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Abstract

Multicast routing is a fundamental problem in any
telecommunication network. We address the multicast is-
sue in a WDM optical network without wavelength con-
version capability. To realize a multicast request in such
network, it is required to establish multiple light multicast
trees (MLMT) sometimes due to the fact that the requested
network resources are being occupied by other routing traf-
fic and therefore it is impossible to establish a single light
multicast tree for the request. In this paper we first pro-
pose a multiple light multicast tree model. We then show the
MLMT is NP-hard, and devise an approximation algorithm
for it which takes O((kn)*/¢|D|*/¢ + kn + km) time and
delivers an approximation solution within O(|D|¢) times of
the optimal, where n, m, and k are the numbers of nodes,
links, and wavelengths in the network, D is the set of des-
tination nodes and € is constant, 0 < € < 1. We finally
extend the problem further with the end-to-end path delay
is bounded by an integer A, and we call this latter prob-
lem as the multiple delay-constrained light multicast tree
problem (MDCLMT), for which we propose two approxi-
mation algorithms with the performance ratios of | D|. One
of the proposed algorithms takes O(km|D|A + |D|*mA)
time and the path delay is strictly met; and another takes
O(kmn/e+|D|n?) time and the path delay is no more than
(14 €)A, where € is constant with 0 < € < 1.

1 Introduction

Wavelength-division-multiplexing (WDM) is emerging
as a key technology for next-generation networks by provid-
ing unprecedented bandwidth in a medium that is free from
inductive and capacitive loadings, thus, relaxing the limita-
tions imposed on the bandwidth-distance product. In WDM
optical networks the fibre bandwidth is partitioned into mul-
tiple data channels which may be transmitted simultane-
ously on different wavelengths. In this paper we consider

circuit-switched WDM networks, which can be further clas-
sified as either single-hop or multi-hop networks [10, 11]. In
single-hop networks each message is transmitted from the
source to the destination without any optical-to-electronic
conversion within the network. Therefore, single-hop com-
munication can be realized by using a single wavelength to
establish a connection, but such connections may in general
be difficult or impossible to find in the presence of other net-
work traffic. Alternatively, all-optical wavelength convert-
ers may be used to convert from one wavelength to another
wavelength within the network. However, such converters
are likely to prohibitively expensive for most applications in
the foreseeable future [15]. In this paper we therefore only
consider the single-hop WDM optical network.

Multicast is a fundamental problem in telecommunica-
tion networks, which arises in a wide variety of applications
such as video conferencing, entertainment distribution, tele-
classrooms, distributed data processing, etc [12]. In WDM
networks the multicast problem is also referred to one-to-
many routing and wavelength assignment problem (RWA),
which aims at finding a set of links and wavelengths on
these links to establish the connection from the source to
the destination nodes.

Lots of effort for multicast in multi-hop networks has
been taken in past years. The cost of using the network re-
sources in such networks is measured as follows. A wave-
length traversing a link incurs a cost and the wavelength
conversion at a node also incurs a cost. Thus, the multi-
cast problem is to find a multicast tree rooted at the source
and spanning the destination nodes in D such that the tree
cost is minimized [6], where D is the set of destination
nodes. When the size |D| of the set of destination nodes
is 1, the multicast problem becomes the optimal semilight-
path problem [2], for which Chlamtac et al [2] presented an
O(k*n + kn?) time algorithm for it, where k is the num-
ber of wavelengths and n is the number of nodes in the
network. Liang and Shen [7] later provided an improved
algorithm, which takes O(k*n + km + knlog(kn)) time
and can be implemented in the distributed environment effi-
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ciently, where m is the number of links in the network. For
D C V, Liang and Shen [6] proposed an approximation
algorithm for finding a multicast tree with minimizing the
tree cost. Sahin and Azizolgu [14] considered the multicast
problem under various fanout polices and Malli et al [9]
dealt with this problem under a sparse splitting model. Sa-
hasrabuddhe and Mukherjee [13] formulated the problem
as a mixed-integer linear programming problem. Znati et
al [17] dealt with the problem by decoupling the delay from
the cost model, and presented several heuristic algorithms
for finding a multicast tree under the constraint of end-to-
end delay from the source to the destination nodes. In addi-
tion, there have been several other studies for constructing
constrained multicast trees in the WDM optical networks.
For example, Libeskind-Hadas [8] proposed a multi-path
routing model, in which the multicast problem is to find a
set of paths from the source to the destination nodes such
that each path contains a subset of destination nodes, the
nodes in the set of destination nodes are included by these
paths, and the cost sum of these paths is minimized. Zhang
et al [16] considered the multicast problem by focusing on
the limited splitting power of optical switches and provided
four heuristic algorithms for the problem.

