
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 12, DECEMBER 2006 4675

Matrix Factorizations for Parallel Integer
Transformation

Yiyuan She, Pengwei Hao, Member, IEEE, and Yakup Paker, Member, IEEE

Abstract—Integer mapping is critical for lossless source coding
and has been used for multicomponent image compression in the
new international image compression standard JPEG 2000. In
this paper, starting from block factorizations for any nonsingular
transform matrix, we introduce two types of parallel elementary
reversible matrix (PERM) factorizations which are helpful for the
parallelization of perfectly reversible integer transforms. With
improved degree of parallelism and parallel performance, the cost
of multiplications and additions can be, respectively, reduced to
(log) and (log2) for an by transform matrix.

These make PERM factorizations an effective means of developing
parallel integer transforms for large matrices. We also present a
scheme to block the matrix and allocate the load of processors for
efficient transformation.

Index Terms—Integer-to-integer transforms, lossless compres-
sion, matrix factorization, parallel algorithms, parallel architec-
tures.

I. INTRODUCTION

DUE to the limitation of computational precision and
storage capacity, it is preferable for transforms used in

data compression to be integer reversible. Integer transform
(or integer mapping) is a type of transform that maps integers
to integers and realizes perfect reconstruction. This area has
been explored for some time. The early work has concentrated
on some simple integer-reversible transforms, such as S trans-
form [1], TS transform [2], and S+P transform [3]. This has
suggested a promising future for reversible integer mapping
in image compression, region-of-interest coding, and unified
lossy/lossless compression systems. However, not until the
lifting scheme [4] was proposed for constructing second-gen-
eration wavelets did people try to break away from various
specific transforms and specific rounding methods to build
generic integer wavelet transforms [6] based on the simplified
ladder structure [5]. From then on, research in this area has
grown fast and the technique is widely adopted in a variety of
applications.

Manuscript received November 26, 2005; accepted December 24, 2005. This
work was supported in part by FANEDD of China under Grant 200038 and
NKBRPC of China under Grant 2004CB318005. The associate editor coor-
dinating the review of this manuscript and approving it for publication was
Dr. David J. Miller.

Y. She was with the Center for Information Science, Peking University, Bei-
jing 100871, China. He is now with the Department of Statistics, Stanford Uni-
versity, Stanford, CA 94305 USA (e-mail: yyshe@stanford.edu).

P. Hao is with the Department of Computer Science, Queen Mary, Univer-
sity of London, London E1 4NS, U.K., and with the Center for Information Sci-
ence, Peking University, Beijing 100871, China (e-mail: phao@dcs.qmul.ac.uk;
phao@cis.pku.edu.cn).

Y. Paker is with the Department of Computer Science, Queen Mary, Univer-
sity of London, London E1 4NS, U.K. (e-mail: paker@dcs.qmul.ac.uk).

Digital Object Identifier 10.1109/TSP.2006.881227

For a finite dimensional signal, the transform matrix can be
simplified from a polyphase matrix consisting of Laurent poly-
nomials [7] to a constant matrix of finite dimension. By matrix
factorization, Hao and Shi [8] first considered the reversible
integer transform implementations for such invertible linear
transforms in a finite dimensional space, and later obtained
an optimal factorization with minimum number of matrices
[9]. This technique has been included in the new international
image compression standard, JPEG 2000 [10].

Plonka [15] recently proposed a simple method of integer
transform with small errors by scaling the matrix by a global
constant, but the dynamic range may have been expanded
and the choice of this constant strongly relies on the specific
rounding operator—it may not even exist for some rounding
operators makes this method in our algorithms [8]–[12].
Moreover, this method needs postprocessing to recover the
true transformed values, which are hardly integers. Accord-
ingly, even after this “integer transform” is done, no simple
software/hardware only dealing with integers is adequate in
practice, which implies that the coding advantage and the
speedup of true integer transform may get lost, in contrast to
the general procedure [1]–[6] we focus on. (Of course, this
procedure may not be a problem if the relative transformed
quantities matter only.) For the problem we have solved and
the methods we propose, there is no need for preprocessing or
postprocessing, the dynamic range of the transform is com-
pact, the rounding arithmetic can be flexibly chosen, and the
transform is truly reversible for integers.

