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Abstract 

In this paper we propose a new dynamic token-based 
distributed synchronization algorithm that utilizes a new 
technique called optimistic broadcasting (optcasting) to 
improve efficiency. Briefly, an optcast message is a 
reliable unicast one that can also be heard by nodes other 
than its designated destination. Our algorithm manages 
pending token requesters by a distributed queue, and 
optcasts a direction towards the current queue end to 
help new requesters finding the queue end more quickly. 
Simulated experimental results indicate that our optcast 
algorithm outpelforms the already fast Chang-Singhal- 
Liu (CSL) algorithm by up to 36%, especially for large 
systems of many processor nodes and under high 
synchronization loads. In addition, optcasting is highly 
robust and resistant to message loss, retaining at least 
63% coverage even when the message loss, rate 
approaches 100%. 

1 Introduction 

Synchronization is one of the most fundamental and 
vital activities in distributed computation. A distributed 
computation consists of several concurrent processes that 
cooperate for a common goal. During the computation, 
processes may contend for some resources that must be 
used exclusively. If these competing processes were not 
well coordinated, the final computation result is 
unpredictable and probably incorrect. To avoid such a 
situation, a process must enter a critical section (i.e. 
synchronize with others) to obtain an exclusive privilege 
of access to those resources; such a privilege can be 
represented by holding a unique token, being granted 
permission globally, positioning first in a total ordering, 
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and so on. Because synchronization plays such an 
important role in distributed computing, many researchers 
have been devoted to develop efficient distributed 
synchronization algorithms. 

In this paper we present a new technique called 
optcasting (which stands for optimistic broadcasting) for 
optimizing token-based distributed synchronization 
algorithms. Unlike reliable broadcasting / multicasting [ 3 ,  
211 or lossy multicasting [8, 111, an opfcast message is a 
reliable unicast message that can also be heard by nodes 
other than its designated destination. It is optimistic in the 
sense that while acknowledgement from the destination 
node is required, other receiving nodes need not send 
back any response. Note that an optcast message can 
deliver information to multiple nodes without any extra 
communication traffic than a regular reliable unicast 
message. Therefore, optcast is most useful under the 
circumstances that spreading certain information is 
beneficial but not obligatory; that is, such information can 
be promptly used by networked computers which have 
optcast copies, while the original one is still accessible 
via a less efficient route. 

We propose a new token-based dynamic distributed 
synchronization algorithm that utilizes optcasting. In our 
algorithm a distributed queue is used to manage pending 
token requesters. In addition, each node maintains a guess 
of the probable token owner. If a node wishes to get the 
token, it sends the request to the probable owner first. The 
request will be forwarded elsewhere in the same pattern 
until either it is put at the end of the requesting queue, or 
the token is found eventually. Clearly, since a more 
accurate guess of the probable owner means fewer 
forwarding steps and higher synchronization efficiency, 
the information related to the token position is a good 
candidate of optcasting. Indeed, our approach optcasts a 
direction towards the current queue end to help new 
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requesters finding the queue end more quickly. Our 
simulation results indicate that this technique is very 
efficient especially for large systems with many processor 
nodes and under heavy synchronization conditions, 
reducing up to 36% of messages of previous dynamic 
algorithms [l, 61 which have already achieved very good 
performance. Furthermore, by mathematical analysis we 
find that optcasting is highly robust and resistant to 
message loss, retaining at least 63% coverage even when 
the message loss rate approaches 100%. This is also 
supported by simulation results in which the performance 
gain over earlier algorithms only slightly degrades by 3 to 
5 percents under 60% message loss. 

The remainder of this paper is organized as follows. 
In Section 2 we survey previous approaches of distributed 
synchronization. Section 3 describes the technical details 
of our optcast dynamic synchronization algorithm. 
Section 4 presents simulated performance results of our 
optcast algorithm. Finally, conclusions and future works 
are summarized in Section 5. 