Due to currently it is prohibitively expensive to employ
the wavelength conversion switches in optical networks, in
this paper we consider a circuit-switched single-hop WDM
optical network. We extend the multi-path routing con-
cept [8] further by proposing a multiple light multicast
tree model, on which we deal with the multicast problem.
Specifically, given a source s and a set of destination nodes
D, if the wavelength conversion at nodes is not allowed,
then it is impossible to realize a multicast request through
the construction of a single light multicast tree rooted at the
source including all the nodes in D due to lack of the avail-
able resources that are being used by other routing traffics.
Instead, to realize a multicast request, it necessitates to con-
struct several light multicast trees that cover the nodes in
D, here a light multicast tree is referred to a tree in which
every link has the same wavelength. To minimize the net-
work resource consumption for a multicast session, the ob-
jective is to minimize the cost summation of all the light
multicast trees. We thus refer to the multicast problem on
this cost model as the multiple light multicast tree problem
(MLMT for short). When the set of destination nodes in-
cludes all other nodes except the source s, the problem be-
comes a broadcast problem which is called the light broad-
cast tree problem. If the end-to-end delay of a routing path
in each of the trees from the root (source) to a destination
node is bounded by an integer A, then the problem is re-
ferred to the multiple delay-constrained light multicast tree
problem (MDCLMT for short). Under our model we first
show the mulicast problem (MLMT) is NP-Complete even
when the set D of destination nodes is D = V — {s}. We

then provide an approximation algorithm for it which takes
O((kn)'/¢|D|*/¢ + kn 4 km) time and delivers a solution
within O(|D|¢) times of the optimal, where € is constant,
0 < € < 1. We finally deal with the MDCLMT, for which
two approximation algorithms with performance ratios of
|D| are proposed, which trade-offs between the running
time and the accuracy of the path delay. One of the proposed
algorithms takes O(km|D|A + |D|?mA) time and the path
delay is strictly met; and another takes O(kmn/e + |D|n?)
time which is independent of A, and the path delay is no
more than (1 + €)A, where € is constant with 0 < € < 1.

The rest of the paper is organized as follows. In Sec-
tion 2 notations are introduced and the problems are de-
fined. In Section 3 the MLMT is shown to be NP-Complete
even when the destination set is D = V' — {s}, an approx-
imation algorithm for it is proposed, and the running time
as well the performance ratio of the algorithm is analyzed.
In Section 4 the MDCLMT is considered, and two approxi-
mation algorithms for it with performance ratios of |D| are
presented.

2 Preliminaries

The network model: The optical network is modeled
by a directed graph G = (V, E,A), where V is a set of
nodes (vertices) representing switches, F is a set of directed
links (edges) representing the optical fibers, and A is a set
of wavelengths in G, n = |V|, m = |E|, and |A| = k. Let
A ={\1,s,..., \x}. Associated with each link e € E, a
wavelength set A(e) (C A) is given, and for each X € A(e),
a non-negative weight w(e, A) is assigned which is the cost
of traversing e using wavelength A. This cost reflects the
communication bandwidth consumption on e. Sometimes,
the routing congestion factor on the link is also incorporated
in the cost by assigning different weights to different wave-
lengths. In some cases it is also assumed that an integral
delay d(e) is associated with each link e € E.

