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{nt hi baul , | af orest }@ami . uni v-evry.fr

Abstract proximation ratios. But the methods in [5] are off-line, thus
they cannot be used for solving our on-line problem.

In this paper we consider the problem of scheduling on-  Inthe on-line setting (where jobs are revealed and treated
line jobs onk identical machines. Technically, our system one by one) particular variants of TCSP have been studied.
is composed df identical machines and eagbb is defined The version where a job is an interval (i.e. with tight left
by a tripletl’ = (I, r, p), wherel denotes its left border, its and right bordergy = r — [) has been extensively studied.
right border andp its length. When a job is revealed, it can In[2, 3, 4,7, 9, 12], algorithms for this model are proposed.
be rejected or scheduled on one of thenachines. In this More recently, several papers [1, 8, 10, 11] have inves-
last case, it can suppress already scheduled jobs. The goatigated variant of on-line TCSP and have proposed algo-
is to maximize theizeof the schedule (i.e. theumber of rithms for the case where jobs have not tight left and right
jobsscheduled and not (later) suppressed). We propose anborders. But all these papers only consider the particular

algorithm calledOLUW . Itis (4 min (5, [log,(v)] + 1))- case of a single machine.
competitive, wherg is the number of different job lengths In this paper, we propose the first on-line algorithm solv-
appearing in the on-line input sequence ands the ra- ing TCSP for theunit weightmodel (i.e. for the maximiza-

tio between the length of the longest job and the length oftion of the size of the schedule) @ridentical machines (in
the shortest job in the sequence. To the best of our knowl-part, our work is more general than previous works on a
edge,OLUW is the first on-line algorithm maximizing the single machine).

size with guarantees on the competitive ratio for the time-

constrained scheduling problem éridentical machines. Definitions. We describe now more precisely our notations.

When a jobl’ = (I, r,p) is revealed, all informations in the
triplet (1, r, p) are revealed. Job is said to bescheduledn
machinej if it continuously occupies maching between

1 |ntl‘0dUCtI0n lo andT‘O with: p =10 — lo and! < lop <rg <. The
resulting numerical intervat = [ly, ) is called thenter-
val associatedo I'. Note that the length of is p and that

o C [l,r) (i.e. jobT is scheduled between its two borders
on a lengthp). A schedulesS is feasibleif on any machine,
no scheduled jobs (i.e. their associated intervals) intersect.
The size|S| of S is the number of scheduled jobs. In the
following, we will denote byS; the sub-part of a schedule

and two jobs scheduled on the same machine cannot inter-S on maching/,

We consider the problem of scheduling on-ljobson &
identical machines (for any > 1). We define a jold" by
the tripletl’ = (I, r, p), wherel is theleft border, r theright
borderandp < r — [ thelengthof I". A job is scheduled on
machinej if it occupies maching on a continuous interval
of lengthp between its two borders. Jobs are independent

Given any on-line sequence of jobs,...,[',,... re-
sect. N : ;
vealed one by one in this order, any on-line algorithm must
Previous works. This problem is known as th&ime- construct at each stepfaasibleschedule ork machines.

Constrained Scheduling Problem (TCSRhe aim is to In our model, when a new job = (I, r,p) is revealed, an
maximize the weight of the constructed schedule (i.e. the on-line algorithm camejectit or schedulét. In this second
sum of the weight of scheduled jobs). There are several catcase, if it scheduleE as the intervab on machine number
egories of weights: the same for all jobs (corresponding to j, it interruptsall the already scheduled intervals intersect-
the maximization of theizeof the schedule), equal to the ing o on this machine (rejected jobs and interrupted inter-
length or arbitrary. In [5], all these variants of TCSP are vals are definitively lost and do not appear in the current
studied in the off-line setting. As each variant is NP-hard, and future schedules). In order to evaluate the quality of
approximation algorithms are proposed, with constant ap-an on-line scheduling algorithm, we introduce the follow-



ing definition of the competitive ratio (see [6] for references
on competitive ratios).

Definition 1 (Competitive ratio) Let I'y,...,I',,... be
any on-line sequence of jobs revealed in this order to on-
line Algorithm A. Let.S™ be the corresponding schedule on
k machines constructed by Algorithmat stepn > 1. Let
S™* be the (optimal off-line) maximum size schedulekon
machines of the set of jo$',, ..., ', }. Algorithm A has

a competitive ratio ot (or is c-competitive) if and only if;

Vn >1, ¢-|S™ > |S™

Application to networks. Our model can be applied (but
is not limited) to the following situation. Consider a link in
a communication network, made bfsub-links of identical
capacities (for example an optical fiber in whicindepen-

Note that at each step, Algorith@LU W constructs a fea-
sible schedule.

