AN EFFICIENT SOLVER FOR CACHE MISS EQUATIONS *

Nerina Bermudo, Xavier Vera, Antonio Gonzdlez, Josep Llosa

Computer Architecture Department
Universitat Politéenica de Catalunya-Barcelona
{nbermudo, xvera, antomic, josepll}fac.upc.es

ABSTRACT

Cache Miss Equations (CMLY) 2] is a methed that accu-
rately describes the cache behavior by means of polyhedra,
Cven though the computation cost of generaling CME is a
linear function of the number of references, solving them
is & very lime consuming task and thus irying to study a
whole program may be infeasible.

This paper presents effective techniques that exploit
some propertics of the particular polyhedra generated by
CMTIE. Such techniques reduce the complexity of the algo-
rithm to selve CML, which results in a significant speed-
up when compared with traditional methods. In particalar,
the proposed approach does net require the computation of
the vertices of each polyhedron, which has an exponential
complexily.

I INTRODUCTION

Cache Miss Equations |2] are a very accurate analyti-
cal model of the cache memory. They describe the cache
behavior by means of diephantine equations, which allows
us to use mathematical techniques to compute the locality
of cach memory reference. For instance, by solving CME
one could compute the different types of cache misses that
each reference will cause, Unfortunately, a dircet solution
ol the CME is computationally intractable due to its NI*-
hard natare.

CME allow us to study each reference in a particular
iteration point independently of all other memory refer-
ences, Deciding whether a reference causes a miss or a hit
for a given iteration point is equivalent to deciding whether
it belongs to the polyhedra defined by the CMY., The num-
ber ol cache misses can be computed by analyzing either
all iteration points |3] or a subset of them through the use
of statistical techniques [4],

In this paper, we present efficient techniques to count
the number of integer peints inside the polyhedra defined

"This work has been supported by the ESPRIT project MHAOTEU
(P 24942% and the CICYT project 511798,

0-7803-6418-X/00/$10.00 © 2000 IEEE

139

by the CML. By exploiting some intrinsic properties of the
particular types of polyhedra penerated by CME, we re-
duce the complexity of the algorithm, which results in very
high speed-ups. We show that the proposed technique can
campute the miss ratio of most SPECEpY5 benchmarks just
in a few seconds on a typical workstation, This opens the
possibility to include this anatysis framework in production
compilers in ordet to support many oplimizations.

The rest of this paper is organized as follows. In section
2, some background on polyhedra is reviewed. Section 3
summarizes the main features of the CME. Section 4 de-
scribes some criteria for detecting empty CME polyhedra.
Section 3 presents a technique to compute whether a ref-
erence is a miss for a particular iteration point. Section &
discusses the computation cost of the methods described
in the previous sections, Vinally, section 7 draws the main
conclusions of this work.

1l BACKGROUND

This section reviews the definition of convex polyhedra
and a general method to computs the number of integer
points instde of it and a technique to identify whether it is
empty.

A Definitions

Definition 2.1 Given the points q,...,», and scalars
AlsioyAn, we define a convex combination of
1, 08 Y0 Aymy where Y00 Ay = Land all
A > Q.

Definition 2.2 A vertex of a set i is any point in & wiich
cannot be expressed as a convex combination of any
other distinet points in K.

Definition 2.3 A sot K is convex <= every convex
combination ol any two points in K is alsa a point in

K.

Definition 2,4 A convex polyhedron P is the intersection
of a finite family of closed lincar half-spaces of the

e

form {E|&% > ¢} where a is a non-zero row vector
and ¢ is a scalar constant,

We only consider bounded convex polyhedra because poly-
hedra defined by Cache Miss Equations are convex and
always bounded. Since the points of a convex bounded
polyhedron can be expressed as a convex comhination of
its vertices, a polyhedron is fully described by its vertices,
Therefore, the polyhedra can be given either by a system
of linear constraints or a set of vettices [5].

Definition 2.5 We define the real domain(integer domain)
of & variable x in a polyhedron I as the range of real
values (integer values) it takes inside of P.

