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ABSTRACT

Discrete Hartley transform (DHT) is an
important tool in digital signal processing. In this
present paper, we propose a novel approach to
perform DHT. We transform DHT into a form
expressed in discrete moments via a modular
mapping and truncating Taylor series expansion
and present a completely new formula for
computing DHT. We extend the use of our systolic
array for fast computation of moments without any
multiplications to one that computes DHT with only
a few multiplications and without any evaluations
of triangular functions. The multiplication number
used  in  our  method is  O(NlogJVAog,logJV)
superior to O(NlogJV) in the conventional FDT.
The execution time of the systolic array is only
O(NlogflAog,logJV for 1-D DHT and O(Nk) for k-
D DHT(k2). The systolic array consists of very
simple processing elements and hence it implies an
easy and potential hardwareNLS1  implementation.
The approach is also applicable to DHT inverses.

1: Introduction

Discrete Hartley transform (DHT) is widely
used in signal processing [l-3]. DHT maps a real-
valued sequence to a real-valued spectrum while
preserving some of the useful properties of the DFT
and is a powerful tool as a substitute to the FIT for
computing cyclic convolutions of real data [4-61.
There have been many papers reporting the
development with the fast DHT [7-91.

On the other hand, computer vision and image
analysis have propelled the advancement of fast
computation of discrete moments (DM) [IO-l 31.
These two research threads have been developed
independently. Up to now, no fast algorithms
proposed for DHT have some connections with
moments.

In this paper, we first construct the bridge
between DHT and discrete moments (DM) by a
modular mapping and making use of Taylor
expansions and hence we can transform DHT into
computation involving moments. We also discuss
the problems of convergence and errors. Based on
our approach to the fast calculation of moments
[lo], a new systolic array to perform 1-D DHT is
presented, followed by a complexity analysis.
Finally, we give our conclusions.

2: Using moments to computing

The discrete Hartley transform (DHT) is
defined for a real valued length-N sequence x(n) (0
G&N-l),  by the following equations:

N-1
X(k)=~x(n)cas(2nnklN)

n=0N-l
= ~x(n)(cos@mk  I N) + sin(2rmk  I N))

O<k<N-  1 (2.1)
Let us transform Equation (2.1) to look for a

new approach to computing it. For every pair of k
and i (i, k=O, 1, 2, . . . . . . . . . N-l), and defining S(k,  i)
by

S(k,  i)=( n I kn=i  (mod N) OlnlN-1 }
then defining xk, i (i, k=O, 1, 2, . . . . . . . . . N-l) by
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,.:6(j) Ski) f 4
X1,, = N-I

0 orherwise. + gxr.sin(5.,., + (P + l)n)(2m’/  NY /(2p + 2)

i,k=O, I,2 ) . . . . . ...) N-l (2.2)
For example, for N=4,  For example,

Soe=(O,  1,2,3},  soi= s02=  s03=@;
s, o={O],  S11={  11, s, 2=(21, S13={3);

&O=(O,  21, %I=@),  f322={1,  3], s23=@;
s3o=(O),s31=13},s32={2),s33={1}.
xoo=x(0)+x(  1)+x(2)+x(3),  xol=O, x0*=0,  xo3=O;
x10=  x(O), x11= x(l), x12= x(2), x13=x(3);
X20=X(0)+X(2),  X*1=0,  X22=X(  1)+X(3),  X23=0;
X30=X(O),  X31=X(3),  X32= X(2), X33=X(  1).
Thus, by using the periodic properties of sine

functions and cosine functions, Equation (2.1) can
be rewritten as follows:

X(k)=~Xk,i(~os(~/N)+sin(2d/N))  OlklN-1  (2.3),iD
For OS&N-  1

(2.4)
This follows immediately by applying the theorem
of extended law of the mean [ 141  to cos(2JQ/N)  and
sin(27C/N),  where Ri is Taylor remainder term.
Substituting them into Equation (2.3),  yields

N-I
X(k) = x‘,O+  ~xr.,~[(-1)‘(27Ti/  N)z’/(2r)!+li, r=0

(-1)‘(2ti/  N)*‘+‘/(2r  + I)!]+ Rp

= x,,,+~~(-1)‘(2~)“/N”(2r)!~x~,,iz’+

~(-1)‘(2x)*‘+‘/N”t1(2~  + @x,,.i”+‘+  R,

= XL.~ + za,mt., + R,
r=o

Where
OlklN- 1 (2.5)

(-1)q(2n)‘q/N’p(2q)! r = 2q
(-t)‘(2~)‘P+‘/N2q+‘(2q  + t)! r = 2q + 1

o I q I p (2.6)

N-l

m,,, = 5 xk,, i’ (2.7)
N-l

R, = ;x,,[COSc_,  + (2p+  l)7C/2)(ti/N)‘p”/(2p  + l)kt

sin(tS,“,  + (p + l)n)(k/  N)“”  l(2p + 2)!]