2 Previous researches 

This section summarizes previous distributed 
synchronization approaches. Some excellent overviews 
on these different approaches can be found in the 
literature [14, 16, 201. 

2.1 Centralized approach 

The most straightforward way to achieve mutual 
exclusion in a distributed environment is to let one single 
node handle all synchronization requests. This can be 
done by assigning one dedicated node as the coordinator 
to arbitrate synchronization requests from other nodes. 
Each process that wants to execute in the critical section 
sends a request to the coordinator. When the node 
receives a reply from the coordinator, it can proceed and 
enter the critical section. 

Clearly this approach guarantees mutual exclusion. 
Also, no starvation will occur if the scheduling policy 
within the coordinator is fair (first-come-first-serve, for 
example). This approach, however, is not suitable for 
large distributed systems because the coordinator is an 
obvious performance bottleneck that causes poor 
scalability and high vulnerability. 

2.2 Causality and timestamps 

Another way to arbitrate contending access requests 
is ordering them by causality, Just as in the human world, 
causality is a powerful concept for determining and 

analyzing inferences of a distributed computation. 
However, there is an important difference: in the human 
world we use a global and natural time to deduce 
causality, but distributed computing environments have 
no global clock. Hence an artificial logical clock scheme 
must be used instead for timestamping and ordering 
events in a distributed system. 

2.2.1 Scalar timestamps 

The first timestamp approach was proposed by 
Lamport [9]. In this approach, each process PI maintains a 
non-negative, monotonically increasing scalar Ti as the 
timestamp. Each Pi  updates its own timestamp by 
executing the following rules: 
0 Before executing an event, process Pi updates 

Ti=Ti+d ( b o )  and piggybacks the timestamp onto the 
outgoing message; 
When a message of timestamp T, is received, Let 
Ti=max(Ti, T,,). 
The Lamport algorithm requires 3*(n- 1) messages 

per request, where n is number of processes. Several 
improvements of Lamport's algorithm have been 
proposed to reduce the number of messages, including a 
2*(n-1) messages per request approach suggested by 
Ricart and Agrawala [ 17'1, an n messages per request one 
presented by Suzuki and1 Kasami [ I81 with the drawback 
that the sequence numbers contained in the message 
headers are unboundeld, and an O( A) messages 
algorithm proposed by Maekawa [ 121. 

2.2.2 Vector timestamps 

Although scalar timestamping is effective and 
relatively simple, it is nlot strictly consistent because the 
global and local clocks are squashed into one single 
integer, losing the dependency relations. A solution to 
this problem is to augment the single scalar into a vector 
[2, 161. In this scheme, each process P I  maintains a non- 
negative, monotonically increasing integer vector vt[] as 
the timestamp. Each P I  updates its own timestamp by 
executing the following rules: 

Before executing an event, process P I  updates 
vl[i]=vl[i]+d (d>O) and piggyback the timestamp 
vector onto the outgoing message; 
When a message or timestamp vt[] is received, let 
vtl[k]=max(vtl[k], v t [ k ] )  (Iskinumber of processes). 
The direct implementation of vector timestamping 

requires at least n spaces of messages for n processors. 
Several improvements anld efficient implementations have 
been proposed, including Singnal and Kshemkalyani's 
differential technique [ 191, Fowler and Zwaenepoel's 
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dependency technique [4], and Jard-Jourdan's adaptive 
approach [5]. 

2.3 Token-based algorithms 

In token-based algorithms, a unique mark (the token) 
is shared among the processes. Mutual exclusion is 
trivially guaranteed because a process may only enter it's 
critical section if it possesses the token. This principle can 
be implemented by either broadcasting to other processes 
when requesting a token (either to a statically or 
dynamically chosen set of nodes) or by deploying a 
logical structure on the nodes, which may also be static or 
dynamic. 

2.3. I Broadcasting algorithms 

These kinds of algorithms do not impose a 
communication structure on the processes and therefore 
must send request messages via broadcasting. These 
algorithms may be static or dynamic: static algorithms do 
not record the recent location of the token and hence must 
broadcast the request to all other processes, while 
dynamic algorithms are keeping track of the recent 
locations of the token and therefore request messages 
may be sent only to possible token owners. 