B Empty Polyhetlra

Solving the CME requires to compute whether some
polyhedra are empty. A polyhedron is considered empty
when it does not contain any integer point, atthough it may
contain real points. Counting the number of integer points
in empty polyhedra often takes as much time as doing it
for non empty polyhedra. Thus, a criteria for identifying
empty polyhedra may be desirable,

For a given polyhedron, if there exists a variable that
cannot take any integer value, there witl not be any integer
puints inside the given polyhedron, This gives us a gencral
criterion for detecting empty polyhedra , although it does
nat detect all of them. TFor cach variable =y, its definition
domain [y, bx] in the polyhedron is caleolated. Let iy and
1l be the lower and upper bouads of the correspondent
integer domain. If by < {by then the polyhedron is empty.

C Counting Integer Points

The method For counting presented next is based an the
fact that the vertices ol a pelyhedron are extreme points,
This implies that the greatest and smallest values that any
variable can take inside 4 polyhedron can be found in the
vertices. Therefore, the computation of the domain of a
variable can be done using its vertices.

let I be a polyhedron in B?. We ake a variable z;
and caleulate its integer domain {Th;, ub;]. Then, for every
integer value z from this domain, we consider the (p-7)-
dimensional polyhedra that result from giving the variable
2; the valve z. This process 1s repeated recursively, uniil
we have polyhedra delined only by one variable,

Let P, ..., Pi; be these polyhedra. The number of in-
teger points inside onc of them s ub — Ih + 1, where ud and
{h are the upper and lower bounds of the corresponding
variable. The total number of integer points i the polyhe-
tlron is obtained by adding the points of 2L, ..., Pl

Remarks

1. The selection of the variable io be fixed is not ir-
relevant. Since in general the domain of a variable
in a polyhedron is a function of the other variables,
we take every time the variable that has the small-
est definition domain in order to minimize the num-
ber of nodes in the recutrence tree. Although we do
spend some time in choosing the variable, this crite-
rion helps us to reduce the lime consumed by counting
the number of integer points inside the polyhedron,

2. The domains of the variables arc calculated as fol-
lows:
T.et @y, be the variable whose domain we want to de-
termine. Let Vi be the set of vertices of I Then the
hounds of the integer domain of the variable in P are:

by, = HAX Uk
|-‘J=(Ul|---"|}u)(‘:vp J

iy, = min W
b r”:';(ULw--u'Uu)EVP h1
Unfortunately, computing the vertices of a polyhedron
is a problem with exponential complexity. Our ap-
proach avoids this expensive phase of the computa-
tion.

ITT CME OVERVIEW

CME |2] are an analysis framework that describes the
behavior of a cache memory, The general idea is to obtain
for each memory reference a set of equalities and inequali-
ties defined over the iteration space that represent the cache
misses. These equations make use of the reuse vectors
[6]. Fach equation' describes the iteration points where
the reuse is not realized. This section presents an overview
of the CME. Our study is mainly based on the structure of
the CME polyhedra. Therefore, the interpretation of the
different constants that appear in their definition is avoided
except in some special cases, where the meaning of some
of them is useful for the development of our techniques,
For morc details on Cache Miss Eguations, the interested
reader is referred to the original publications [2, 3].

We assume that fi, ..., fin, 41, . -, fn 87€ integer val-
ues. For each induction variable ¢, (k = 1,...,m), uby,
and by, stand for the upper and lower bounds of this vari-
able in the iteration space.

A Cold Miss Equations

These equations describe the iteration points where a
reuse docs not hold because the reference reuses data from
an iteration point outside the iteration space. These poly-
hedra are defined over the iteration space. This means the

IFhe term equation has been used loosely to represent a set of siml-
tancous cqualitics or inequalilies.

140

only variables that appear in their definition (in the lin-
car inequalities that characterize the set), are the induction
variables. The Cold Miss Lquations constraint the possi-
hie values of one of the variables inside the iteration space,
They have the following form:

i S dh
e < dp < uby,

foralixed L€ [1,...,m]

(CM) k=1 .m

where 4; correspends to the I-th variable of the iteration
space, dy € Z. The first equation represents an additional
restriction on one of the variables. Note that this equation
conld introduce a lower bound of the variable i), instead
ol an upper bound. The other 2m constraints determine
the iteration space.

I Cold Miss Bounds

These equations describe the iteration points where a
spatial reuse is not realized because the reference reuscs
data that is mapped in a different cache line. These poly-
hedra are defined over ™' where m is the dimension
of the iteration space. A new variable z is introduced for
lincarity reasons [1]. In fact, there is a version of the cache
miss equations that ignores this variable [3], but we focus
on the more precise model that includes it. The equations
have the lollowing form:

flil +.f'¢‘-'i2 A +f7rr."':m —Lz= L0
fﬂ'l + fuig Ao + fratm ~- L2 < UR
e < i = by, k=1...m

(C13)

where Lity, LBy, U R € 7, and L is the cache line size.