However, the computational efficiency of the inverse in-
teger transform based on the matrix factorization technique
in [8]–[10] remains a problem, especially for large matrices,
due to the recursiveness of the reconstruction. To overcome
this drawback, in this paper we introduce two new matrix
factorizations, called parallel elementary reversible matrix
(PERM) factorizations, which are more suitable for improving
computational efficiency and for parallel algorithm design. In
fact, even for sequential computation these two factorizations
offer advantages over former matrix factorizations—referred to
as point factorizations below, to differentiate from block matrix
factorizations as this paper is based on.

Section II introduces the necessary background and reviews
the point factorization and block factorization techniques. In
Section III, based on the block triangular ERM (TERM) and
single-row ERM (SERM) factorizations [11], [12], we introduce
two types of PERM factorizations for the parallel integer trans-
form. Section IV is a discussion of computational complexity.
We present an efficient matrix blocking scheme and multipro-
cessor arrangement in Section V. Some examples are demon-
strated in Section VI. Conclusions are given in Section VII.

1053-587X/$20.00 © 2006 IEEE

4676 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 12, DECEMBER 2006

Fig. 1. A flowchart structure of the linear transform implemented by SERMs.

II. POINT AND BLOCK FACTORIZATIONS

The basic matrix factors for reversible integer transformation
are called elementary reversible matrices (ERMs), including tri-
angular ERMs (TERMs, lower or upper) and single-row ERMs
(SERMs). A TERM is defined as a special triangular matrix
whose diagonal elements belong to the unit group of an integral
domain. For instance, on the set , these should
be 1 and , the so-called integer factors in [9]. A SERM
is a matrix with integer factors on the diagonal and only one
nonzero row apart from the diagonal. Obviously, a SERM can
be converted to a simple TERM by a row and a column permu-
tation. Furthermore, a unit TERM is a unit triangular matrix and
a unit SERM associated with the th row can be formulated as

, where is an elementary vector with the th
element one and all others zero, and is a vector whose th el-
ement is zero.

The reversible integer mapping can be implemented via a se-
ries of TERMs, or a series of SERMs, equivalently. Let

be a lower TERM of size with a diagonal of integer fac-
tors . Then the forward integer transform for
is computed downwards as follows:

(1)

The inverse transform is computed in a recursive way, like the
forward elimination

(2)

where is any given rounding arithmetic, which can be
rounding off at bits before or after the decimal point. The
computation is similar to that for an upper TERM, except that
the computational ordering of the inverse is upward. It is easy
to see the following characteristics of the above transform

computations: i) mapping integers to integers; ii) perfect recon-
struction; and iii) in-place computation. All these are attractive
for lossless data compression.

Given an nonsingular matrix , there are two impor-
tant factorizations in [9].

1) If the leading principal minors of are all ones, then
, named as SERM .

2) If is an integer factor, then ,
named as SERM , where is a permutation matrix,

are unit SERMs, and is associated
with the last row (also a lower TERM).

If is nonzero, then, after a scaling modification and a
few permutations, the integer transform of of size can
be implemented by no more than 1 SERMs, as illustrated in
Fig. 1 for a SERM integer transform. The number of scalar
floating-point multiply–add operations is, respectively,
and 1 for SERM and SERM integer transforms.

Note that the algorithm of the inverse TERM integer trans-
form is recursive, although it avoids the computational workload
of evaluating the inverse matrix. For instance, an inverse upper
triangular transform has to be executed stepwise from bottom to
top, which makes it unsuitable for parallel computation. As for
the integer transform in the form of SERM factorizations, actu-
ally only one component is changed through a unit SERM as the
computation remains sequential. Ideally, we would like to have
all signal components reconstructed in parallel. It is worth men-
tioning that in this paper, we focus on the cost of integer trans-
formation but not that of the factorization which is assumed to
be known by both encoder and decoder ends.