At the first glance, broadcasting should be efficient 
because only 1 message is required to inform all nodes. 
However, acknowledge responses are indispensable as the 
network is unreliable. Therefore, both static and dynamic 
broadcasting algorithms require O(n) messages per 
synchronization request for an n-node system [20]. 

2.3.2 Static logical-structured algorithms 

To avoid broadcasting overheads, logical-structured 
algorithms impose some virtual communication topology 
among processes and make the token traverse through 
predefined routes. The logical structure can be either 
static (fixed) or dynamic. In static approaches, typical 
candidates of structure include rings [lo] and trees [15]. 
In ring based algorithms, the token circulates on the ring 
permanently from process to process. This requires O(n) 
messages per synchronization request for an n-node 
system. Another family of algorithms, the tree based 
approaches in which the token travels along the virtual 
tree edges, are more complicated yet possibly more 
efficient. For example, Raymond [ 151 proposed a binary- 
tree algorithm in which each node keeps a queue to store 
pending requests and a pointer (served as a guess of 
possible token owner) to its ascendant or one of its 
descendants. A request is sent and forwarded through that 

pointer, until it reaches the token holder or is blocked and 
put into the queue by another requesting node. Each node 
will flip the direction of that pointer when the token 
walks through. Raymond showed that for an n-node 
system, the number of message exchanges is O(1og n) in 
general, whereas under high load only four messages are 
required per request. Neilsen and Mizuno [13] also 
presented a modified Raymond's algorithm that allows the 
token to go to the requester directly rather than travel 
along the tree edges. 

2.3.3 Dynamic algorithms 

Alternatively, some synchronization algorithms may 
dynamically change their logical communication 
topology. Such approaches usually deliver higher 
performance by using aggressive path compression 
techniques to accelerate the token-locating (which is often 
the most time-consuming) phase of the algorithms. The 
representative of this algorithm class is the one proposed 
by Chang, Singhal and Liu [ I ]  (abbreviated as CSL 
algorithm), which is generally the most efficient 
algorithm among proposed approaches, to our best 
knowledge. For a system of n nodes, the CSL algorithm 
generates O(log n)  messages per request, and the actual 
number of messages are usually far fewer than that 
upperbound due to its use of path compression. 

The key idea of CSL algorithm is described as 
follows. Each node maintains a guess (called dir) of the 
possible token owner. If a node neither holding nor 
requesting the token receives a request, it forwards this 
request to the node indicated by dir, and then sets d i r  
to point to the new requester (since it will eventually be 
the one which holds the token). When a node requests the 
token, it sends a request message to the node indicated by 
d i r .  It then sets an additional pointer, next, to NIL. If a 
node that holds or is waiting for the token receives a 
request, and its next pointer is NIL, it sets next to 
point to the new requester. Otherwise, it forwards the 
request to the node indicated by d i r ,  and sets d i r  to the 
requesting node to compress the path. When the token 
holder releases the token, it sends the token to the node 
pointed to by next, if next is not NIL. Otherwise, the 
token holder keeps the token. 

There are other dynamic approaches, too. For 
example, Johnson and Newman-Wolfe [6, 71 proposed an 
algorithm called List-Lock which inserts the new 
requesters amid the waiting queue and yields a similar 
performance with less than one extra message typically. 

3 The optcast distributed synchronization 
algorithm 
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In this section we present a dynamic, token-based 
distributed synchronization algorithm that is inspired by 
the CSL algorithm. We first describe the technical details, 
then verify the correctness of our algorithm. 

3.1 Algorithm description 

to the next pending requester, sets the next pointer to 
NIL, and becomes an IDLE node. 