C Replacement Equations

Given a reference, Replacement Equations represent its
interferences with any other reference.

For each pair ol references ({4 and It R), the following
expression gives the condition for a cache set contention in
a k-way set associalive cache:

CacheSet(De, = Cache Set(f)r,,

1 €
where J represents the iteration points between 7 {(the cur-

rent one) and the iteration point from which It 4 reuses,
This identity results in

Memp (1) — Memp,(7) = Cn+b
i e

‘This is the type of polyhedron obtained from the CME
that has (he most complicated lopology. A Replacement
polyhedron is contained in R#+* . 2m of its variables
(1. oyt J1s - o, Jan) refer in some way to the iteration
space and the remaining variables (b, » and 2) arc artifi-
cial and have been introduced, as in the case of the Cold

141

Miss Bounds, for lincarity reasons, Replacement Equa-
tions have the following form:

Lz —Cn+ frir 4 4 frpim > AL
Lz —Cn+ fl'il + fmint < AU

Lz-t@mfi+ - gmim > BL
(ROM) Lz gifi 4o gmjm < BU

70

Pe < i~ e < gr, k=1...m

H)k Sth S'L{l’lk, k=1...m

where AlJ, AL, BU, BL € Z.

D Solving CME

The points inside cach CME polyhedron represent the
potential cache misses (the number ol points is the number
of potential cache misses). This leads us to consider several
ways for computing them:

¢ Solver Given a reference fi with 1 rense vectors and
ny equations for the k** reuse vector, the polyhedron
that contains all the ileralion points that result in a
miss is [2]:

Set-Misses = ML UZE | Solution_Set_Equation;

This approach implies to count the number of points
inside the union of convex polyhedra,

o Traversing the iteration space Given a reference,
all the iteration points can be tested independently
[3]. Yor this approach, we need o compute whether
a polyhedren is empty after substituting the iteration
point in the equations.

In a k-way set associative cache, there are £ cache line
in every set, so k distinct contentions are needed be-
fore a cache miss occur. Thercfore, the first method
can only be applied to dircet-mapped caches whereas the
second method works for both dircct-mapped and set-
associative organizations. Our proposal builds upon the
second method.

IV REMOVING EMPTY POLYHEDRA

The complexity of both methods mentioned above is a
function of the humber of CML polyhedra. Yor this reason
it is interesting to reduce the number of them. This scetion
presents some criteria for detecting empty CME polyhedra,

The general criterion that has been presented in scetion
B does not detect all empty palyhedra. Tn order to increase
the number ol detected empty polyhedra, specific criteria
for each type of polyhedron have heen developed. These
criteria rely on the structure of the equations and their in-
terpretation in terms of the cache behavior,

A Cold Miss Equations

Since cach of these polyhedra consists of the iteration
space and an additional constraint on one of the variables,
it will be empty if the constraint is incompatible with the
iteration space, If the additional restriction has the form
i < dy and dp < Iy, there is a contradiction between
the twa conditions and we conchide that the polyhedron is
empty. The same happens when the constraint has the form
4 > dy and d > ub;. Hence, the time taken to compute
the emptiness is O{1).

B Cold Miss Bounds

Recall the equations that define the Cold Miss Bounds
polyhedra. Since the domains of 4y,. .., im are explicitly
given, and (hey are not constrained by any other equation,
the only variable that might have a domain without integer
values inside is variable z: Let us observe the constraints
involving variable z.

fl"’:l+' "+fm":m"UB < Lz < fli‘l +"'+fmim_LB
We have that

maxg,, .. i f1i + 0+ fim} — LB
e = 3

ming, .., aer{fite + o+ foim} —UB
Lt = T

where 1 stands for the fleration space. Then, the integer
donain of the variable 7 in the polyhedron (CMB) is

[[2min s L2man]] N Z

If there are no integer values inside this interval, we can
conclude thai the (CMB) polyhedron is empty in O(m).
This condition is sufficient, but not necessary. That is, even
if the domain of z contains integer values, the palyhedron
might be empty.