Problem formulation: A multicast request is an ordered
pair (s; D) where s € V is the source of the multicast ses-
sion and D (C V — {s}) is the set of destination nodes. As-
sume that multicast requests are made and released dynam-
ically. To realize a multicast communication request, the
ideal case is to establish a single light multicast tree. How-
ever, due to the fact that some specific network resource,
e.g., a specific wavelength, is occupying by other commu-
nication traffic at this moment, and it is impossible to estab-
lish such a tree for the current multicast request. Instead, it
is required to establish a collection of light multicast trees to
realize the request. Specifically, we deal with the following
two multicast problems.

The Multiple Light Multicast Tree Problem (MLMT) is
to construct a collection of multicast trees 711,75, ... Tk
such that (i) tree Tj is a light multicast tree rooted at s
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including a subset of nodes in D, and wavelength /\,-j is
on each link of T}, 1 < i; < k, 1 < j < k'; (ii) each
node in D as a leaf node is included in one of the k' trees
at most once but it may serve as a relay node in other
trees. The union of the nodes in the k' trees satisfies that
D C UK, V(Ty): (i) 35—, C(T}) is minimized, where
C(T;) = EeeE(Tj) w(e, Aj;). Clearly k' < |A| = k.

In some real-time QoS applications, not only the cost of
multicast trees is the main optimization objective, but also
the response time (the path delay) from the source to each
destination node in a multicast session is paramount. For
this latter case, another extra metric - an integral delay d(e)
is assigned, in addition to the cost metric for each link e €
E. Thus, given a source s, an integral delay A, and a set of
destination nodes D, the Multiple Delay-Constrained Light
Multicast Tree Problem (MDCLMT) is to find a collection
of light multicast trees 11, T5, ..., Ty such that (i) tree T}
is a light multicast tree rooted at s covering a subset of D,
and the wavelength );; is on each link of T}, 1 < ¢; < K,
1< j <K' (i) each node v € D as a leaf node is included
in one of the k' trees at most once but it may appear as a
relay node in other trees, and the path delay in the tree from
s to v is bounded by A; (iii) Zflzl C(Tj) is minimized,
where C(T}) = zeeE(Tj) w(e, Aj;).

3 Approximation Algorithm for the MLMT

3.1 The Light Broadcast Tree Problem is NP-
Hard

When the destination set D = V' — {s}, the MLMT be-
comes the light broadcast tree problem. In contrast to that
the broadcast tree problem (the minimum spanning tree) in
conventional networks is polynomially solvable, the light
broadcast tree problem in WDM optical networks on the
multiple tree model is NP-Complete. We state it in the fol-
lowing theorem without proof due to the space limit. The
major technique is to reduce the 3-CNF SAT problem to it.

Theorem 1 The light broadcast tree problem in WDM net-
works on the multiple light multicast tree model is NP-
Complete.

3.2 Approximation Algorithm

We have shown that the light broadcast tree problem is
NP hard, so is the MLMT. We thus focus on devising an
approximation algorithm for it. The basic idea is to trans-
form the problem to a directed Steiner tree problem in an
auxiliary directed graph GC. As a result, a feasible solu-
tion for this latter problem will give a feasible solution for
the concerned problem.

For each distinct wavelength \; € A, a subgraph G},
of G containing s is induced by the links that the wave-

length )A; is on them and every other node in the subgraph
is reachable from s. Let Gy, (V;, E;) be the subgraph and
let node v be included in Gy, then v in G, is relabeled
as (v, A;). The weight of a corresponding link e’ in G}, is
w(e, \;) if e = (u,v) € E and u is reachable from s and
Ai € Afe), then e’ = {(u, \;), (v, \;)) € E;, 1 <4 < k.
Then, the auxiliary graph GC(V C, EC) is constructed as
follows. VC = Ule ViU{s'}U{v' | v € D} and
EC = UL, B U {5 (s 7))} UL, ), o) | o €
D}, where s’ is a virtual node representing the source s, v’
represents the node v € D, the set of wavelengths on link
(s',(s,A;)) in GC is {\;}, and the set of wavelengths on
link ((v, A;),v") in GC is {\;}. The weight assignment of
links in GC' is defined as follows. For each link e € E;,
its weight in GC' is w(e, A;), for each link (s', (s, \;)), its
weight is w((s', (s, A;)), ;) = 0, and for each v € D,
the weight of link ((v, A;),v") is w({(v, \;),v"), A;) = 0.
The auxiliary graph GC' has the following properties. (i)
For each node v € D, there is at least a directed path in
GC from s' to v', using the links in a specific G},, links
(s', (s, A:)) and {(v, A;),v') in GC. (ii) Each G}, is a sub-
graph of GC. The nodes in GC between G, and G, are
not reachable from each other, if i # j. We then have the
following theorem.