OPTCAST 

The main feature of our algorithm is the utilization of 
the optimistic broadcasting, or optcasting technique. As 
we mentioned before, an optcast message is a reliable 
unicast message that can also be heard by nodes other 
than its designated destination. Since acknowledgement 
will not be sent by non-destination nodes, an optcast 
message can deliver information to multiple nodes at 
exactly the same communication cost of a regular reliable 
unicast message. On many popular media such as 
Ethernet, fast Ethernet, and wireless communications, 
virtually all transmissions can be easily augmented into 
optcast ones. Thus, the key issue is to find an appropriate 
use of optcasting. Because pending token requesters are 
managed by a distributed queue, our algorithm optcasts a 
direction towards the current queue end to help new 
requesters finding the queue end more quickly. 

In our optcast algorithm, each node respectively 
keeps two pointers: a dir pointer recording a guess of 
the possible token owner, and a next pointer forming a 
queue of pending token requesters. Initially, one node is 
arbitrarily chosen as the token owner, and all nodes set 
their next pointer to NIL and dir pointer to the token 
owner, respectively. In addition, each node maintains a 
vector timestamp which will be advanced by every 
incoming and outgoing messages. In our algorithm, such 
a timestamp is not for capturing the global causality; the 
actual usage is described later. Any implementation of 
vector timestamping mechanism described previously 
should be sufficient for our use. 

The actions of each node in the system can be 
modeled by a finite state machine as depicted in Figure 1. 
Each node is in one of four states: IDLE, REQUESTING, 
TOKEN, and TOKENIDLE, which represents the state of 
idling, requesting the token, using the token, and keeping 
the token without locking it up, respectively. When an 
IDLE node requests the token, it enters the 
REQUESTING state by sending a request message to the 
node indicated by dir, setting its next and dir 
pointers to NIL, and waiting until the token is received. 

Fiqure 1: Finite State Machine of Optcast 

Upon receiving a token request from other nodes, the 
receiving node takes different moves according to its own 
state. If the receiving node is in TOKENIDLE state (i.e. 
inactively keeps the tolken), it makes the requester enter 
TOKEN state by transferring the token to the requester, 
and itself becomes an IDLE node. Otherwise, if the 
receiving node is in REQUESTING state and its next 
pointer is NIL, it hooks the new requester behind itself by 
setting the next pointer to indicate the new requester. In 
all other cases, the receiving node forwards this request to 
the node indicated by dir. Finally, the receiving node 
sets its own dir to indicate the new requester, just as 
other path compression algorithms do. 

The most important step of our algorithm occurs at 
the time of token transFerring. When the token owner at 
the waiting queue head has finished its use of the token, it 
optcasts its current di jr pointer while passing the token 
to the next requester in the queue. This can be done by 
appending the dir pointer of the old token owner to the 
token message to be optcast. Since an optcast message is 
also a reliable unicast message, the next node in the queue 
will receive the token, and all other nodes have chances to 
hear of the optcast dir of the old token owner. Upon 
receiving the optcast message, each non-requesting node 
checks if the timestamp of its own dir is older than that 
of the old token owner's dir. If so, the node updates its 
dir to be the same as tlhe old token owner's dir. Since a 
newer timestamp means that the node pointed by the 
optcast dir is probably nearer the end of the waiting 
queue, such an update can help the future requesters to 
find the queue end more: quickly. 

When the token arrives, the REQUESTING node enters 
the TOKEN state in which it locks up and uses the token 
for a period of time (to execute a critical section). After 
finishing its use of the token, the node either enters 
TOKENIDLE state by keeping the token if there IS no 
other pending requester, or passes the token immediately 

3.2 Correctness 

Theorem 1. The optcmt algorithm guarantees mutual 
exclusion. 
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Proof (Sketch). Observe that a requesting processor node 
obtains the token if and only if another processor 
node (the retired token owner) releases the 
ownership of the token. Since there is one and 
only one token in the aptcast algorithm, mutual 
exclusion is guaranteed. 