To simplify the notations, for every interval, we say
thato satisfies conglo) if and only if (Vo' € S;, oNo’ =
0) or (300 € S;, 0 C o9 and2p(c) < p(oy)). By using
the following algorithm (called B for Important Borders,
running on one machine), finding an interealC [/, ) of
lengthp satisfying congl(o) if there exists one (correspond-
ing to lines 4 and 5 of Algorithn® LUW) can be done in
polynomial time for each maching

Important Borders Algorithm B

LetT' = (I, r,p) be the new revealed job.

Letj, 1 < j < k be the number of the machine

currently checked. On machine number
Let{[l1,71),...,[ln, )} be the

dent frequencies can be used simultaneously). To schedule
on-line requests (revealed one by one) on this link, an on-
line algorithm has to choose which one is accepted and on
which sub-link. In this application, one request is defined
by a length (corresponding to the duration of transmission
of the request on one sub-link), a release date and a deadline
(after which completing the request is of no use). Here, we

set of intervals already scheduled
on machine numbef such that
l<rm<lh<ro< - <l,<rp<r.
Letl,l1,7r1,lo0,79, ..., 1,1y be

the sequence adfmportant borders
Let d be the firstimportant border

want to maximize the number of accepted requests.

Outline of the paper. In Section 2, we propose an
on-line algorithm (calledOLUW), solving TCSP on

k identical machines. In Section 3, we prove it is
(4min (3, [logy(y)| + 1))-competitive, whereg is the
number of different job lengths appearing in the on-line in-
put sequence angl is the ratio between the length of the
longest job and the length of the shortest job in the input

sequence. In the particular case of a single machine sys

tem (i.e.k = 1), our algorithm has (in order of magnitude)
the best possible competitive ratio, since it is proved in [9]
that even for the interval model, no on-line algorithm has a
competitive ratio better thaf2(log ).

2 Ouralgorithm OLUW

We define AlgorithmO LU W as follows.

On-line Unit Weight Algorithm O LUW
Let S be the current schedule made
of k sub-scheduleS; (1 < j < k),
one on each machine numhbeand
letT" = (I, r,p) be the new revealed job.
I F there exists a machine numbger
such that there exists an interval
o C [I,r) of lengthp satisfying:
(Vo' € Sj, ono’ =0)or
(Joo € S}, 0 C g9 and2p(o) < p(oy))
THEN interrupto (if necessary) and
scheduld” as interval- on machingj
ELSE rejectl’.

satisfying[d,d + p) C [I,r)
and cond([d, d + p)).
IF such ad exists
THEN there exists an interval
o =[d,d+ p) C [l,r) satisfying cong(o)
ELsE there is no interva C [I,7)
of lengthp satisfying congl(o).

The following Theorem proves the correctness of Algo-
rithm I B.

Theorem 1 For every machine number (1 < 5 < k),
Algorithm I B finds an intervab = [d,d + p) C [I,r) of
lengthp satisfying cong([d, d+p)) if and only if there exists
one.

Proof. Of course, if AlgorithmI B finds an intervab =
[d,d +p) C [l,r) of lengthp satisfying cong([d, d + p)),
then there exists one.

We now prove that if there exists an intervalC [I,r)
of length p satisfying cond(c), then AlgorithmIB finds
one. Indeed, suppose, by contradiction, that there exists an
interval [y, 7o) C [, r) of lengthp (i.e. withrg — Iy = p)
satisfying cong([lo, 7)) and that AlgorithmIB finds no
interval. Letdy € {l,11,71,l2,72,...,ln,r,} be the largest
important border such thaty < [y. By definition of Algo-
rithm I B, the intervalldy, dy + p) is checked. Let us now
consider the two following cases:

e If [lyp,70) intersects no interval scheduled on machine
j. As dy is the largest important border such that
do < lp and aslly,ro) and [dy,do + p) both have
lengthp, [dy, dy + p) intersects no interval scheduled



on machinej. This means thaldy, dy + p) satisfies
cond;([do, do + p)). Thus, AlgorithmI B chooses this
interval (contradiction).

e Otherwise, there exists an interval scheduled on
machinej intersecting[lo, 7). As [lp,ro) Satisfies
cond;([lo, o)), we havelly, 7o) C o. Moreover, asl
is the largest important border such tligt < [, and
asl[ly,m9) and[dy, dy + p) both have lengtl, we also
have[dy, dy+p) C o. This means thdtly, dy +p) sat-
isfies cond([do, do+p)). Thus, Algorithm/ B chooses
this interval (contradiction).