Observing that a unit SERM can be trivially generalized to a
unit block SERM (for simplicity, we still use): ,
where is an elementary block matrix of which the th block
is and is a block matrix with the th block zero, we studied
block factorizations in [11] and [12]. In contrast to point SERM
factorizations, block SERM factorizations make it possible that
the factorizations and the transforms are carried out at block
level and therefore boost the degree of parallelism. Such block
approaches are more appropriate for an efficient integer im-
plementation of large matrices, as well as those with natural
block structures originating from the underlying physical back-
grounds.

SHE et al.: MATRIX FACTORIZATIONS FOR PARALLEL INTEGER TRANSFORMATION 4677

Fig. 2. PERM factorization (suppose n = n = n = 2).

For example, given a 2-by-2 block unit lower SERM

, to reconstruct from , the in-

teger transform of , we can use the block formula below in-
stead of the one-by-one reconstruction of (2)

(3)

where is a rounding operator for all elements in the vector.
Generalizing point factorizations to block factorizations is not

so straightforward due to the difficulty of the scaling modifica-
tion and the possibility that some crucial blocks may not have
full rank in factorization. In [12], in an almost arbitrary partition
manner, we defined a generalized determinant matrix function
“DET” (see Appendix A) and studied the block LU (BLU) fac-
torization , where is a permutation matrix, ,
are unit lower and unit upper block triangular matrices, respec-
tively, and is a block diagonal matrix. We also discussed how
to convert them into the block unit SERM factorizations in [12].
In the case that all blocks are of the same size [11], we redefined
the generalized determinant matrix function DET and obtained
a BLUS factorization , where is a unit block
SERM associated with the last block row (thus is also a unit
lower TERM) and . We
proposed a practical algorithm [11] as a generalization of point
TERM factorization [9] and also proved that block SERM fac-
torization exists if and only if
is a diagonal matrix and all the diagonal elements are integer
factors.

In the following discussions, we assume uniform blocking,
and mainly use basic block SERM forms of BLU and BLUS
factorizations— and , where
is a permutation matrix at the element level, is a block diag-
onal matrix, and is a block diagonal matrix with only one
diagonal block not to be (in this paper, it is supposed to be the
bottom-right block1). Throughout the rest of this paper, is the
original transform matrix in a finite dimensional space, the
number of blocks in a row or column, the size of each block,
and the corresponding block matrix of .

III. PARALLEL ERM (PERM) FACTORIZATIONS

A linear transform of an block SERM,
, with the th block of being zeros and of block size

, can be implemented by parallel multiplications and parallel

1It is worth mentioning that if we fix the structure of DDD in this way, there
exists a far general type of block factorization in an almost arbitrary partitioning
manner [13], [14].

additions. The main difficulty of applying block factorizations
to parallel computing lies in the residue (or). Note that row
and column permutations alone are not capable of converting

into . We exploit recursive factorizations.
For a matrix of size , at the th level, we partition the

residue from the last level into blocks of size until
the block size reduces to . This process is denoted as

(4)

Take BLU factorization as an example. At the th level, each
diagonal block of is further partitioned into
blocks of block size . Then we apply BLU and
block SERM factorization to factorize into block
SERMs, formally denoted as (), and a
non-ERM block diagonal matrix . We repeat this process
recursively until all the blocks are reduced to single elements
(see Fig. 2 for an illustration), and finally we obtain

(5)

where and is the number of factor-
ization levels. It is not difficult to see that is the th
leading principal minor of .