C Replacement Equations

Different criteria to detect empty Replacement polyhe-
dra have been developed. In this case, not only the infor-
mation given by the equations is considered, but also its
interpretation in terms of the cache behavior.

« Convex Regions: In a Replacement polyhedron,
there is a subset of equations which relates the vari-
ables iy, and j, fork =1,...,m.

e — fr = P, i — Jr S e, E=1,...m

These equations appear from the division in convex
regions of the domain of the variables j1,...,7m [2].
In order to detect empty Replacement polyhedra, it is
checked whether these constraints are consistent with
the fact that 7 and j' must belong to the fteration space.
The warst case complexity for calculating it is Ofm).

142

o Memn, — Mempg, and the variable n have dif-
ferent sign; Recall that Replacement equations result
from the following identity:

Memn, (3) — Memﬁﬂ(f) =Cn+b

where 4 and Eg are the references whose iqtcr—
ferences are being studied, C stands for Qa—"]‘fé@,
where £ is the associativity of the cache, n stands for
the distance between K, and Bp in cache size units,
and & is the difference between the offset of each refer-
ence with regpect to the beginning of their respective
lines.

Since the placement of the two references R4 and Rp
in the memory is fixed, their relative position will not
change, so that Memg, (i) — Mempg, (7) has con-
stant sign for all i 5‘

Besides, this sign must be the same as the sign
of the variable n, as this variable represents the
distance, in terms of cache size, between the two
references. A Replacement polyhedron is empty
if the range of feasible values of the expression
Mempg, (i) — Memp, (7}, (which depends on the
variables £, ..., %m and ji, ..., fm), Causcs a contra-
diction with the constraint that determines the sign of
the variable n. This can be done in O(1).

» Incompatible range of Memp, ~ Mempy,, withthe
constraint on the variable n: Depending on the con-
straint on the variable r, one of the following expres-
sion holds:
n<-—1:

Ag this restriction gives an upper bound of 7, that is a
lower bound of —n, we consider the second constraint

AU - AU 2 fll1ch 4 fndm it e+ gindim — Cn
2 hia+. . timimtmirto FImin + O
2, min {fip+. A fmim i 4 omdm)
el jed

o

o 1
Inthis case the considered inequatien is the first one.

AL — BL £ fit+ .4 fmim+e1ig oo+ gmim — Cn
< Afrd. A+ fmimtafrt o Femim + 6
&, mnx {Jrigd o4 fmim to1d1 4 -k gmim}
TEFJES
e

where [stands for the iteration space and J for the
domain of (§1,...,jm)-

In each of these cases, if the constraint does not hold,
we conclude the polyhedron is empty in O(m).

s The variable n cannot take integer valuees: The in-
equations (1) and (1) are used in order to compute
the domain of the variable n. If it contains no inte-
gor points, the polyhedron is empty.

Hence, the worst case complexity to decide whether a Re-
placement Equation is empty or not is O(m},

V ANALYZING ITERATION POINTS

This section shows some methods for knowing whether
an iteration point ip fulfills a CME. This problem is equiv-
alent to finding out whether the resulting polyhedron after
substituting the variables 41,. .., ¢, with the values given
by the iteration point is empty.

A Cold Miss Equations

Let 4g = (o1, %02, - - - » fam), be the iteration point stud-
ied. The only inequality it might not verify is

it < dp (N

as the others represents the iteration space. So, z'; is a point
from the given Cold Miss polyhedron <= its I-th com-
ponent verilies inequality (1)

B Cold Miss Bounds
When an iteration point 4g is substituted in the Cold
Miss Bounds Bquations, a 7-dimensional polyhedron is ob-

tained. Deciding whether g verifies the equations is equiv-
alent to deciding whether the /-dimensional polyhedron

(CMB') LB < —12<UB
is empty, where LB' = LB — fiipy — + — frafom and
UB' =UB - fitor — - ~ fmiom.
The real domain of the variable z, [%‘t—i-, Lf—] C R

is first computed, and then the integer domain of # is ob-
tained from its real domain. By comparing its bounds, it is
determined whether it is empty.

C Replacement Equations

After an iteration point ip has been substituted in the
equations of a Replacement polyhedron, the problem of
deciding whether it is a potential miss depends on the as-
sociativity of the cache. When considering a &-way set as-
saciative cache, 7o fulfills the equations if the polyhedron
- contains a set of integer points with k different values of the
variable . (that represent & distinet contentions, k > 1).