O

3 Analysis of Algorithm OLUW

In the following, we consider any on-line sequence
Iy,...,I'y,... asinput. In order to analyze its competitive
ratio, we will compareS (the schedule given by Algorithm
OLUW on k machines at step for the input sequence
Iy,...,T,) with S* (the optimal schedule given gnma-
chines at step for the input se{T'y,..., ', }).

Main result. In order to express our main result, we need
the following definitions of the parametefsand~.

Definition 2 For every on-line sequencEy,...,T",, we
define as the number of different job lengths appearing
inly,...,T:

8=

U

rery,...I',

{p(I)}

Definition 3 For every on-line sequencEy,...,I",, we

definey as the ratio between the length of the longest job

and the length of the shortest joblih, ..., T';:

= max p(F)
T {pm

Our main result is the following theorem, expressed with
the previous notations, proving that AlgoriththlLUW is
(4min (5, [logy(y)| + 1))-competitive.

I,T € {rl,...,rn}}

Theorem 2 4min (8, [log, (7)) + 1) - S| > |5*|

In order to prove Theorem 2, we need the following defini-
tions.

Notation 1 For everyj, (1 < j < k), letS; (resp. S7) be
the sub-schedule ¢f (resp..S*) on machine numbey.

Notation 2 For every machine number(1 < j < k), let

Note that two intervals if; can overlap, since in general,
Tj; is not a feasible schedule.

Definition 4 For every machine number(1 < j < k), we
definess# and.S¥” as follows:

e LetS:4 be the sub-schedule 6f such thats# C S
and for everyr, € S;*, there exister, € U, ;<. T}
such thato, and o, are associated to the same job
I" (i.e. T" is scheduled irSJ’fA as intervalo, and has
been accepted and scheduled by AlgorithinlU W as
interval o;,).

. LetS;-‘B be the sub-schedule 6f such thatS;‘B c Sy
and for everys, € 537, there is nary, € Ui<j<r Tj
such thato, and o}, are associated to the same job
(i.e. T is scheduled irS;B as intervalo, but has been
rejected by AlgorithnO LUW).

Note that we haveéss4 N S35 = andS;4 U S¥P = S7.

Definition 5 (The function f) Letj be any machine num-
ber 1 < j < k). LetI', be the new revealed job sched-
uled in the optimal solution as intervalon machinej and
rejected byOLUW (i.e. z € S;-‘B). Let S; be the cur-
rent sub-schedule of on machinej whenT',, is revealed
and let7}; be the set of all associated intervals scheduled
by AlgorithmOLUW on machine numbejf beforeT,, is
revealed (including the intervals that have been scheduled
and later interrupted). Note that both; and T} are con-
sidered here as they currently are when jopis revealed.
LetY, ={y € S;: (p(y) <2p(z)andx Cy)or (xNy #

0 and x ¢ y)}. We define the functiofias follows

f : S;B — Tj
x +— y=][l,ry)suchthaty € Y,
andl, = min{l,/ : ¢’ € Y, }

Note that we wany be such thal, = min{l,, : ' €

Y.} just to ensure that there is only oge= f(z). We
now introduce some technical Lemmas in order to prove
Theorem 2.

Lemma 1 For every machine number(1 < j < k), for
every interval: € S;”, we have

Hy:y=/f2)} =1

Proof. LetI', be the new revealed job schedule(S;hB as
interval z. LetS; be the current sub-schedule $fon ma-
chinej whenT',, is revealed. Since € S;‘B, T', has been
rejected by AlgorithmOLUW. In particular, this means
that AlgorithmO LU W has rejected’, of machine;j. Thus,
by definition of OLUW and by Theorem 1, there exists
yo € S; suchthatp(yo) < 2p(z) and x C yo) or (zNyo #

T} be the set of associated intervals scheduled by Algorithm® and = ¢ yo). If there exist several suchy, choose the

OLUW on machine numbet, including the intervals that
have been scheduled and later interrupted.

one with the minimum left border. By definition ¢f, we
haveyy = f(x), thus{y : y = f(z)}| = 1. O



Lemma 2 Letj be any machine numbet € j < k). Let
I',. be the new revealed job scheduledSiff as intervalzx.
Let.S; be the current sub-schedule $fon machinej when