Similarly, successively applying BLUS to factorize the last
diagonal block of previously remained nonidentity submatrix as
shown in Fig. 3 yields a factorization

(6)

where .
To realize the perfect integer-reversible transform, we need

to make a scaling modification to the original transform matrix
before the factorization, as suggested in [9]. For the factoriza-
tion formula (5), we can left-multiply by , where
the leftmost is to maintain the order. Since the scaling values
in each dimension are perhaps only meaningful in mathematics,
(5) may be of limited use in real-world applications, although
it has fewer factor matrices than (6). By contrast, in (6), we are
free to choose any rows or columns for scaling, as long as the
final determinant is an integer factor. This less restrictive scaling
plays an important role in keeping proportions of the transform
matrix and adjusting the dynamic ranges of data (see [9, Section
VIII]), and so provides more flexibility and practical utility. Of

4678 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 12, DECEMBER 2006

Fig. 3. PERM factorization (Suppose n = n = n = 2).

Fig. 4. An example of the flowchart structure of the (forward) PERM integer transform.

Fig. 5. An example of the flowchart structure of the (forward) PERM integer transform.

course, BLU and BLUS can be combined in factorization. We
can draw similar conclusions from right-permutation block fac-
torizations.

Hereafter, the scaled formulas (5) and (6), appropriate for per-
fectly reversible integer transforms, are referred to as parallel
ERM factorizations and are denoted by PERM and PERM ,
respectively, as a counterpart of SERM and SERM . From
the scaling process we easily see that it is sufficient to inves-
tigate unit PERM and unit SERM factorizations. Figs. 4 and 5
are illustrations of their corresponding integer transforms. Fig. 4
is a flowchart of PERM , where , ,

, . Note that there are altogether eight
steps in the implementation, as compared to 16 in SERM . The

inverse transform is obtained by just moving in the reverse di-
rection. Fig. 5 is a flowchart of PERM , where ,

, , . There are altogether
ten transform matrices in the implementation, as compared to
17 in SERM . Similarly, the inverse transform is obtained by
moving in the reverse direction.

IV. PARALLEL COMPUTATIONAL COMPLEXITY

In order to estimate the computational complexity, for the fol-
lowing analysis, we do not use any characteristics of an under-
lying parallel architecture but consider as the general case where
the computation is performed by processors capable of multi-
plying or adding two numbers, ignoring the communication and

SHE et al.: MATRIX FACTORIZATIONS FOR PARALLEL INTEGER TRANSFORMATION 4679

storage aspects. Clearly, for the specific architecture, further,
more refined analysis needs to be performed for more targeted
and precise complexity estimates, which would involve the im-
plications of the internal data communications and storage. The
following estimates consider the transform of a single vector.
When a stream of vectors is to be transformed, a particular archi-
tecture using such a pipeline affects the throughput. However,
this is beyond the scope of this paper. We concentrate on how
to structure the problem and study the implication for parallel
implementations without a priori knowledge of the eventual ar-
chitecture, which could be a general-purpose parallel computer
or a hard-wired special-purpose machine, i.e., on silicon. The
total number of multiplications and additions gives us a mea-
sure of complexity.

For PERM , if , , the number of multipli-
cations and additions, equal to those of SERM , is given by

(7)
For PERM , this number is also the same as SERM and is
given by

(8)

Thus the computational complexity of a PERM is the same as
the equivalent SERM. However, since the computation can be
now organized onto blocks [see (3) for an example], the per-
formance can be improved by using some mathematical pack-
ages, such as BLAS. Moreover, with nontrivial elements to be

, degree of parallelism increases and more
processors (up to 4) can be involved in computing. We no-
tice that the additional freedom of row partitioning in the two-di-
mensional data structure helps cut down the computation cost
for parallel computing, owing to the independent reconstruction
of all the intrablock rows in the inverse PERM integer transform.

Fig. 6 is an example of the transformation of a 16 16 block
matrix with block size 4 4, corresponding to a stage in
Fig. 4 or 5. In Fig. 6, only the computation of the first element
is explicitly depicted. In a block SERM transformation, all the
multiplications at a given stage can be executed in parallel by
using processors, so that the total computational time of mul-
tiplications in parallel is if we take the multipli-
cation of two numbers as a unit time. However, additions are not
so simple. For each processor adding two numbers, processors
can only implement cumulative addition (summation) of num-
bers in addition steps if . For , the com-
putational time of additions is , where

. Therefore, the computational time of parallel addi-
tions for a block SERM transform is if

and ,
or simply , if

.