Theorem 2 The multicast tree in GC rooted at s' includ-
ing the nodes in {v' | v € D} corresponds to an optimal
solution for the MLMT in G.

Proof Let Fy,; be an optimal solution for the MLMT
in G consisting of the collection of light multicast trees
and C(F,p;) be the cost sum of the light multicast trees
in Fy,p:. Following the construction of GC, it is easy to
show that there is a corresponding multicast tree 7'C' in
GC in which each tree T} in F,,; corresponds to a sub-
tree rooted at (s, A;;) of TC, and T'C' is a multicast tree
rooted at s’ including the nodes in {v' | v € D}. Let
w(TC) be the weighted sum of the links in T'C. Then,
w(TC) = C(Fypt).

Assume that T3¢ is a directed Steiner tree in GC' rooted
at ' including the nodes in {v' | v € D}. Following the de-
finition of directed Steiner trees, the weighted sum w(T5¢)
of the links in TS is w(To) < w(TC) = C(Fyp). The
theorem follows. O

It is well known that the directed Steiner tree problem
is NP hard [3]. In the following we aim to find an approx-
imate, directed Steiner tree in GC rooted at s’ including
the nodes in {v' | v € D}, which in turn will give an ap-
proximation solution for the MLMT. The detailed algorithm
(Fig 1) is described as follows.

Theorem 3 Given a directed network G = (V, E, A) with
a given source s and a node set D, there is an approxima-
tion algorithm for the MLMT with a performance ratio of
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Algorithm App Multicast_Trees
1. Construct an auxiliary graph GC(V C, EC);
2. Find an approximate directed Steiner tree TCS<
in GC rooted at s’ including the nodes in {v' | v € D};

and a node v € D in included in the multicast tree
if node (v', A;) isincluded in T3, 1 < ¢ < k.

3. Tree Tj; corresponds to a light multicast tree in G with \;,

Figure 1. Algorithm for the MLMT

O(|D|¢). The time complexity of the proposed algorithm
is O((kn)'/¢|D|*/¢ 4+ kn + km), where € is constant with
O<e<l

Proof Following the construction of GC, it contains at
most kn + |D| + 1 nodes and km + k|D| + k links. Thus,
Step 1 takes O(km + kn) time obviously. Step 2 is to find
an approximate, directed Steiner tree ng in GC rooted
at s’ including the nodes in {v' | v € D}, which takes
O((kn)'/¢|D|?/<) time, using the approximation algorithm
in [1], where € is a constant with 0 < € < 1. Step 3 takes
O(kn) time because the number of links in 7SS is bounded

app
by O(kn + |D|). The cost of Tacl';g therefore is w(ngg) <
| D|*w(TCEE) = ¢| D|*w(T'C) = ¢|D|°C(Fopt). by The-

orem 2, where ¢ and € are constants and 0 < e < 1. 0O

4 Approximation Algorithm for the MD-
CLMT

In this section we start with a routine for finding a delay-
constrained shortest path in a graph bounded by an end-to-
end integral delay A, which will be used in the proposed
algorithms. We then provide approximation algorithms for
the MDCLMT.

4.1 The delay-constrained shortest path problem

The delay-constrained shortest path problem is to find a
shortest path in G from s to ¢ under the constraint that the
end-to-end delay of the path is bounded by A. If the path
delay A is not an integer, the problem is NP-hard [3]; other-
wise, it is polynomial solvable, and one such a dynamic pro-
gramming algorithm due to Kompella et al [5] is described
as follows.