Theorem 2. The optcast algorithm is deadlock-free. 
Proof (Sketch). A deadlock occurs if and only if the 

processor nodes are cyclically waiting one 
another. Since token requests are propagated in 
the direction pointed by the d i r  pointers, a 
processor P is deadlocked if and only if there 
exist 0 or more nodes, say P,, P,,, etc., such that 
P + P, 3 Py 3 .... 3 P where 3 represents 
the d i r  pointer. We show that the optcasting 
step in our algorithm never induces such a 
waiting cycle. Consider an arbitrary live (not 
deadlocked) IDLE node P that just receives an 
optcast message indicating a node (say) P in the 
waiting queue, while the current queue end is at 
node (say) P,. Observe that for every node in the 
queue, its d i r  pointer is indicating another one 
beyond itself and at most as far as the queue end. 
Thus we get P 3 P 3 .... 3 P, if P updates it 
d i r  pointer. Since &e d i r  pointer of node P, is 
NIL, we conclude that cyclic waiting will never 
occur, and the system is deadlock-free as all 
nodes are initially live. 

Remark. In fact, our optcast algorithm is still deadlock- 
free even if the d i r  pointer of the queue end is 
not NIL. We make such an arrangement because 
it greatly simplifies the proof work. 

4 .  

4 Performance analysis 

In this section we present performance results of our 
optcast algorithm versus previous token-based 
algorithms. We first describe the methodology of our 
study, then present the performance results as well as 
associated analyses and discussions. 

4.1 Methodology 

To investigate the effectiveness of the optcasting 
technique, we conducted a simulation study for both our 
optcast algorithm and previous non-optcast algorithms. 
The algorithm we choose as the contrast is the CSL 
algorithm. the most efficient algorithm among previous 
approaches under most circumstances. Our simulator 
models several processor connected by a common 
network medium with the following assumptions: 
e The network medium is not segmented, allowing 

every node in the system to hear of every 

transmission on the network without extra 
communication cost. That is, there is no gateway, 
switching hub, or any other facility to split the 
network. If two or more nodes initiate transmission at 
the same time, all of them must rollback and 
reinitiate transmission later, just as in Ethernet. 
The network is reliable and error-free; however, each 
node i s  subject to lose inbound messages 
independently. That is, one message may be caught 
by some nodes while being omitted by others. 

a Acknowledgement is necessary for reliable 
transmissions. That is, each unicast transmission 
contains two messages (if there is no message loss 
and retransmission). The purpose of this assumption 
is to simulate the TCP transmission in TCPDP-based 
network environment. 
The simulator we constructed is controlled by the 

following parameters: 
a The number of processor nodes on the network; 
0 The message transmission delay (mean value 1 clock 

tick); 
0 The token lockup time and the idle time between two 

synchronization periods (explained below); and 
a The individual loss rate of a message for each node. 

Note that since the degree of overhead of a specific 
algorithm is difficult to measure, it is improper to assume 
that different algorithms have the same token lockup and / 
or idle time. To address this problem, we take a concept 
found in the literature [6] by defining a load factor L to 
be L=n*(C/R) where n is the number of processors, C is 
the token lockup (critical section execution) time, and R 
is the idle time between two synchronization periods. In 
this work we fix C=10 time ticks and let R be randomly 
decided (with the average that matches a given load 
factor). Note that the load factor can be greater than 1 in 
our scheme, which means that there will be some nodes to 
be expected to wait in the pending queue for the token. 