Fig. 6. Parallel computation of a reversible integer transform with a block
SERM.

Theoretically, the multiplication time of the parallel integer
transform (4) with PERM is

PERM

(9)

where , , .
Similarly, the multiplication time of (4) with PERM is

PERM

(10)

where , , .
From (9) and (10), we see that, theoretically, the multiplica-

tion time has nothing to do with —the block size for PERM
and PERM .

If all are equal to , then
, and we have or
.

As shown in Fig. 6, the additions cannot all be done in par-
allel, so the addition time is theoretically more complicated than
the multiplication time.

For PERM , if there are processors and as many proces-
sors as possible are used in computation, the parallel addition
time can be estimated as shown in (11) at the bottom of the next
page.

For PERM , the parallel addition time can be estimated as
shown in (12) at the bottom of the next page.

4680 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 12, DECEMBER 2006

The above time estimations are related to a turning point ,
where should be a number closest to
but less than 2 . As the level increases, the problem size de-
creases to such an extent that the speedup reaches its limit and
cannot be improved further. In order to minimize the computa-
tional time, we can split the whole task into several phases and
use a different processor allocation scheme in each phase.

However, PERM factorizations are not perfect. Suppose all
are equal to . The total number of rounding operations of

PERM is

(13)

which is a decreasing function of and achieves its minimum
when and . For PERM , the total number
of rounding operations is . Hence, as the block size or
the number of factorization levels grows, the number of the
rounding operations also increases, possibly resulting in higher
transform error though integer reversibility is still guaranteed.
However, the transform error can be reduced to any extent by
using a proper rounding operator. See Appendix B for details.

V. STRATEGY FOR MATRIX BLOCK PARTITIONING

How to partition a matrix and allocate the data to proces-
sors is a practical problem in applying PERM factorizations,
for it determines the parallel complexity of the corresponding
integer transform. Generally speaking, an appropriate block par-
titioning strategy is made according to some specific optimiza-
tion principles. Ignoring other factors like the communications
and the multiprocessor architecture, we have simply considered
the computation time of parallel multiplications and parallel ad-
ditions as the complexity metrics to evaluate the block structure
of PERM as follows.

Since there exists a turning point in the performance of a par-
allel implementation, it is necessary to consider the block struc-
ture (submatrix size) in the case of limited or abundant proces-
sors. Besides, if only a few processors are available, row dis-
tribution should be given first priority for it leads to a higher
degree of parallelism for addition. From the above discussion,
we propose a three-phase strategy for determining the level of
block partitioning and block sizes.

i) If , we factorize the matrix recursively in the
first phase until the block size is reduced to , i.e.,

. In this phase data are allocated in rows to the
multiprocessor. To minimize the transform error, we can
employ immediate one-level block factorization of
blocks.

ii) If , then perform in
this phase. In mapping the data onto processors, we still
give priority to row distribution. Again, a straightforward
factorization is reasonable with the block size .

iii) If , then . Processors are exces-
sive in this phase. To minimize the parallel cost of mul-
tiplication or, equivalently, the number of matrices, we
have

(14)

where

It follows that the minimum value can be obtained at
, i.e., partitioning into four blocks at each level is the

best solution. In such case, the parallel computation time
of additions and multiplications is

PERM (15)

PERM

(11)

PERM

(12)

SHE et al.: MATRIX FACTORIZATIONS FOR PARALLEL INTEGER TRANSFORMATION 4681

TABLE I
TIME COMPLEXITY COMPARISON

PERM

(16)

We now draw a comparison on the computation time between
the above block partitioning scheme and the direct paralleliza-
tion of SERM . Let and denote the
time complexity of parallel addition/multiplication with PERM
factorization and SERM factorization, respectively. For above
block partitioning strategy, we have (17)–(20) shown at the
bottom of the page.