Let Cy(u,v) be the cost of a shortest path from u to v
with the delay exactly d and C(u, v) be the cost of the short-
est path in G with a bounded delay A. If there are multiple
shortest paths with the same cost, then the one with the least
delay is chosen. Thus, Cy(u,v) and C(u,v) are formu-
lated as follows. Cq(u,v) = mingev{Cy_s(z,v)(u, ) +

w(z,v)} and C(u,v) = ming<a{Cq(u,v)}. Then, the so-
lution for the problem is to find the value of C(s,t). Use
Dijkstra’s algorithm, it takes O(Am) time to find a solution
for this dynamic programming problem.

Let P(s,t,\) be a delay-constrained shortest path in
a subgraph G of G from s to ¢t with the end-to-
end delay A, the cost of P(s,t,A) is C(P(s,t,A)) =
Zeep(s,w\) w(e, A), where the subgraph G is induced by
the links in G' containing wavelength A and e is a link in
P(s,t, ). Tt is easy to see that the dynamic programming
algorithm for the delay-constrained shortest path problem
is a pseudo-polynomial algorithm, because its running time
depends on the delay A. However, if the end-to-end delay is
not met strictly, there is a strongly polynomial approxima-
tion algorithm for this problem, which is stated as follows.

Lemma 1 Given a WDM optical network G(V, E, A) with
a pair of nodes s and t, and an integral delay A, assume
that each link e has been assigned a set A(e) (C A) of
wavelengths, each wavelength A € A(e) traversing e incurs
a cost w(e, X), and the delay §(e) for traversing on e is an
integer and §(e) < A. There is an O(mn/e) approxima-
tion algorithm for finding a delay-constrained shortest path
from s to t with the relaxation of the bounded delay, which
finds a shortest path with the bounded delay (1+¢€) A, where
eis constant, 0 < € < 1.

Proof The approximation algorithm [4] for the delay-
constrained shortest path problem uses a scaling technique,
which delivers an optimal solution in terms of the path cost
but the path delay is bounded by (1 + €)A, where € is con-
stant, ) < e < 1.0

4.2 Approximation algorithm with strictly delay

We here propose an approximation algorithm for the
MDCLMT such that the end-to-end delay of the routing
paths must be met strictly. The idea behind the proposed
algorithm is as follows. Let the approximation solution
consist of k' light multicast trees T4, T5, ..., Ty, where
wavelength A;; is on each link of 7}, 1 < j < K,
1 < 4; < k. For each node v € D, v is included in T}
if C(P(s,v,A;)) < C(P(s,v,A;;,)) forall j' # j. Let
D;; be the subset of D whose nodes are included in Tj;,
then UX_ Dy = D, 1 <j <k <kandl <i; < k.
Thus, we have the following important lemma.

Lemma 2 Let C* be the cost of an optimal solution for the
MDCLMT. Then, C(P(s,v,\;;)) < C*.

Proof Assume that the optimal solution for the MDCLMT
consists of k* light multicast trees T}, T, . .., T}., where
wavelength );; is on every link of T, 1 < I; < k and

1 <j <k <k Thn YW CTp) = C If
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v € D is included in T in the optimal solution, then,
C(P(s,v,A,)) < C(T2). While v is included in G, we
thus have C'(P(s,v,A;;)) < C(P(s,v,A;,)) < C(Ty) <
c*. O

We thus have an approximation algorithm (See Fig. 2)
for the problem.

Algorithm App_-Constrained Multicast_Trees
1. for i+ 1tokdo
2. for eachnodewv € D do

in G, from s to v;
endfor;
endfor;

anodev € D is also in D;;
if C(P(s,v, ;) = mini<;<x{C(P(s,v,\:))}
5. forj < 1to k' do
6. find a delay-constrained multicast tree T in G A
rooted at s including nodes in D;;.
endfor;
7. A feasible solution for the problem is {11, T2, ..., Tk }
since D = U;?IZIDiJ. C U;?IZIV(Tj).

3. find a delay-constrained shortest path P(s,v, \;)

4. partition the nodes in D into &’ disjoint subsets such that

Figure 2. Algorithm for the MDCLMT

Theorem 4 Given a directed network G = (V, E, A) with
a given source s and a node set D and an integral delay
A, assume that each link e € E has been assigned a set
A(e) (C A) of wavelengths, each wavelength \ € A(e) tra-
versing e incurs a cost w(e, ), and the delay é(e) (< A)
for traversing e is an integer. There is an approximation
algorithm for the MDCLMT with a performance ratio of
|D|. The time complexity of the proposed algorithm is
O((km|D|A + |D[*mA).

