
HAL Id: hal-00341386
https://hal.science/hal-00341386

Submitted on 18 Jul 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On-line Time-Constrained Scheduling Problem for the
Size on k machines

Nicolas Thibault, Christian Laforest

To cite this version:
Nicolas Thibault, Christian Laforest. On-line Time-Constrained Scheduling Problem for the Size on
k machines. ISPAN, 2005, United States. pp.20–24, �10.1109/ISPAN.2005.65�. �hal-00341386�

https://hal.science/hal-00341386
https://hal.archives-ouvertes.fr

On-line Time-Constrained Scheduling Problem for the Size onk machines

Nicolas Thibault and Christian Laforest
Tour Evry 2, LaMI, Universit́e d’Evry, 523 place des terrasses, 91000 EVRY France

{nthibaul,laforest}@lami.univ-evry.fr

Abstract

In this paper we consider the problem of scheduling on-
line jobs onk identical machines. Technically, our system
is composed ofk identical machines and eachjob is defined
by a tripletΓ = (l, r, p), wherel denotes its left border,r its
right border andp its length. When a job is revealed, it can
be rejected or scheduled on one of thek machines. In this
last case, it can suppress already scheduled jobs. The goal
is to maximize thesizeof the schedule (i.e. thenumber of
jobsscheduled and not (later) suppressed). We propose an
algorithm calledOLUW . It is (4min (β, ⌊log2(γ)⌋ + 1))-
competitive, whereβ is the number of different job lengths
appearing in the on-line input sequence andγ is the ra-
tio between the length of the longest job and the length of
the shortest job in the sequence. To the best of our knowl-
edge,OLUW is the first on-line algorithm maximizing the
size with guarantees on the competitive ratio for the time-
constrained scheduling problem onk identical machines.

1 Introduction

We consider the problem of scheduling on-linejobsonk

identical machines (for anyk ≥ 1). We define a jobΓ by
the tripletΓ = (l, r, p), wherel is theleft border, r theright
borderandp ≤ r − l the lengthof Γ. A job is scheduled on
machinej if it occupies machinej on a continuous interval
of lengthp between its two borders. Jobs are independent
and two jobs scheduled on the same machine cannot inter-
sect.

Previous works. This problem is known as theTime-
Constrained Scheduling Problem (TCSP). The aim is to
maximize the weight of the constructed schedule (i.e. the
sum of the weight of scheduled jobs). There are several cat-
egories of weights: the same for all jobs (corresponding to
the maximization of thesizeof the schedule), equal to the
length or arbitrary. In [5], all these variants of TCSP are
studied in the off-line setting. As each variant is NP-hard,
approximation algorithms are proposed, with constant ap-

proximation ratios. But the methods in [5] are off-line, thus
they cannot be used for solving our on-line problem.

In the on-line setting (where jobs are revealed and treated
one by one) particular variants of TCSP have been studied.
The version where a job is an interval (i.e. with tight left
and right borders,p = r − l) has been extensively studied.
In [2, 3, 4, 7, 9, 12], algorithms for this model are proposed.

More recently, several papers [1, 8, 10, 11] have inves-
tigated variant of on-line TCSP and have proposed algo-
rithms for the case where jobs have not tight left and right
borders. But all these papers only consider the particular
case of a single machine.

In this paper, we propose the first on-line algorithm solv-
ing TCSP for theunit weightmodel (i.e. for the maximiza-
tion of the size of the schedule) onk identical machines (in
part, our work is more general than previous works on a
single machine).

Definitions. We describe now more precisely our notations.
When a jobΓ = (l, r, p) is revealed, all informations in the
triplet (l, r, p) are revealed. JobΓ is said to bescheduledon
machinej if it continuously occupies machinej between
l0 andr0 with: p = r0 − l0 and l ≤ l0 ≤ r0 ≤ r. The
resulting numerical intervalσ = [l0, r0) is called theinter-
val associatedto Γ. Note that the length ofσ is p and that
σ ⊆ [l, r) (i.e. jobΓ is scheduled between its two borders
on a lengthp). A scheduleS is feasibleif on any machine,
no scheduled jobs (i.e. their associated intervals) intersect.
The size|S| of S is the number of scheduled jobs. In the
following, we will denote bySj the sub-part of a schedule
S on machinej.