First, the number of effective processors can be up to (1/4)
for PERM integer transform. From (17) and (18), it is easy to
show that the costs of multiplication and addition are both
when and are and , respec-
tively, when . By contrast, the number of effective
processors cannot exceed for SERM transform and, there-
fore, for or , the time of multiplication
and addition remains and , respectively.

Table I lists the order of multiplications and additions for
SERM and PERM for processor number and

. Generally speaking, PERM is at least not worse
than SERM for the processor number of order . When
the processor number becomes , there is no change in
SERM while the performance of PERM improves still.

Figs. 7 and 8 are examples for and , com-
paring the performance of PERM and SERM with respect
to the processor number. As can be seen in Fig. 7, the SERM

Fig. 7. Number of parallel operations (T) of PERM and parallel
SERM transforms (N = 64, C = 1).

Fig. 8. Speedup of PERM over parallel SERM integer transforms (N =

64, C = 1).

complexity remains the same after the processors are more than
64, whereas PERM complexity continues to decrease.

Of course, since communications and other overheads have
been ignored, the above block partitioning strategy is only an
illustration of what can be done. In practice, the blocking can
be flexible to satisfy different requirements. For instance, to ac-
commodate as many processors for parallel computing as pos-
sible, we could use multilevel binary partitioning.

Although the total problem size of PERM , distinct from
that of PERM , also drops (yet slower) as the level increases,
the number of effective rows in each matrix can remain un-
changed: at level , there are altogether components

(17)

(18)

(19)

(20)

4682 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 12, DECEMBER 2006

updated in a single step, whereas the number for PERM is
. This trait is conducive to row allocation to

efficiently utilize processor resources. For instance, assuming
each is a multiple of , the parallel complexity of mul-
tiplication and addition for both cases is .

VI. EXAMPLES

We demonstrate our PERM factorizations by a commonly
used transform: discrete Fourier transform (DFT).

A. Example: 9-by-9 DFT Matrix

The -by- DFT matrix is defined by
; see the first equation at the

bottom of the page. Without the loss of generality, suppose
and . Since , should be

scaled to implement perfectly reversible integer transform.
1) PERM Factorization: From (5),

, where we have

Now scale by , where we have

Then we can obtain PERM factorization,
, where all PERMs

from right to left can be filled one by one into a matrix of the
same size as ; see the equation at the bottom of the page. We
call this matrix an integer transform matrix of .

2) PERM Factorization: In order to keep the phys-
ical equivalents of the original transform, we scale in
a proportional way: . From (6), we have

, where

Likewise, we can store all PERMs in a 9-by-9 matrix as we did
in Section VI-A1, except that the last block-row of is written
along the diagonal downwards. Finally, after overwriting the
bottom right element with the last one of , i.e., ,
we get an integer transform matrix of as shown in the equa-
tion at the bottom of the next page. Clearly, the storage of PERM

SHE et al.: MATRIX FACTORIZATIONS FOR PARALLEL INTEGER TRANSFORMATION 4683

integer transform does not increase in comparison with that of
the original DFT transform.

VII. CONCLUDING REMARKS

In the above discussions, we have presented PERM factoriza-
tions for parallel reversible integer transforms based on block
factorizations. Compared with SERM factorizations, they offer
improved parallel performance. Particularly, they increase the
degree of parallelism and thus accommodate more processors.
Since the PERM factorization and the corresponding integer
transforms can all be calculated at the block level, we also expect
increased efficiency in sequential computation with some ma-
trix computation software (such as BLAS) speeding block op-
erations. Consequently, PERM factorizations are attractive for
large matrix integer transforms. Considering the flexibility of
the scaling modification, PERM could be more promising in
real-world applications.

One problem is that the problem size gradually drops when
level increases, which will probably reduce the availability of
processors. This cannot be ignored, especially when PERM
is employed with relatively more processors.

The key to applying PERM factorizations is the proper choice
of the block partitioning strategy. Including other necessary fac-
tors such as the communications, our future work will study this
problem systematically and test the performance by further ex-
perimentation.