Proof Let C* be the cost of the optimal solution for the
MDCLMT. Then, following Lemma 2, C(P(s,v, A;;)) <
C* for each v € Dj;;. As a result, the cost C(T}) of
Tj is C(T;) < |Dy|C*, 1 < j < k'. Thus, the total
cost of the k' light multicast trees is -, ;4 C(T) <
Elstk, |D;;|C* = |D|C*.

The running time from Step 1 to Step 4 is
O(k|D|Tssp(A)) = O(km|D|A), where Tsgp(A) is
the time for finding a delay-constrained shortest path
from s to v in a graph with n nodes and m links with
the end-to-end delay A. Step 6 takes O(|D;, [*Tysp(A))
time [5], and the solution delivered is |D;;| times of
the optimal. So, the running time for Steps 5 and 6
is ZISjSk’ O(|Ds; |’ Tssp(A)) = O(ID]*mA). The
algorithm therefore takes O(km|D|A + |D|*mA) time. O

4.3 Approximation algorithm without strictly de-
lay

We now provide a truly polynomial approximation algo-
rithm for the MDCLMT if the end-to-end delay of a path
is not met strictly. The basic idea is similar to the one in
the preceding section except the following modifications.
At Step 2 an approximation algorithm instead of an exact
algorithm for finding a delay-constrained shortest path will
be used. The set D of destination nodes is then partitioned
into k' disjoint subsets D;;, 1 < j < k'and 1 < i; < k.
For each subset D;;, at Step 6 a new approach called stick-
ing approach instead of the algorithm due to Kompella et
al [5] will be employed to find an approximate, light multi-
cast tree in G'y; . rooted at s including all nodes in D;;. In
the following we present the sticking approach.

Let P,pp(s,v,A) be a shortest path in G from s to ¢
with a bounded delay no more than (1 + €)A, founded
by applying the Goel et al [4] algorithm on G). A
node v € D is included in set D;; if and only if
C(Papp(s,v,Ai;)) < C(Pypp(s,v, A)) forany other A € A.
Let! = |D;;| and v1,v2, . .., v be the sequence of nodes in
D;; sorted in increasing order, i.e, C(Papp(s,v1,Ai;)) <
C(Papp(s,v2, /\ij)) < oo < C(Papp(s,ur, )\z'j))~ The
sticking approach is to construct a light multicast tree in-
cluding the nodes in D;; by adding these [ paths one by one
until all nodes in D;; are included.

Assume that a light multicast tree T'P;_; rooted at s in-
cluding nodes in {v1,va,...,v;—1}, i < has already been
constructed. Now consider adding the path Pypp (s, vi, Ay )
to T'P;_ to form a new light multicast tree T'P; including
the nodes in {v1,va, . .., v;} such that the path delay in T'P;
from s to each node v; is within (1 + €)A, 1 < j < 4.