Given any on-line sequence of jobsΓ1, . . . ,Γn, . . . re-
vealed one by one in this order, any on-line algorithm must
construct at each step afeasibleschedule onk machines.
In our model, when a new jobΓ = (l, r, p) is revealed, an
on-line algorithm canreject it or scheduleit. In this second
case, if it schedulesΓ as the intervalσ on machine number
j, it interruptsall the already scheduled intervals intersect-
ing σ on this machine (rejected jobs and interrupted inter-
vals are definitively lost and do not appear in the current
and future schedules). In order to evaluate the quality of
an on-line scheduling algorithm, we introduce the follow-

ing definition of the competitive ratio (see [6] for references
on competitive ratios).

Definition 1 (Competitive ratio) Let Γ1, . . . , Γn, . . . be
any on-line sequence of jobs revealed in this order to on-
line AlgorithmA. LetSn be the corresponding schedule on
k machines constructed by AlgorithmA at stepn ≥ 1. Let
Sn∗ be the (optimal off-line) maximum size schedule onk

machines of the set of jobs{Γ1, . . . ,Γn}. AlgorithmA has
a competitive ratio ofc (or is c-competitive) if and only if:

∀n ≥ 1, c · |Sn| ≥ |Sn∗|

Application to networks. Our model can be applied (but
is not limited) to the following situation. Consider a link in
a communication network, made ofk sub-links of identical
capacities (for example an optical fiber in whichk indepen-
dent frequencies can be used simultaneously). To schedule
on-line requests (revealed one by one) on this link, an on-
line algorithm has to choose which one is accepted and on
which sub-link. In this application, one request is defined
by a length (corresponding to the duration of transmission
of the request on one sub-link), a release date and a deadline
(after which completing the request is of no use). Here, we
want to maximize the number of accepted requests.

Outline of the paper. In Section 2, we propose an
on-line algorithm (calledOLUW), solving TCSP on
k identical machines. In Section 3, we prove it is
(4min (β, ⌊log2(γ)⌋ + 1))-competitive, whereβ is the
number of different job lengths appearing in the on-line in-
put sequence andγ is the ratio between the length of the
longest job and the length of the shortest job in the input
sequence. In the particular case of a single machine sys-
tem (i.e.k = 1), our algorithm has (in order of magnitude)
the best possible competitive ratio, since it is proved in [9]
that even for the interval model, no on-line algorithm has a
competitive ratio better thanΩ(log γ).

2 Our algorithm OLUW

We define AlgorithmOLUW as follows.

On-line Unit Weight Algorithm -OLUW

Let S be the current schedule made
of k sub-schedulesSj (1 ≤ j ≤ k),
one on each machine numberj and
let Γ = (l, r, p) be the new revealed job.

IF there exists a machine numberj

such that there exists an interval
σ ⊆ [l, r) of lengthp satisfying:

(∀σ′ ∈ Sj , σ ∩ σ′ = ∅) or
(∃σ0 ∈ Sj , σ ⊂ σ0 and2p(σ) ≤ p(σ0))
THEN interruptσ0 (if necessary) and
scheduleΓ as intervalσ on machinej
ELSE rejectΓ.

Note that at each step, AlgorithmOLUW constructs a fea-
sible schedule.

To simplify the notations, for every intervalσ, we say
thatσ satisfies condj(σ) if and only if (∀σ′ ∈ Sj , σ ∩ σ′ =
∅) or (∃σ0 ∈ Sj , σ ⊂ σ0 and2p(σ) ≤ p(σ0)). By using
the following algorithm (calledIB for Important Borders,
running on one machine), finding an intervalσ ⊆ [l, r) of
lengthp satisfying condj(σ) if there exists one (correspond-
ing to lines 4 and 5 of AlgorithmOLUW) can be done in
polynomial time for each machinej.