We propose a method for counting integer points inside
Replacement polyhedra that works either for direct mapped
caches or for set-associative organizations.

C.1

In this scetion, a method for counting the Replacement
palyhedra will be described. 1t is based an the general
method presented in section C, extended with a new tech-
nigue to compute the domains of the variables.

Counting Integer Points

143

When considering a k-way set associative cache, a poly-
hedron is not empty when it contains a set of integet points
with at least & different values of the variable n.

From the definition of (RCM’) we can derive the fol-

lowing conclusion:
The domains of the variables j1,. .., jm are explicitly
given in the expression of the polyhedron, so they do not

need to be calculated. The domain of the variable n can be
calculated by means of the two next inequations:

a1 fy 4 Famim — BT € On € 5191 + - - + gmdm — OL' @

Let us define

maxg,, . ed {0t + - + gimim} — BE

Timar

o
. min(j-].,.“,jm)EJ{glj] + - +gmjm] - BU’
Rmin =
C
where .J is the domain of §j = {1+ ., 4m). Then, the

integer domain of the variable n in the polyhedron (RCM")
is

([min], [anae}] N Z

We can thus conclude that the domains of all variables are
easily computed and the explicit computation of the ver-
tices is not needed.

Since the domains of the variables ji,...,7, may
change when the variable n is fixed, the order in which
the variables will ba fixed cannot be determined at the be-
ginning. Thus, the real domain of these vartables must be
recalculated every time. This is done in a similar way to
the compatation of the domain of n in the initial polyhe-
dron: for every variable jy, its greatest and lowest values
given by the two inequations (eq. 2} are calculated. The
actual domain of this variable is the intersection between
this interval and the explicit domain given by the equations
of the polyhedron.

In order to detect empty polyhedra, the search of empty
integer domains must be done for all the variables. Theo-
retically, the complexity is O{##iteration_points), but in
practice, it is O(1.5™) for our benchmarks.

VI

We have generated the CME for the SPECfp935 bench-
mark suite. For each program, we have chosen the most
time consumming loop nests that in total represent between
the 60-70% of the total execution time using the reference
input data,

PERFORMANCE EVALUATION

A Empty Polyhedra

First we evalnate the effectiveness of our proposal for
detecting empty polyhedra, assuming a 32K direct mapped
cache. Figure 1 compares our method with the technique

(21000

Polyhedra

Renchmark

- EZm #Polyheda
=z Proposed
-| m= Polylib

Figure 1. Empty Polyhedra

ol'the Polylib [5] for detecting etpty polyhedra, Only Re-
placement polyhedra have been considered, as their evalu-
ation is the maost time consuming amoug all CME polyhe-
dra. The first column shows the number of Replacement
polvhedra obtained for cach SPECIp95 program analyzed.
The second column depicts the number of empty polyhe-
dra detected by our approach, whereas the third column
shows the number of empty Replacement detected through
the Polylib. We can see that our approach detects a sig-
nificantly higher number of cmpty polyhedra. This is due
1o the fact that Polylib only detects polyhedra without any
real point inside.

Columns T and 2 of table 2 show the execution time
required hy both methods te check the emptiness of all
polyhedra. Due to the complexily of the computation
ol the vertices ol a polyhedron, our proposal is much
faster than Polylib’s technique. The complexity of the
prapused method is Q). On the other hand, Polylib’s
method relies on computing the vertices of each poly-
hedron. The complexity of the algorithm that it vses is
()(#r:rm.m'nintsLiﬁ"‘é“‘“"“‘“‘). For Replacement Polyhe-
dra, the number of constraints is 2m + 3 and the number
of variables is m + 1, where m: is the nesting depth of the
loopnest. Thus, the complexity of Polylib’s approach is
Ofmis),

B Analyzing Iteration Points

In arder to evaluate the techniques proposed for analyz-
ing iteration points, we implemented a solver of the Cache
Miss Ligquations based on traversing a subset of the iteration
space through sampling techniques as described in [4].
Next, we evaluate the elfectiveness of the proposed tech-

144

nique for both dircet mapped and set-associative caches,
and it is comparcd to an algorithin that counts the num-
ber of integer points inside the polyhedra by means of the
general methad for counting presented in section C. The
computation of the vertices of the polyhedra needed for
this second method (Vertices) is done by means of func-
tions from the Polylib library.