Initially TPy = P,pp(s,v1,Ay;) and @ = 1. Consider
adding a path P; = P,,,(s,v;, A;;) to TP;_; to construct
TP; fori > 1. Let P;(x,y) be a segment of path P; start-
ing at node z and finishing at node y. We traverse P; from
the source s. Let u, be the rth node in F; appeared in both
T P;_1 and F; except the source s. Thus, path P; can be par-
titioned into r segments if r nodes appear in both T'P;_; and
P;. Clearly, r > 0. Let T P} be the tree after having consid-
ered the rth segment P;(u,—_1,u,) of P; to TP{__II, where
TPZ.T__I1 is the resulting tree after having considered the pre-
vious (r — 1) segments of P;. Denote by TP/ 7' (z,y) the
unique path in TPz-T:l1 from z to y. If » = 0, stick the en-
tire path P; to T P;_; to form a new tree T'P;. Otherwise,
T P; is constructed by taking into account the segments of
P; one by one, which is described as follows. Let u; be
the first node in P; which is also in T'P;_;. Following the
definition, we have TPiO_1 = TP;_;. Then, there are two
node-disjoint paths in TP2 ; U {Pi(s,u1)} from s to uy
when the segment P;(s,u1) is added to TP2 ;. Among
the two paths, one is T P2, (s,u1) consisting of tree edges
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only; and another is P;(s,u;) of P;. Let D(P) be the de-
lay of a path P. If D(T P2, (s,u1)) < D(P;(s,u1)), then
we just ignore P;(s,u;) of P; for any further considera-
tion, and the path delay in TP?_, from s to v; is no greater
than (1+€)A because D(TP? (s,u1))+D(P;(uy,v;)) <
D(P;(s,u1)) + D(P;(u1,v;)) < (1 + €)A. Otherwise, we
delete the tree edge (u1,parent(uy)) from TPY |, where
parent(v) is the parent of v in TP? ;. Then, the path delay
in TP} | from s to each leaf node v; which is included in
the subtree rooted at uy is no more than (1 + €)A, because
D(Py(s,u1)) + D(TPY, (u1,v;)) < D(TPY, (s,u1)) +
D(TPY, (ur,v:)) < (1 + A 1< < (- 1),

Assume that the first (r — 1) segments of P; have
been considered and the resulting tree is TP{:ll. Now
we consider adding the rth segment P;(u,—1,u,) of P;
to TP/ ' in order to form a new tree TP/ ,. Letw =
LCA(ur—1,u,) be the lowest common ancestor of w,_1
and u, in tree TP{__ll. Then, there are two node-disjoint
paths in TP{:I1 U {P;(up—1,u,)} fromw to u,, which can
further be classified into three cases (see Fig 3).

@ (i) (i)

The path consists of tree edges only. |

The path consists of a segment of P

Figure 3. Add segment P;(u,_1,u,) to TP/ .

(i) w = wur—1. In this case the two paths are
TP '(up—1,u,) consisting of the tree edges of
TP, and Pi(ur—1,ur). If D(TPI 3 (ur—1,ur)) <
D(P;(up—1,ur)), we just ignore  Pj(up_1,ur)
for further consideration because the path de-
lay in TP, from s to wv; is no more than
DITPS s, urr))  + DTPS (uroryur))  +
D(Pi(ur,v;)) < D(TP! (s, ur—1)) + D(P; (up—1,ur) +
Pi(up,v;) < (1 + €)A; otherwise, TP/, is con-
structed by adding P;(u,—1,u,) to TP/5' and re-
moving the tree edge (u,parent(u,)) from TP/}
at the same time. Now we see that the path delay in
TP, from s to each v; which is included in a sub-
tree of TP rooted at w, is no more than (1 + €)A,
because D(TP/5'(s,ur—1)) + D(Pi(ur—1,ur)) +
DTP S (upv;) < DTPSMs,ur1) +
D(TPi(ur—1,ur) + DTPIMunv))(1 + A,

1 < 353 < 4i—-1 (@G) w = wup. In this case
the path P;(ur—1,ur) will not be considered and
TP, = TP{__I1 because the path delay in TP
from s to v; is D(TP/ ' (s,ur)) + D(Pi(ur,v;)) <
D(T P (s,ur—1)) +D(P;(ur—1,ur)) + D(P;(ur, v3)) <
(1 + €)A due to the fact that u, is an ancestor of wu,_;
in TPi’"__ll. (iii)) w # wur—1 and w # u,. There
are two node-disjoint paths in T/ ' U {P;(ur_1,u,}
from w to u,. One is TP/ ' (w,u,) consisting of the
tree edges only, and another is the joint of two paths
TP/ '(w,ur_1) consisting of tree edges only, and
Pi(up_1,u,) at node u,—. If D(TP/Mw,u,)) <
DTP (w,ur1))  +  D(Pi(urt,u)),  then
TP, = TPl.:l1 and P;(ur—_1,ur) will not be con-
sidered because the delay in 77 ; from s to wv; is
D(T P[5 (s,w)) + D(T P[5 (w,ur)) + D(P;(ur, v:)) <
D(TP'(s,w)) +  D(TP!(w,u, 1)) +
D(P;(ur—1,ur)) + D(Pi(ur,v;)) < (14 €)A. Otherwise,
TPy | is constructed by adding the path P;(u,_1,u,) to
TP/ and removing the edge (u.,parent(u,)) from it
at the same time. It is not difficult to show that the path
delay in TP ; from s to each node v; that is included
in the subtree of TP{:ll rooted at u,, iS no greater than
(1 + €)A due to the fact that D(TP/7'(s,w)) +
(TP (w,ur—1))  +  D(Pi(up—1,ur))  +
(TP5 (ur,v;)) < D(TPS(s,w)) +
D(TP (w,up)) + DITPS (urv) < (1 + A,
1<j<i-land1<i<|Dy].