Important Borders Algorithm -IB

Let Γ = (l, r, p) be the new revealed job.
Let j, 1 ≤ j ≤ k be the number of the machine
currently checked. On machine numberj:

Let {[l1, r1), . . . , [ln, rn)} be the
set of intervals already scheduled
on machine numberj such that
l < r1 ≤ l2 < r2 ≤ · · · ≤ ln < rn < r.
Let l, l1, r1, l2, r2, . . . , ln, rn be
the sequence ofimportant borders.
Let d be the first important border
satisfying[d, d + p) ⊆ [l, r)
and condj([d, d + p)).
IF such ad exists

THEN there exists an interval
σ = [d, d + p) ⊆ [l, r) satisfying condj(σ)
ELSE there is no intervalσ ⊆ [l, r)
of lengthp satisfying condj(σ).

The following Theorem proves the correctness of Algo-
rithm IB.

Theorem 1 For every machine numberj (1 ≤ j ≤ k),
Algorithm IB finds an intervalσ = [d, d + p) ⊆ [l, r) of
lengthp satisfying condj([d, d+p)) if and only if there exists
one.

Proof. Of course, if AlgorithmIB finds an intervalσ =
[d, d + p) ⊆ [l, r) of lengthp satisfying condj([d, d + p)),
then there exists one.

We now prove that if there exists an intervalσ ⊆ [l, r)
of lengthp satisfying condj(σ), then AlgorithmIB finds
one. Indeed, suppose, by contradiction, that there exists an
interval [l0, r0) ⊆ [l, r) of lengthp (i.e. with r0 − l0 = p)
satisfying condj([l0, r0)) and that AlgorithmIB finds no
interval. Letd0 ∈ {l, l1, r1, l2, r2, . . . , ln, rn} be the largest
important border such thatd0 ≤ l0. By definition of Algo-
rithm IB, the interval[d0, d0 + p) is checked. Let us now
consider the two following cases:

• If [l0, r0) intersects no interval scheduled on machine
j. As d0 is the largest important border such that
d0 ≤ l0 and as[l0, r0) and [d0, d0 + p) both have
lengthp, [d0, d0 + p) intersects no interval scheduled

2

on machinej. This means that[d0, d0 + p) satisfies
condj([d0, d0 + p)). Thus, AlgorithmIB chooses this
interval (contradiction).

• Otherwise, there exists an intervalσ scheduled on
machinej intersecting[l0, r0). As [l0, r0) satisfies
condj([l0, r0)), we have[l0, r0) ⊆ σ. Moreover, asd0

is the largest important border such thatd0 ≤ l0 and
as[l0, r0) and[d0, d0 + p) both have lengthp, we also
have[d0, d0+p) ⊆ σ. This means that[d0, d0+p) sat-
isfies condj([d0, d0+p)). Thus, AlgorithmIB chooses
this interval (contradiction).

¤

3 Analysis of Algorithm OLUW

In the following, we consider any on-line sequence
Γ1, . . . ,Γn, . . . as input. In order to analyze its competitive
ratio, we will compareS (the schedule given by Algorithm
OLUW on k machines at stepn for the input sequence
Γ1, . . . ,Γn) with S∗ (the optimal schedule given onk ma-
chines at stepn for the input set{Γ1, . . . ,Γn}).

Main result. In order to express our main result, we need
the following definitions of the parametersβ andγ.

Definition 2 For every on-line sequenceΓ1, . . . ,Γn, we
defineβ as the number of different job lengths appearing
in Γ1, . . . ,Γn:

β =

∣

∣

∣

∣

∣

∣

⋃

Γ∈Γ1,...,Γn

{p(Γ)}

∣

∣

∣

∣

∣

∣

Definition 3 For every on-line sequenceΓ1, . . . ,Γn, we
defineγ as the ratio between the length of the longest job
and the length of the shortest job inΓ1, . . . ,Γn:

γ = max

{

p(Γ)

p(Γ′)
: Γ, Γ′ ∈ {Γ1, . . . ,Γn}

}

Our main result is the following theorem, expressed with
the previous notations, proving that AlgorithmOLUW is
(4min (β, ⌊log2(γ)⌋ + 1))-competitive.

Theorem 2 4min (β, ⌊log2(γ)⌋ + 1) · |S| ≥ |S∗|

In order to prove Theorem 2, we need the following defini-
tions.

Notation 1 For everyj, (1 ≤ j ≤ k), let Sj (resp. S∗
j) be

the sub-schedule ofS (resp.S∗) on machine numberj.