I'; is revealed and lef’; be the set of all associated inter-

vals scheduled by Algorith@ LUW on machine number

before thafl",, is revealed (including the intervals that have
been scheduled and later interrupted). For every interval

y € T;, we have

Hz:y=f(2)} <3

Proof. By contradiction, suppose that there exigts T
such that{z : y = f(x)}| > 4. We denote by{z; =
[ll,’l"l),l‘g = [ZQ,’/‘Q), ey Iy = [ln,’/‘n)} (Wlth n > 4) the
set of intervals such that), ., {=:} = {z : vy = f(2)},
ordered by increasing left borders (ilg.< lo < -+ < ).
Asy = f(x), we have

xNy #0 1)

Moreover, sincer € SJ’-‘B C §7, foreverya,b (1 < a <
b < n), we haver,Nxzy = 0 (becausé‘;k is a valid schedule
on one machine). Thus, we have

11 <lp<rg<lg<--<rp_1<ly (2
By (1) and (2), we obtain
Vi, 2<l<n—-1,z,Cuy 3)

Without loss of generality, suppose thatz;) =
min {p(x) tx € U2§l§n—l{xl}}' Thus, we have

(n—2)plza) < 75, plar)

= 2p(z2) < Y5, plw)
(because, > 4)

IN

= 2p(2) P(y)

(by (3))
This contradicts the fact thgt= f(x2) (indeed, by defini-

tion of f, we havep(y) < 2p(z2)).
O

Lemma3 |S*| <4 ¢, [T}

Proof. By Lemma 1, for every maching(1 < j < k), we
have{z : y € Tj and y = f(x)} = S;”. Thus, we have

{e:yeTyjandy = f(x)}] = |S;7] )
By Lemma 2, we have
{z:yeTjandy = f(z)}| < 3|T}] )
By (4) and (5), we obtain
57| < 3|7y (6)

Two cases may happen:

o If [S*[ < 43F | |S4|. By definition ofSi4, Vo, €
S34, 30, € U,<;<, T; such thato, ando, come
from the same joli’. Thus, we havé " | [S:4| <

ijl |T;|. We obtain:
k
571 <431y
j=1

o If |S*| > 4X°F_ 54|, By definition of St and
S:P, we haveS:4 N S:P = g andS;4 U S1P = S*.
Thus, we obtain:

5] = ‘XS;]I: |S;:| + 3 18P
= 5% < Tk+zj:1\s;3|
= gs7 < Ej:1|S;B|
= S < Ak [siP
= |57 < 433 |T5 (by (6))

O

Lemma 4 For every machine number(l < j < k), we
have

min (4, [logy(7)] +1) - [S;] = |Tj]

Proof. For everys € S;, we define the sequence of as-
sociated intervals “rooted” ia by R(c) = x1,x9,...,%;
wheres = z; andi is the largest integer such that for every
1 (1 <I<i-1),x has beenreplaced by, during the
execution of AlgorithmO LU W . By definition of OLUW,
we have

L pm) i
p(zi(0))
= v > 2!
(becausey = max{% :T,TV € Fl,...,l“n} and z;
andz; are intervals associated to jobs{ifhy,...,T',})

= |logy(v)] = [R(o)] =1

(becaus¢R(o)| = i is an integer)
Thus, we obtain

[loga(7)] +1 = |R(0)] @)



By definition of 3, we have

p o= U oy}
re{rs,....'n}
> | U )}
o’€R(o)
—  |R(0)| (because, by definition @LUW,
a p(z1) > plag) > - > p(z;))
Thus, we obtain
B> |R(o)| ®)

By definition of S;, T; andR(o ), we have:

U R(o) =

o€S;

= | Ro)| = I

o€S;
= Y IR = |1y
o€S;
= Z min (8, [logy ()] +1) > |T]
o€S;
(by (7) and (8))
= min(f, [logy(7)] +1) - |S5;| = |T}]

O
We are now able to give a proof of Theorem 2.

Proof of Theorem 2. By Lemmas 3 and 4, we have

|5*| < Efl |71
43 ;- min (8, [logy(v)] +1) - |5}
4mm(6 [loga(v)] +1) - |5]

A

3.1 Conclusion

We have proposed a4min(g,|log,(y)] + 1))-
competitive on-line algorithm (called LUW), solving

TCSP onk identical machines, wherg is the number of
different job lengths appearing in the on-line input sequence
and~ is the ratio between the length of the longest job and
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