O<L,.L,<~/N

(2.8)
If R, is ignored, we have

X(k)=x,,+ za, m,,, OlklN- 1 (2.9)

The absolute value of the error introduced by
overlooking R, is bounded by

I maxlx(n)l(N  - 1)[(2~)~~‘~/(2p  + 1)!+(2~)*p’z/(2p  + 2)!]
n

(2.10)
From the inequality above, it is clearly shown that
R, converges to zero very rapidly and uniformly.
For example, for max 1 x(n) 1 5256,  (O<n<N-1),  N<

2048’ ‘=ll’R  1 <5.l3j(lO-7
This error c$ satisfy accuracy requirements of
most applications by computing only thirty-six
terms.

Furthermore, we can prove that the least upper
bound of p is not more than 0(log2N/Iog210g2N)  as
N tends to infinite[  15, 161.

Let
f(N,p) = maxlx(r)lfi(N-1)(2n)P  /p!= A(N-1)(2~)~/p!

(2. 11)
Substituting [210gzN/log210gzN]  for p in Equation
(2. 1 l)([x]  denotes an integer closest to x), we get

f(N, p) = F(N)  = A(N - ,)(,)‘2’w2N”or2’w2N’ /
[21og,  N/log, log, N]!

Let

then
210gzN/logzlogzN =t,

and

s o

and

F(N)IAN(271)  /[t]!.

N=2 rilG%!b=%lN)f1 = (log,  N)“’

tit=-

i$log, N)“‘Ir  = l$log,  N)“‘log, log, N/2log,  N
= lii(log, log, N)/ 2(log,  N)“’
= lJm_(log,  M)/2M”  = 0

then
;E F(N) I li_iA(2a)“‘(log,  N)“’ /[I]!

=b_mA(2~)“‘(log,  N)“‘/t’e~‘&

=liimA(2x)(2ae(log,  N)“‘/t)‘/&=O

The final result is obtained by using the well
known Stirling formula [ 171.  The computation of
X(k) using the approximation of Equation (2. 9)
involves the generation of the r-th order moments of
the transformed data sequence xki and then
performing a dot product of these moments with a
constant vector (a,) and an addition with xk,O.  Thus
if the moments can be computed very quickly and
efficiently, so can be the above procedure.
3: An algorithm for computing 1-D DHT
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According to Section 2, fast DHT includes the
following three steps:
1. Computing xki (i=O, 1, 2, . . . . . . . . . N-l; k=O, 1, 2,
. . . . . . . , N-l) and a,(r=O,  1, 2, . . . . . . . . . 2p+l);
2. Computing mk,r  (r=O, 1, 2, . . . . . . . . . 2p+l;  k=O, 1, 2,
. . . . . . . . N-l);
3. Computing X(k) (k=O, 1,2, . . . . . . N-l).

The procedure of computing xk.i and a, is also
called the Preprocessing. The algorithm of
computing X(k) can be described below.

Input initial p, N, x(O), x(l), . . . . . . . x(N-1)
perform Preprocessing
for k=O to N- 1
compute Momentzpi(xk,N_i,  xk,  N_2,  . . . . . . . . . xk,i)
X(k)=0
for r=O  to 2p+l
X(k)=X(k)+a,mk.,
end for
X(k)=X(k)+ Xk.0

end for
Moment2pdXk.N.It  X k ,  N-2, . . . . . . . . ) Xk.1)  is a

subroutine that produces the moments up to 2p+l
order [lo].  Now the complexity of the algorithm
can be given. In the Preprocessing, computing a,
and index set S(k,  i) can be completed upon
condition that N and p are given. In real-time
systems, these computations can be preprocessed
and are not included in execution procedure. The
computation of Xki is N’- yNlgcd(k,N) additionsY;o
(greatest common divisor). Computing Momentzpi
N times needs (2~+2)(2~+3)(N_2)N/2  additions.
The computation of X(k) (k=O, 1, 2, . . . . . . . N-l)
i n v o l v e s  (2p+2)N  a d d i t i o n s  a n d  (2p+l)N
multiplications. S o  t h e r e  a r e  a l t o g e t h e r
N’- f N Igcd(k,  N) +(2p+2)(2~+3)(N_2)N/2+L-0
(2p+2)N additions and (2p+l)N  multiplications in
the algorithms. If N is a prime number,

( N’ - $ N I gcd(k, N) ) disappears from the above

formula.