Notation 2 For every machine numberj (1 ≤ j ≤ k), let
Tj be the set of associated intervals scheduled by Algorithm
OLUW on machine numberj, including the intervals that
have been scheduled and later interrupted.

Note that two intervals inTj can overlap, since in general,
Tj is not a feasible schedule.

Definition 4 For every machine numberj (1 ≤ j ≤ k), we
defineS∗A

j andS∗B
j as follows:

• LetS∗A
j be the sub-schedule ofS∗

j such thatS∗A
j ⊆ S∗

j

and for everyσa ∈ S∗A
j , there existsσb ∈

⋃

1≤j≤k Tj

such thatσa and σb are associated to the same job
Γ (i.e. Γ is scheduled inS∗A

j as intervalσa and has
been accepted and scheduled by AlgorithmOLUW as
intervalσb).

• LetS∗B
j be the sub-schedule ofS∗

j such thatS∗B
j ⊆ S∗

j

and for everyσa ∈ S∗B
j , there is noσb ∈

⋃

1≤j≤k Tj

such thatσa andσb are associated to the same jobΓ
(i.e. Γ is scheduled inS∗B

j as intervalσa but has been
rejected by AlgorithmOLUW).

Note that we haveS∗A
j ∩ S∗B

j = ∅ andS∗A
j ∪ S∗B

j = S∗
j .

Definition 5 (The function f) Let j be any machine num-
ber (1 ≤ j ≤ k). Let Γx be the new revealed job sched-
uled in the optimal solution as intervalx on machinej and
rejected byOLUW (i.e. x ∈ S∗B

j). Let Sj be the cur-
rent sub-schedule ofS on machinej whenΓx is revealed
and letTj be the set of all associated intervals scheduled
by AlgorithmOLUW on machine numberj beforeΓx is
revealed (including the intervals that have been scheduled
and later interrupted). Note that bothSj andTj are con-
sidered here as they currently are when jobΓx is revealed.
LetYx = {y ∈ Sj : (p(y) < 2p(x) and x ⊆ y) or (x∩y 6=
∅ and x * y)}. We define the functionf as follows

f : S∗B
j → Tj

x 7→ y = [ly, ry) such thaty ∈ Yx

andly = min{ly′ : y′ ∈ Yx}

Note that we wanty be such thatly = min{ly′ : y′ ∈
Yx} just to ensure that there is only oney = f(x). We
now introduce some technical Lemmas in order to prove
Theorem 2.

Lemma 1 For every machine numberj (1 ≤ j ≤ k), for
every intervalx ∈ S∗B

j , we have

|{y : y = f(x)}| = 1

Proof. Let Γx be the new revealed job scheduled inS∗B
j as

intervalx. Let Sj be the current sub-schedule ofS on ma-
chinej whenΓx is revealed. Sincex ∈ S∗B

j , Γx has been
rejected by AlgorithmOLUW . In particular, this means
that AlgorithmOLUW has rejectedΓx of machinej. Thus,
by definition of OLUW and by Theorem 1, there exists
y0 ∈ Sj such that(p(y0) < 2p(x) and x ⊆ y0) or (x∩y0 6=
∅ and x * y0). If there exist several suchy0, choose the
one with the minimum left border. By definition off , we
havey0 = f(x), thus|{y : y = f(x)}| = 1. ¤

3

Lemma 2 Let j be any machine number (1 ≤ j ≤ k). Let
Γx be the new revealed job scheduled inS∗B

j as intervalx.
LetSj be the current sub-schedule ofS on machinej when
Γx is revealed and letTj be the set of all associated inter-
vals scheduled by AlgorithmOLUW on machine numberj
before thatΓx is revealed (including the intervals that have
been scheduled and later interrupted). For every interval
y ∈ Tj , we have

|{x : y = f(x)}| ≤ 3

Proof. By contradiction, suppose that there existsy ∈ Tj

such that|{x : y = f(x)}| ≥ 4. We denote by{x1 =
[l1, r1), x2 = [l2, r2), . . . , xn = [ln, rn)} (with n ≥ 4) the
set of intervals such that

⋃

1≤l≤n{xl} = {x : y = f(x)},
ordered by increasing left borders (i.e.l1 < l2 < · · · < ln).
As y = f(x), we have

x ∩ y 6= ∅ (1)