e 

4.2 Results and analyses 

In our study we simulate four different levels of load 
factors: one light-weight (75%), two medium-weight 
(100% and 125%), and one heavy-weight (150%), for 
varying numbers of processors and loss rates. The results 
are depicted in Figures 2 to 5. From those results we first 
noticed that the CSL algorithm delivers near 12 messages 
for 256 processors in all lossless cases. Since in our 
simulation one message becomes two because of one 
acknowledgement (if no retransmission occurs), this 
result is consistent with earlier results in the literature 
where the CSL algorithm requires about 5 to 6 messages 
per request for about several hundreds of processors. 
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When the load factor is low (Figure Z), we find that 
the optcast algorithm performs marginally better than the 
CSL algorithm, reducing up to 10% of messages for large 
number of processors in the lossless case. When there are 
only few processors, the optcast performs virtually the 
same as the CSL algorithm does. Since fewer processors 
means a shorter waiting queue (i.e. fewer pending 
requesters), our optcast algorithm only gets little 
advantage from finding the queue end more quickly. 
Fortunately, optcasting does not increase the number of 
messages at all, which means that the optcast algorithm 
generates at most as many messages as the CSL 
algorithm. 

The scenarios are totally different for medium- to 
heavy-weight load factors. From Figures 3 to 5 ,  we find 
that our optcast algorithm yields large performance gains 
over the CSL algorithm, reducing up to 36% of messages 
for large numbers of processors in the lossless case. 
Moreover, we observed that while the CSL algorithm is 
delivering consistent performance under different load 
factors, the optcast algorithm performs better when the 
load factor is increasing. Since a higher load factor means 
a longer waiting queue, it is reasonable that the optcast 
algorithms get more advantage from finding the queue 
end more quickly. 

We also observed that the optcast algorithm is quite 
resistant to message loss. While both algorithms are 
generating more messages, the performance improvement 
of the optcast algorithm over the CSL algorithm 
decreases very little ( 3  to 5 percents). This phenomenon 
is very interesting because it is opposite to the common 
sense, and is worth to be further investigated, which is the 
subject of the next subsection. 

80% LOSS, dptcast 
Loseless. CSL 

Loseless, Optcast 

No. of Processors 

Figure 3: Simulating results (Load=100%) 

s CSL 
dptcast 
SL 
cast 

No. of Processors 

Figure 4: Simulating results (Load=l25%) 

s CSL 
dptcast 
SL 
cast 

No. of Processors 

Figure 5: Simuliating result (Load=l50%) 

No. of Processors 
Figure 2: Simulating results (Load=75%) 

4.3 Robustness of optcasting 
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Intuitively, the optcast algorithm would be very 
sensitive to message loss because there is no way to tell if 
an optcast message has been ever heard by nodes other 
than its designated destination. However, our simulation 
results show that optcasting is more robust than it looks. 
Here we explain the reason of this phenomenon. 

Assume the message loss rate of each node is P .  That 
is, the expected number of transmissions of a message to 
be delivered reliably is 

1 
1 - P  

This is applicable to optcast messages since an 
optcast transmission i y  also a reliable unicast 
transmission. Thus for a non-destination processor node, 
the probability of missing all transmissions of an optcast 
message is 

PII(l-p) (2) 

II(1-P) . Since O<P<l, the maximum of P IS e-' which 
occurs when P approaches 1. That is, any optcast 
message will be ever received by at lease 1- e", or about 
63% of all processors, even under the worst 
circumstances where the probability of losing a message 
is near 100%. That is the reason why optcasting is highly 
robust and resistant to harsh communication 
environments. Note that if we assume the nodes are 
reliable and the network is subject to lose messages, an 
optcast message will be heard by all nodes in a successful 
transmission, and the optcast coverage is clearly loo%, 
better than the scenario shown above. 

5 Conclusions and future works 

We have presented a new technique, the optcasting, 
for optimizing dynamic token-based distributed 
synchronization algorithms. We observe that: 
0 Optcasting is very effective especially for large 

distributed systems with many processor nodes and 
high synchronization loads, yielding up to 36% 
performance improvement over the already fast CSL 
algorithm. Moreover, optcasting is always beneficial 
because optcasting never induces extra of 
communication messages. 
Optcasting is highly robust and quite resistant to 
message loss. Even on systems where the message 
loss rate approaches loo%, the coverage of any 
optcast transmission is at least about 63%. 
In the near future we will investigate the influence of 

segmented networks. Also, we want to apply optcasting 
to other distributed algorithms. 

0 
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