Table | shows the time in seconds required 1o analyze
the different SPECIp95 for four different organizations of
set-associative caches, for both the proposed method and
the Vertices method.

The specd-up of our approach is very important, due to
the ditferent complexities of both algorithms. For a direct
mapped cache, it is between 7 and 418 times faster than the
Vertices methed and it is 30 on average. The speed-up for
different set-associative configurations is cven higher. For
instance, the average speed-up for a 4-way set-associative
cache is 42,

The difference between these two algorithms relies on
the approach to compute the domains of all variables. The
propused method does it with & complexity of O(m?).
The Vertices method is split into two steps: first the ver-
tices of the polyhedron are computed with a complexity
of O(mi 21V, as explained in the previous section. Then,
by means of the vertices, the domains of the variables arc
computed with a complexity of O{m * #wverfices).

Note that most programs can be analyzed by the pro-
posed appreach in less than a minute and the most expen-
sive one is applu which takes about 1.5 minutes, whereas
the approach based on the Verfices method takes several
minutes and in the worst case it takes more than one hour.

[_L Applv | Tiydo2d [Mgrid [SuZear [Swim [Tomeaty] ‘ SPREC ‘ Empty polyhedra
Twiy s 2218 T.80 T00s 2183 57 Proposed oyl
T way ROs 75 2365 s ES 53 appln 36.70 1933.87
() | Fway Ol T28s Ty 207 T Rds wpsi 1.30 17.31
B wiy GTs T4 1% JERET I 155 [Ef3 hydro2d 316 47,51
Twiy || 18ma8.555 | 1m26.235 | 9mb.67x 19.18s | 21.2% KR ragrid 23575 | 349510
T way Gmd4.92s Tm53. % Gmia7. 35 276y 24.66y 34ml3.73s sueor 3.08 34.27
[dway Gm3%.62s T 33s 13m32.5% 177 4832 ThRm2ds __swim 3,00 48,71
T wary 37 oy Tons2 85 | TRmdn 30 | 1530 | Imd%és ThTmZas taneary 0,60 28075
Tipecd-up Lway 17 7 283 10 97 418.1 tofal || 20250 | 783152

E’J’ | Proposed
(2} Vertfees

Table 1. Execution time for different cache organizatlons using

an Origin2000.

VII CONCLUSIONS

Cache Miss Equations provide an analytical and precise
description of the cache memory behavior. Unfortunately
solving CME by traditional methods based on counting in-
teger points inside polyhedra is a very time consuming task
that makes them infeasible for many applications.

In this paper we propose some techniques that ex-
ploit some intrinsic properties of the particular polyhedra
generated by CMIL, These techniques significantly reduce
the complexity of the algorithms and result in speed-ups
of more than one order of magnitude for the SPECIp95
henchmarks, This impertant specd-up is due to the fact that
ihe proposed approach does not require the computation of
the vertices of the associated polyhedra. We have shown
that the proposed approach usvally takes just a few seconds
o analyze a program of the SPECIp935, and it never takes
more than 2 minutes for the different cache configurations
that have been analyzed. This cost is small enough to allow
the technique to be included in a production compiler.

REFERENCES

[1] B Clauss, Counting solutions to {inear and nonlinear
constraints through ehrhart polynomials: applications
to analyze ans transform scientific programs. In ICS96,
pages 278-285, 1996,

S. Ghosh, M. Martonosi, and 8. Malik. Cache
miss cquations: an analytical represendation of cache
misses, [n FCS97, pages 317-324, 1997,

3. Ghosh, M. Martonosi, and 5. Malik. Precise miss
analysis tor program transformations with caches of
arbitrary associativity, In ASPLOS98, 1998,

X. Vera, J. Llosa, A. Gonzalez, and C. Ciu-
raneta. A fast implementation of cache miss equa-

145

Table 2. Execution
time {in seconds) us-
ing a Sun Ultra Sparc
I

tions. Technical Report UPC-DAC-1999-50, Univer-
sitat Politécnica de Catalunya, November 1999.

(5] D. Wilde. A library for doing polyhedral operations,
993,

[6] M. L, Wolf and M. 8. Lam. A data locality optimizing
algorithm. In ACM SIGPILAN9], pages 30-44, 1991,