Moreover, sincex ∈ S∗B
j ⊆ S∗

j , for everya, b (1 ≤ a ≤
b ≤ n), we havexa∩xb = ∅ (becauseS∗

j is a valid schedule
on one machine). Thus, we have

r1 ≤ l2 < r2 ≤ l3 < · · · < rn−1 ≤ ln (2)

By (1) and (2), we obtain

∀l, 2 ≤ l ≤ n − 1, xl ⊂ y (3)

Without loss of generality, suppose thatp(x2) =

min
{

p(x) : x ∈
⋃

2≤l≤n−1{xl}
}

. Thus, we have

(n − 2)p(x2) ≤
∑n−1

l=2 p(xl)

⇒ 2p(x2) ≤
∑n−1

l=2 p(xl)

(becausen ≥ 4)

⇒ 2p(x2) ≤ p(y)

(by (3))

This contradicts the fact thaty = f(x2) (indeed, by defini-
tion of f , we havep(y) < 2p(x2)).

¤

Lemma 3 |S∗| ≤ 4
∑k

j=1 |Tj |

Proof. By Lemma 1, for every machinej (1 ≤ j ≤ k), we
have{x : y ∈ Tj and y = f(x)} = S∗B

j . Thus, we have

|{x : y ∈ Tj and y = f(x)}| = |S∗B
j | (4)

By Lemma 2, we have

|{x : y ∈ Tj and y = f(x)}| ≤ 3|Tj | (5)

By (4) and (5), we obtain

|S∗B
j | ≤ 3|Tj | (6)

Two cases may happen:

• If |S∗| ≤ 4
∑k

j=1 |S
∗A
j |. By definition ofS∗A

j , ∀σa ∈

S∗A
j , ∃σb ∈

⋃

1≤j≤k Tj such thatσa and σb come

from the same jobΓ. Thus, we have
∑k

j=1 |S
∗A
j | ≤

∑k

j=1 |Tj |. We obtain:

|S∗| ≤ 4

k
∑

j=1

|Tj |

• If |S∗| ≥ 4
∑k

j=1 |S
∗A
j |. By definition of S∗A

j and
S∗B

j , we haveS∗A
j ∩ S∗B

j = ∅ andS∗A
j ∪ S∗B

j = S∗
j .

Thus, we obtain:

|S∗| =
∑k

j=1 |S
∗A
j | +

∑k

j=1 |S
∗B
j |

⇒ |S∗| ≤ |S∗|
4 +

∑k

j=1 |S
∗B
j |

⇒ 3
4 |S

∗| ≤
∑k

j=1 |S
∗B
j |

⇒ |S∗| ≤ 4
3

∑k

j=1 |S
∗B
j |

⇒ |S∗| ≤ 4
∑k

j=1 |Tj | (by (6))

¤

Lemma 4 For every machine numberj (1 ≤ j ≤ k), we
have

min (β, ⌊log2(γ)⌋ + 1) · |Sj | ≥ |Tj |

Proof. For everyσ ∈ Sj , we define the sequence of as-
sociated intervals “rooted” inσ by R(σ) = x1, x2, . . . , xi

whereσ = xi andi is the largest integer such that for every
l (1 ≤ l ≤ i − 1), xl has been replaced byxl+1 during the
execution of AlgorithmOLUW . By definition ofOLUW ,
we have

p(x1) ≥ 2p(x2) ≥ 22p(x3) ≥ · · · ≥ 2i−1p(xi)

⇒
p(x1(σ))

p(xi(σ))
≥ 2i−1

⇒ γ ≥ 2i−1

(becauseγ = max
{

p(Γ)
p(Γ′) : Γ, Γ′ ∈ Γ1, . . . ,Γn

}

and x1

andxi are intervals associated to jobs in{Γ1, . . . ,Γn})

⇒ ⌊log2(γ)⌋ ≥ |R(σ)| − 1

(because|R(σ)| = i is an integer)

Thus, we obtain

⌊log2(γ)⌋ + 1 ≥ |R(σ)| (7)

4

By definition ofβ, we have

β =

∣

∣

∣

∣

∣

∣

⋃

Γ∈{Γ1,...,Γn}

{p(Γ)}

∣

∣

∣

∣

∣

∣

≥

∣

∣

∣

∣

∣

∣

⋃

σ′∈R(σ)