When the last segment (assuming the rth segment) of
P; has been considered, the resulting tree is a directed
tree TP; = TP]_; rooted at s including all nodes in
{v1,v2,...,v,} (C D;,), and the path delay in T'P; from
s to vj is no more than (1 + €)A for all j, 1 < j <
r, and C(TP;) < C(TP_) + C(Papp(s,vi,)\ij)) <
1 C(Papp(s,v2,Mi;)), 1 < = < |Dj;|. We therefore
have the following lemma.

D
D

Lemma 3 Let T} be the light multicast tree in G i rooted
at s including the nodes in D;;, constructed by the sticking
approach, and C(T}) be the cost of T;. Let C* be the opti-
mal cost of the MDCLMT, Then, C(T};) < |D;,|C*. It takes
O(|D;, |n?) time to construct Tj.
Proof Following the similar argument as Lemma 2, it is
easy to see that C'(P,pp(s,vz,Ai;)) < C* with the path
delay (1 + €)A for all v, € D;;. Let TP; be the tree af-
ter adding the path Py, (s, v, Ay, ) to tree TP;_;. Fol-
lowing the construction of T'P; from TP;_4, it is obvious
that C(TP;) < C(TP;—1) + C(Papp(s,'l)i,)\ij)) < iC*,
1 <4 <. Thus, C(T;) = C(TFR) <IC* = |Dy;|C*.

We now analyze the time complexity of the sticking ap-
proach. Assume that the path P; consists of r segments. To
obtain the tree T'P;, there are r stages. At stage 7/, the r’th
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segment of P; is considered, and processing this segment
involves finding a lowest common ancestor in tree T[LII
for a pair of nodes and determining whether or not to add
this segment to TL’II, which takes O(n) time. Thus, it
takes O(r'n) time to construct T'P;. When ' = O(n) in
the worst case, it takes O(n?) time to construct T'P; from
TP;_y. There are | D;;| paths in G, are to be considered.
As aresult, the construction of a light multicast tree T); with
wavelength \;; takes O(|D;, [n?) time. O

We thus have the following theorem.

Theorem 5 Given a directed network G = (V, E, A) with
a given source s and a set D of destination nodes, and an
integral delay A, assume that each link e € E of G has been
assigned a set A(e) (C A) of wavelengths, each wavelength
A € A(e) traversing e incurs a cost w(e, A), and the delay
of traversing e is an integer §(e) (< A). There is an approx-
imation algorithm for the MDCLMT with a performance ra-
tio of | D| and the path delay of (1+€)A. The time complex-
ity of the proposed algorithm is O(kmn/e + |D|n?), where
eis constant, 0 < € < 1.

Proof Following Lemma 3, the solution delivered by the
proposed algorithm is Zflzl C(T;) < Eflzl |D;; |C* =
|D|C*.

The running time of the proposed algorithm is analyzed
as follows. To partition the nodes in D into k' disjoint sub-
sets D;,, apply the Goel et al [4] algorithm for each induced
graph G forany A € A,1 <i; < k,1 < j <k' <k Note
that the Goel et al algorithm [4] takes O(mn/€) time on
each graph G for each A € A. Thus, the time used for the
partition is O(kmn/e). Then, apply the sticking approach
to each subset to construct a light multicast tree. As results,
the k' light multicast trees are constructed, which form a
solution for the MDCLMT. The time used for this step is
O(Zflzl |D;,|n?) = O(|D|n?), following Lemma 3. The
theorem then follows. O
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