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ABSTII AC'I' 

Cachc Miss Eqnntions (CMLI) [21 is n incthoil that accn- 
ratcly describes the cache behavior by  nicnns ofpnlyhcdra. 
Gvcii though t.he computation cost o l  generating CME is a 
linear luiicticin nl' the number of references, sdvitig them 
i s  a vcry liirie consiiiniiig task utid thus trying to study a 
whole progr tl m tn ay he in  fcasiblo. 

This paper presents effectivc tcchniqucs that cxpluit 
somc propcrtics OP Ihe pnrticular polyhedra generated by 
CME. Such rechniques rcdticc tlic cuinplexity of thc nlgu- 
rittiin to solvc CMG, which results in  n significent speed- 
up whcn coinpared with traditional methods. In particular, 
thc prop(iscd approach does not require thc computation of 
thc vcrticcs ol' each polyhedron, which has an cxponential 
coi nplcx i ly. 

I INTRODUCTION 

Cache Miss Equntiotis 121 arc a very accurate analyti- 
cal iriorlel of the c;ictic mcmory. They describe the cnche 
behavior. by rnenns of diophnntine cquntions, which allows 
11'; to use mathematic;rl tccbniqucs to compute the locality 
of c i d l  incinory rcference. For instnnce, by solving CME 
onc cr~rld c(impitte the different types of  cache misses that 
each refcrence wil l  causc. Unfortuiiatcly, a dircct solution 
01 '  ilic CMB i s  compiitationally intractable due to its NI'- 
hnid i in t i i i x .  

CME allow us to study each rcfcrciicc in a particular 
itel.iitioii point intlepcndcntly of all othcr mcmory rcfcr- 
ciiccs. nccicling whether n reference cmises i? miss or il hit 
for ii giveii itcraticui point is equivalcnt to dcciding whcther 
i t  helongs to the pnlyhedra rlefitietf by the CMU. The iwi i -  

bci- 01 '  cnche inisses can be computed by analyzing either 
all iteration points 131 or a subset of  thein ttirougti the use 
of  statistical tcchniqrics 141. 

In this pwper, wc pi'cscnt erficieii~ techniques to count 
ttrc nuriibcr of integer points inside the polyhedra defined 
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by thc CME. By cxploitiiig soinc intrinsic properties of tlic 
palticular typcs of pdyhcdra generated by CME, we rc- 
duce the complexity ofthe atgorithm, which results in very 
high speed-ups. We show that the proposcd tcchnique cnn 
coinpute the inks ratio of most SPECfpD5 benchmarks just 
in  a Iew seconds on a lypical workstaticm. This opcns the 
possibility to iticlitde this niialysis i'ramewnrk i n  production 
compilers in  order to snpport many optimiziitiuns. 

The rest uf this p a p a  is organized as follows. In section 
2, some background on plytiedrn is reviewcd. Section 3 
sumrnarizes thc in& featurcs of the (:ME. Section 4 dc- 
scrihcs some crileria €or detecting cinpty CME polyhedra. 
Section 5 presents R techtiique to compute whether n ref- 
erence is il miss for a particular iteration point. Section 6 
discusses thc computation cost uf the niethocls describcd 
i n  the previous sections. IGiiaIly, section 7 dmws the main 
conclusions of this work. 

11 HACKCROUNI) 

This sectioti revicws tlic tlefiniticin of cotivex polyhedra 
and n getieral method to compute the nuinbcr of integer 
points inside of  it and a technique to identify whether it is 
cnipty. 

A Definitions 

1)efiiiition 2.1 Given the points 21, . . . , :I:,& and scalars 
A,, I , , A,,, we defne  a convex co~nbiitatioit of 
X I , .  . . ,xpt as Er-, Xaea whcrc E;:, X i  = 1 and all 
X i  2 n. 

Dctiniticm 2.2 A i w m v o f a  set I< i s  any point iti Ir' which 
cnnnot bc c x p w " i  as a coiwcx combination of any 
other distinct pain& in IC. 

Definition 2.3 A sct K is (:onvex U evcry convex 
combination or any two points io Ir' is also n point in 
K.  

Definition 2.4 A cowex poljjhedron I' is the intersec[im 
of R finitc i i n i t y  of clr)scrl lincar half-spaces of the 



fortn {ZIC,?' 2 c} whcrc n is a noli-zero row vector 
and c is a scalar constant. 

We only consirlcr bounded convex polyhedra becausc poly- 
hcdra defiierl by Cache Miss Equatiuns are cotivex and 
always bounded. Sincc the points of ii convex bounrletl 
polyhedron c m  be expressed a s  a convcx coinhination of  
its vertices, 21 polyhcttron is fiilly rlcscribcd by its verticcs. 
'Thcrcfore, thc plyhctlril can be given either by x system 
ol'lincar constraints or a set of vertices IS]. 

Ibfiaitinn 2.5 Wc rlcfitic thc red rliliiiui~i(inregerdnmnm) 
of a variablc :I: in a polyhedron I' R S  the range oT rcal 
valucs (intcgcr values) it takes inside oPP. 