{p(σ′)}

∣

∣

∣

∣

∣

∣

= |R(σ)|
(because, by definition ofOLUW ,
p(x1) > p(x2) > · · · > p(xi))

Thus, we obtain
β ≥ |R(σ)| (8)

By definition ofSj , Tj andR(σ), we have:

⋃

σ∈Sj

R(σ) = Tj

⇒

∣

∣

∣

∣

∣

∣

⋃

σ∈Sj

R(σ)

∣

∣

∣

∣

∣

∣

= |Tj |

⇒
∑

σ∈Sj

|R(σ)| ≥ |Tj |

⇒
∑

σ∈Sj

min (β, ⌊log2(γ)⌋ + 1) ≥ |Tj |

(by (7) and (8))

⇒ min (β, ⌊log2(γ)⌋ + 1) · |Sj | ≥ |Tj |

¤

We are now able to give a proof of Theorem 2.

Proof of Theorem 2. By Lemmas 3 and 4, we have
|S∗| ≤ 4

∑k

j=1 |Tj |

≤ 4
∑k

j=1 min (β, ⌊log2(γ)⌋ + 1) · |Sj |
= 4min (β, ⌊log2(γ)⌋ + 1) · |S|

¤

3.1 Conclusion

We have proposed a(4min(β, ⌊log2(γ)⌋ + 1))-
competitive on-line algorithm (calledOLUW), solving
TCSP onk identical machines, whereβ is the number of
different job lengths appearing in the on-line input sequence
andγ is the ratio between the length of the longest job and
the length of the shortest job in the input sequence (note that
Algorithm OLUW do not need to know neitherβ norγ be-
forehand). We underline the fact that in many situations
(corresponding to “homogeneous” jobs), this competitive
ratio is constant. For example, whenβ = c (with c any con-
stant), AlgorithmOLUW is 4c-competitive. Whenγ = 2c′

(with c′ any constant), AlgorithmOLUW is (4c′ + 4)-
competitive.

References

[1] R. Adler and Y. Azar. Beating the logarithmic lower
bound: Randomized preemptive disjoint paths and call
control algorithms.Journal of Scheduling, 6(2):113–
129, 2003.

[2] F. Baille, E. Bampis, C. Laforest, and N. Thibault. On-
line bicriteria interval scheduling. InEuro-Par, 2005.

[3] F. Baille, E. Bampis, C. Laforest, and N. Thibault.
On-line simultaneous maximization of the size and
the weight for degradable intervals schedules. InCO-
COON, 2005.

[4] A. Bar-Noy, R. Canetti, S. Kutten, Y. Mansour, and
B. Schieber. Bandwidth allocation with preemption.
SIAM J. Comput., 28(5):1806–1828, 1999.

[5] A. Bar-Noy, G. S., N. J., and S. B. Approximating the
throughput of multiple machines in real-time schedul-
ing. SIAM Journal on Computing, 31:331–352, 2001.

[6] A. Borodin and R. El-Yaniv.Online computation and
competitive analysis. Cambridge University press,
1998.

[7] U. Faigle and W. Nawijn. Note on scheduling intervals
on-line.Discrete Applied Mathematics, 58(58):13–17,
1994.

[8] J. Garay, J. Naor, B. Yener, and P. Zhao. On-line
admission control and packet scheduling with inter-
leaving. InProceedings of INFOCOM, pages 94–103,
2002.

[9] J. A. Garay, I. S. Gopal, S. Kutten, Y. Mansour, and
M. Yung. Efficient on-line call control algorithms.
Journal of Algorithms, 23(1):180–194, 1997.

[10] M. H. Goldwasser. Patience is a virtue: the effect of
slack on competitiveness for admission control. In
10th Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SIAM, Philadelphia, pages 396–405, 1999.

[11] J. S. Naor, A. Rosen, and G. Scalosub. Online time-
constrained scheduling in linear networks. InProceed-
ings of INFOCOM, 2005.

[12] G. Woeginger. On-line scheduling of jobs with fixed
start and end times.Theoritical Computer Science,
130(130):5–16, 1994.

5