APPENDIX A
DEFINITION AND PROPERTIES OF DET

In this Appendix, we give a simple introduction of the DET
used in BLUS factorization. Interested readers may refer to [11]
and [12] for details. We shall use

to denote a square block matrix with rows and columns of
blocks. Assume are of the same size. Before defining DET,
we first define an auxiliary matrix function .
Definition 1: Given a block matrix , is recursively
defined as follows.

i) For , .
ii) For , if is invertible, then

.

iii) For , if
exists and is invertible, then
is defined by

, where is a
notation for
with and .

Definition 2: Given a block matrix , is recur-
sively defined as follows.

i) For , .
ii) For , if is defined, then exists

and is defined by

Some important properties are listed as follows.
Triangular Property: Assume is de-

fined. If and , then
,

Scaling Property:

. . .

. . .

where () and (,)
should be invertible.

This property, as a counterpart of that of matrix determinant
DET, is an important guarantee of the flexibility and practica-
bility of the scaling modification.

APPENDIX B
TRANSFORM-ERROR CONTROL

As mentioned in Section IV, one disadvantage of PERM fac-
torizations is that larger block size and more factorization levels
result in more rounding operations and possibly higher trans-
form error. However, noticing that in (1) and (2) can actu-
ally be any nonlinear operator, we may keep more bits after the
decimal point (e.g., rounding to hundredths or thousandths) to

4684 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 12, DECEMBER 2006

effectively reduce the transform error. This can be justified by
the error bounds given in [9] and [12].

Given a factorization , we introduce
diagonal matrices to label the positions of pos-

sible rounding error in the transformation with . For
example, , ,

. Let be the final error vector. If we
consider the largest possible error, the error bound [9, Section
VII] can be written as

(21)

where is the unit roundoff, defined as the largest error that can
occur in one rounding operation.

Alternatively, if we care about the mean error, by character-
izing the rounding errors as independent random noises, it can
be formulated as [12, Section 2.4]

(22)

where is the variance of noise in one dimension and is
the Frobenius-norm.

These results also apply to block matrices, and the only dif-
ference is that the position matrix for error propagation be-
comes more specific.

It is theoretically hard to find the optimal factorization min-
imizing (21) or (22). However, we may lower or to reduce
the transform error, since we can flexibly choose an arbitrary
operator as used in (1) and (2).

In summary, with quantitative error control formulas (21) and
(22), we can determine the appropriate transform precision by
choosing a proper rounding operator, thus achieving both per-
fect reversibility and very good transform-error control. (Inter-
ested readers may refer to [12] for details.)

REFERENCES

[1] H. Blume and A. Fand, “Reversible and irreversible image data com-
pression using the S-transform and Lempel-Ziv coding,” in Proc. SPIE,
1989, vol. 1091, pp. 2–18.

[2] A. Zandi, J. D. Allen, E. L. Schwartz, and M. Boliek, J. A. Storer
and M. Cohn, Eds., “CREW: Compression with reversible embedded
wavelets,” in Proc. IEEE Data Compression Conf., Snowbird, UT,
1995, pp. 212–221.

[3] A. Said and W. A. Pearlman, “An image multiresolution representation
for lossless and lossy compression,” IEEE Trans. Image Process., vol.
5, pp. 1303–1310, 1996.

[4] W. Sweldens, “The lifting scheme: A custom-design construction of
biorthogonal wavelets,” J. Appl. Comput. Harmon. Anal., vol. 3, no. 2,
pp. 186–200, 1996.

[5] F. A. M. L. Bruekers and A. W. M. van den Enden, “New networks
for perfect inversion and perfect reconstruction,” IEEE J. Sel. Areas
Commun., vol. 10, pp. 130–137, 1992.

[6] I. Daubechies and W. Sweldens, “Factoring wavelet transforms into
lifting steps,” J. Fourier Anal. Applicat., vol. 4, no. 3, pp. 247–269,
1998.