4: Pre-processing array for
computing Xb,i

In the general case, we propose to use a
special linear array to implement xk,i,  (i, k=O, 1, . . .
N-l ) ,  Each e lement  x(r )  i s  tagged with  a
rank=kr(mod  N) before it is sent into the array. For
example, for k=2 and N=4, the samples become
(x(O), O),  (x(I), 2), (x(2),  O),  (x(3), 2). These are
sent into the linear array one element at a time. An

element is percolated from left to right until it
reaches a cell in the array whose position is
identical to its rank. When this happens, the value
is accumulated in that cell in case it receives
multiple values (i.e. Su >l). Figure 1 illustratesI I
an example. A cell in a linear array contains an
adder only if the corresponding partition Su has a
size greater than 1. In 8 clocks, x2,o  will emerge at
the right hand side, as shown in Figure 1. In
general, it takes 2N clocks for the vector to appear
on the right. It is obvious that number of additions
required in the preprocessing array for each k is
equal to N-N/gcd(k,N). So the total number of
addition required in the preprocessing array is equal

N-I N-l
to x(N-Nlgcd(k,N)=N’-xNlgcd(k,N).

t-0 I=0
x(r) to xk,i is noteworth

i

: If (k, N)=l, (i.e., k and N
are coprime) then (ki i=O, 1, 2, . . . . . . . N-l } is a
complete system of residues modulo N [ 181  and 1 Su

I = 1. It means xk,i is a permutation o It remains to
consider the generation of xk,i . One interesting
property of the mapping off x(r). Particularly, if N
is prime, then Sm={O,  1, . . . N-l} and Saj=B for j#
0, but I Ski I =l for all k#O. In other words, xk,i is a
permutation of x(r) whenever k#O. In the

remaining case, Y,(O) = yx(r) and Q,j=O for j#O. So
r=0

in the case where the sample size is a prime
number, a preprocessor can be used to produce the
xk,i via permutations of the sampled sequence x(r),
after producing Y,(O) = %x(r) in the first pass.

r-0

5: Systolic array for computing DHT

The general network for implementing DHT is
drawn in Figure 2. It consists of the moment
generator [lo], the processing arrays and a dot
product array. The moment generator formed of N-
2 (2p+l)-networks  with a row of adder-latch could
be used to generate the 1-D moments. It receives
xk,i, (i, k=O, 1, . . . N-l) that preprocessing arrays
produce. The dot product array performs the dot
product and produces X(k) at the only output. The
numbers in square brackets denote the amount of
time delay to keep synchronous pace in Figure 2.
The scheduling of the dataflow  is such that mk (0)*
aa moves from left to right, accumulates with mk (l)*
al to produce the partial sum and this repeats until
X(k) emerges at the far right of the output. As mk(i)
is produced earlier one cycle than mk(i+I) (i=O,
l,..., 2p+l),  as shown in Figure 2, so the most right
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term mk(p)  takes 2 cycles to merge into X(k). It is
just time cost for the dot product.

The total execution time of the computing
procedure is:

clock cycles. Where N is for preprocessing, and
(2p+2)(N-2)  for computing moments, and 2 for the
dot product, and N-l for collecting all X(k), (k=l,
2, . . . . . . N-l).

Since the DHT is self-inverse, the approach is
also applicable to DHT inverse. The method can
also be extended to to multi-dimensional DHT due
to the separability of the DHT kernel. It can also
be proved by mathematical induction that the
execution time of the systolic array is O(Nk)  for k-D
DHT.

6: Conclusions

New fast algorithms and systolic arrays for
one-dimensional DHT and their inverse are
proposed and the results are extended to k-
dimensional DHT (k22)  , and their computation
complexities are analyzed. The relationships
between these discrete transforms and discrete
moments are presented and the fast discrete
transforms are converted into fast discrete moment
transforms. It is a completely new approach to
DHT.

The methods proposed have the advantages
below:
1. Many multiplications have been converted into
additions, and triangular functions have been
replaced by simple polynomial functions. It
decreases the computational cost and memory
requirement. Comparing with the direct method
with computation complexity 0(N2) and the
conventional FHT which originates from FFT with
0(Nlog2N), the methods proposed are superior to
the direct method and but inferior to FHT) if the
calculations are executed on a sequential machine
(for the example given in Section 2: N<_2k,  logzN<
11, p=17).  When N is large enough, p can take a
value much less than 1ogzN  and can still satisfy the
accuracy requirement. In other words, in the case
of N large enough, the number of multiplication in
our method is less than that in the conventional
FHT though the number of addition in our method
is still more than that in the conventional FHT;
2. The systolic arrays consist of only latches, adder-
latches and a few multipliers. It results in easy
hardware implementation and is very suitable for a
real-time system;
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3. It can cope with arbitrary data length and not
limited to data length in the form of 2k or any other
forms. It has a very good accuracy and
convergence feature;
4. The multiplication number for 1-D DHT in our
method is 0(Nlog2N/log210g2N)  superior to O(N
log2N)  in the conventional FHT;
5. The methods are very easily extended to multi-
dimensional DHT and their inverses. The
computational complexity is O(nk)  for k-
dimensional DHT in the systolic arrays.
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cell # 3

X2,i
0 x(1)+x(3) 0 x(0)+x(2) >

3 2 1 0

Figure 1. The linear array to implement x2.i.
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X,N.l I........  X,ll x,0,

I I

\R

u : latch

0 : addeflati

0 : multiplier

Figure 2. The systolic array for 1-D DHT.
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