the
same as the CSL algorithm does. Since fewer processors
means a shorter waiting queue (i.e. fewer pending
requesters), our optcast algorithm only gets little
advantage from finding the queue end more quickly.
Fortunately, optcasting does not increase the number of
messages at all, which means that the optcast algorithm
generates at most as many messages as the CSL
algorithm.

The scenarios are totally different for medium- to
heavy-weight load factors. From Figures 3 to 5 , we find
that our optcast algorithm yields large performance gains
over the CSL algorithm, reducing up to 36% of messages
for large numbers of processors in the lossless case.
Moreover, we observed that while the CSL algorithm is
delivering consistent performance under different load
factors, the optcast algorithm performs better when the
load factor is increasing. Since a higher load factor means
a longer waiting queue, it is reasonable that the optcast
algorithms get more advantage from finding the queue
end more quickly.

We also observed that the optcast algorithm is quite
resistant to message loss. While both algorithms are
generating more messages, the performance improvement
of the optcast algorithm over the CSL algorithm
decreases very little (3 to 5 percents). This phenomenon
is very interesting because it is opposite to the common
sense, and is worth to be further investigated, which is the
subject of the next subsection.

80% LOSS, dptcast
Loseless. CSL

Loseless, Optcast

No. of Processors

Figure 3: Simulating results (Load=100%)

s CSL
dptcast
SL
cast

No. of Processors

Figure 4: Simulating results (Load=l25%)

s CSL
dptcast
SL
cast

No. of Processors

Figure 5: Simuliating result (Load=l50%)

No. of Processors
Figure 2: Simulating results (Load=75%)

4.3 Robustness of optcasting

155

Intuitively, the optcast algorithm would be very
sensitive to message loss because there is no way to tell if
an optcast message has been ever heard by nodes other
than its designated destination. However, our simulation
results show that optcasting is more robust than it looks.
Here we explain the reason of this phenomenon.

Assume the message loss rate of each node is P . That
is, the expected number of transmissions of a message to
be delivered reliably is

1
1 - P

This is applicable to optcast messages since an
optcast transmission i y also a reliable unicast
transmission. Thus for a non-destination processor node,
the probability of missing all transmissions of an optcast
message is

PII(l-p) (2)

II(1-P) . Since O<P<l, the maximum of P IS e-' which
occurs when P approaches 1. That is, any optcast
message will be ever received by at lease 1- e", or about
63% of all processors, even under the worst
circumstances where the probability of losing a message
is near 100%. That is the reason why optcasting is highly
robust and resistant to harsh communication
environments. Note that if we assume the nodes are
reliable and the network is subject to lose messages, an
optcast message will be heard by all nodes in a successful
transmission, and the optcast coverage is clearly loo%,
better than the scenario shown above.

5 Conclusions and future works

We have presented a new technique, the optcasting,
for optimizing dynamic token-based distributed
synchronization algorithms. We observe that:
0 Optcasting is very effective especially for large

distributed systems with many processor nodes and
high synchronization loads, yielding up to 36%
performance improvement over the already fast CSL
algorithm. Moreover, optcasting is always beneficial
because optcasting never induces extra of
communication messages.
Optcasting is highly robust and quite resistant to
message loss. Even on systems where the message
loss rate approaches loo%, the coverage of any
optcast transmission is at least about 63%.
In the near future we will investigate the influence of

segmented networks. Also, we want to apply optcasting
to other distributed algorithms.

0

6 References
[l] Y.I. Chang et al., An Improved O(log(n)) Mutual

Exclusion Algorithm for Distributed Systems, Proceedings

[2] C . Fidge, Logical Time in Distributed Computing Systems,
Computer, 24(8), Aug. 1991, pp. 28-33.

[3] Sally Floyd et al., A Reliable Multicast Framework for
Light-weight Sessions and Application Level Framing,
ACM SIGCOMM 1995, pp. 342-356.

[4] J. Fowler et al., Causal Distributed Breakpoints, Proc. Of
1990 ICDCS, 1990, pp. 134-141.

[5] C. Jard et al., Dependency Tracking and Filtering in
Distributed Computation, Tech. Report No. 851, IRISA,
Beaulieu, France.

[6] Theodore Johnson, A Performance Comparison of Fast
Distributed Synchronization Algorithms, Tech. Report
TR94-032, Dept. of CIS, Univ. of Florida, 1994.

[7] Theodore Johnson et al., A Comparison of Fast and Low
Overhead Distributed Priority Locks, JPDC, 32(l), Jan.

[8] Vinay Kumar, Mbone: Interactive Multimedia on the
hternet, Macmillan Publishing, Nov. 1995.

[9] L. Lamport, Time, Clocks, and the Ordering of Events in a
Distributed System, CACM, 21(7), 1978, pp. 558-564.

[lo] G. Le Lann, Distributed Systems-Towards a Formal
Approach, Proc. IFlP Congress, Toronto, North-Holland
Publishing, pp. 155-160.

[111 M.R, Macedonia et al., MBone Provides Audio and Video
Across the Internet, Computer, Apr. 1994, pp. 30-36.

121 M. Maekawa, A Sqrt(n) Algorithm for Mutual Exclusion in
Decentralized Systems, ACM Transactions on Computer
Systems, 3(2), pp. 145-159, May 1985

131 M. L Neilsen et al., A DAG-Based Algorithm for
Distributed Mutual Exclusion, Proc. Of 1991 ICDCS, pp.

141 M. Ramachandran, M. Singhal: On the Synchronization
Mechanisms in Distributed Shared Memory Systems,
Technical Report OSU-CISRC- 10/94-TR54,1994.

[15] K. Raymond, A Tree-Based Algorithm for Distributed
Mutual Exclusion, ACM Trans. On Computer Systems,

[16] M. Raynel et al,. Logical Time: Capturing Causality in
Distributed Systems, Computer, Feb. 1996, pp. 49-56.

[17] G. Ricart et al., An Optimal Algorithm For Mutual
Exclusion in Computer Networks, CACM, 24(1), Jan.

[18] I. Suzuki et al., A Distributed Mutual Exclusion Algorithm,
ACM Transaction on Computer Systems, 3(4), 1985, pp.
344-349.

I191 M. Sinnhal et al., An Efficient Implementation of Vector

of 1990 lCPP, pp. 111295-302.

1996, pp. 74-89.

354-360.

7(1), 1989, pp. 61-77.

1981, pp. 9-17.

Clocks, Information Processing Letters, Vol. 43, Aug
1992, pp. 47-52.

[20] M. Singhal: A Taxonomy of Distributed Mutual Exclusion,
JPDC, Vol. 18, 1993, pp. 94-101.

[21] A. Tananbaum et al., Parallel Programming Using Shared
Objects and Broadcasting, Computer, 25(8), Aug. 1992,
pp. 10-20.

156