[7] A. R. Calderbank, I. Daubechies, W. Sweldens, and B.-L. Yeo,
“Wavelet transform that map integers to integers,” J. Appl. Comput.
Harmon. Anal., vol. 5, no. 3, pp. 332–369, 1998.

[8] P. Hao and Q. Shi, “Invertible linear transforms implemented by integer
mapping,” (in Chinese) Sci. China, ser. E, vol. 30, no. 2, pp. 132–141,
2000.

[9] ——, “Matrix factorizations for reversible integer mapping,” IEEE
Trans. Signal Process., vol. 49, pp. 2314–2324, 2001.

[10] ——, “Proposal of reversible integer implementation for multiple
component transforms,” in ISO/IEC JTC1/SC29/WG1N1720, Arles,
France, Jul. 3–7, 2000.

[11] Y. She and P. Hao, “Block TERM factorization of uniform block ma-
trices,” Sci. China, ser. F, vol. 47, no. 4, pp. 421–436, 2004.

[12] Y. She, “Matrix factorizations for efficient implementation of linear
transforms,” (in Chinese) Master’s thesis, Peking Univ., Beijing,
China, 2003.

[13] P. Hao, “Customizable triangular factorizations of matrices,” Linear
Algebra Applicat., vol. 382, pp. 135–154, 2004.

[14] Y. She and P. Hao, “On the necessity and sufficiency of PLUS factor-
izations,” Linear Algebra Applicat., vol. 400, pp. 193–202, 2005.

[15] G. Plonka, “A global method for invertible integer DCT and integer
wavelet algorithms,” Appl. Comput. Harmon. Anal., vol. 16, pp.
90–110, 2004.

Yiyuan She was born in China in 1978. He received
the B.Sc. degree in mathematics and the M.Sc. de-
gree in electrical engineering from Peking University,
Beijing, China, in 2000 and 2003, respectively. He
is currently pursuing the Ph.D. degree in statistics at
Stanford University, Stanford, CA.

He was a Visiting Graduate Student at Queen
Mary, University of London, London, U.K., in 2003.
His research interests include signal processing,
machine learning, statistical computing, and bioin-
formatics.

Pengwei Hao (M’98) was born in the north of
Shaanxi Province, China, in 1966. He received the
B.Sc. degree in computer science and the M.Sc.
degree in computer graphics from Northwestern
Polytechnical University, Xi’an, China, in 1988 and
1994, respectively, and the Ph.D. degree in image
processing from the Institute of Remote Sensing Ap-
plications, Chinese Academy of Sciences, Beijing,
China, in 1997.

From 1997 to 1999, he was a Lecturer at the Center
for Information Science, Peking University, Beijing.

In 2000, he was a Visiting Scientist for three months with the Centre for Vision,
Speech, and Signal Processing, University of Surrey, Surrey, U.K. In 2002, he
became a Lecturer at Queen Mary, University of London, London, U.K. He is
also currently an Associate Professor with the Center for Information Science,
Peking University. His research interests include data and image compression,
data hiding, signal sampling and reconstruction, and computer graphics.

Yakup Paker (M’74) received the bachelor’s degree
in electrical engineering from Istanbul Technical
University, Turkey, in 1958 and the M.S. and Ph.D.
degrees from Columbia University, New York, in
1961 and 1965, respectively.

He is an Emeritus Professor of parallel computing
at Queen Mary, University of London, London,
U.K. He held academic positions at Middle East
Technical University, Ankara, Turkey; the Univer-
sity of Westminster, London, U.K.; and Rennes
University, Rennes, France, before joining Queen

Mary as a full Professor in 1990. His research interests have included computer
systems architectures and parallel computers, real-time architectures for video
processing, virtual studios, three-dimensional TV, and digital broadcasting
convergence. He has undertaken a range of collaborative research projects,
funded by the European Union and the British government, which have
included developing a multiprocessor architecture and systems software for
real-time video processing, a customized TV terminal, an advanced set-top box
based interactive TV, and systems architecture for three-dimensional TV. He
has published extensively and is the author/editor of a number of books and
proceedings.