11 Rnipty Pnlyhcdra 

Srilving ilie CME requires tn compute whether some 
polylicrlrn arc empty. A polyhedron is considered ernpty 
when it does not contain any intcgcr point, although it inay 
crmtain rcal points. Coinitiiig ihe number of intcgcr points 
in  cmpty ~polylicdra often takes as much time as doing it 
for non einpty polyhcrlra. 'l'hus, a critcuia f o i -  identifying 
ernpty polyhcdrii inay be desirable. 

Fos ;I given polyhetlron, if there cxists a variable that 
cimnoi. take any integer value, therc will not hc any  integer 
points insidc thc givcn polyherlmn. This gives us it gcncral 
criterion fol-.rlctccting cinpty po1yhcdr;i , itlthough it does 
no t  dctcct all of thcin. For each variable xk, its definition 
clr)m~iin [ ( t . ~ ~ ,  h h ]  in thc polyhcdron i s  calculatcti. Lct khk and 
~ r b a ,  bc thc ltrwcr ;ind upper boiinrls of thc corrcspmdent 
integer domain. I f d i ~  < Ibk then the polyhedron is etnpty. 

C Coiintiiig Integer Points 

Thc niethorl lor couiititig pl-cscnterl next is h;iscd oti the 
l x t  t l ial [ l ie vcrliccs oT a polyhcdron arc cxtrcine points. 
This iniplics that the greatest and smallest values that any 
voriaI)lc C;III takc insidc a polyhctlron can be found in the 
verticcs. Thcrcforc, tlic ci)mpntation of the domain of a 
variatilc can be done using its vertices. 

I.et I' be ;I polyhedron in W .  Wc wke il variabie xi 
; r i i d  c:ilcul;itc its intcgel- doinaiti {lbi, ubi]. Then, for every 
intcpcr value x from rhis doninin. wc consider the (p- I ) -  
rlirnuiixinrrnl 11oIytictlrn that result from giving tlic vnriablc 
x i  the value 2. This IJ~DCCSS is rcpcatcd recursively, until 
wc liiivc polyhedra delined onIy by onc vsiahle. 

LcL P,', , I . , .PiT be these polyhcdm. Thc nuinher of in- 
teger points insitlc onc of thcin is lib - Ib  + 1, where u b  and 
Ib are the iippcr and lowcl houiitls of the corresponding 
vilrinble. Thc total numher of integer points in  the polyhc- 
L I m i  is obtained by idding thc pilints of  P:, . , , , P i f .  

Itemarks 

1. Thc selection of the variable to be fixed is not ir- 
relcvanl. Sincc in gciieral the domain of' a variable 
in U polyhcdron is a function of the other variables, 
we take evcry timc the variable that has tho small- 
est definition domain in order to minimizc thc num- 
ber of nodes in the recurrence tree. Although wc do 
spend soinc timc in choositig the vnriablc, this crite- 
rion helps 11s to reduce the h c  consumed by counting 
thc numbcr of iiitcgcr points inside thc pnlyl~erlron. 

2. Thc domains of the variables arc calculatetl a s  fol- 
lows: 
J.et ZA hc tlic vaIiahle whose domain we want to de- 
tcrminc. k t  Vp bc thc sct of vertices of r. Then the 
hounds of thc inlcgcr domain of the variable iu P are: 

l 6 k  = r min i l k 1  whfi r: 1 trmx uh J 

Unfurtunatcly, computing the vertices of il polyhedron 
is ii  problcm with cxpcincntial complcxi~y. Our ap- 
proach avoids this cxpcnsivc phase of the coinputa- 
tion. 

U:.;(. L ,... ,TI,,)€ I'p v=(v ,,,,. >v,.)Cvp 

111 CME O v ~ ~ v r a w  

CME 121 are :in analysis framework lhwt describes the 
behavior of il cache meinury. The general idciz i s  to obtain 
for each mcmory rcfcrcnce ii set of equdities and inequali- 
tics defined over tlic iteration space that represent the cache 
misses. Thcsc cquations iiiakc use of the reuse vectors 
l:fi]. I!adi cquattirm' describes the iteration points where 
thc rcusc is not rcalizcd. This section prcscnts an overview 
of thc CME. Our study is inainly based on the structure of 
thc CME polyhedra. Tlicrcforc, ttic interpretation of the 
diffct-cnt constants that appear in thcir definition is avoided 
except in some special cases, where tlic incaning of somc 
of lhcm is useful for the tlcvelopincnt of nur techniqucs. 
For morc dctails mi Cachc Miss Hquiitions, thc interested 
rcader is referred to the original publications [2, 31. 

. . . , gTrr are integer vill- 
ties. For each induction variable i k  ( k  = 1.) , . , ,m.), u h k  
and Ibk stand for the upper and lower bounds of Ihis vari- 
able in tlic itcration spacc. 

A Cold Miss Hqoations 

Thcsc cquations describe the iteration points where a 
rcusc d m a  not hold bccause the reference reuses data from 
an iteration point outside the iteration space, 'L'hcsc p d y -  
hcdra arc defined ovcr the iteration space. This tnentis the 

We assutne that fi, . . . , ff,,, 

. - . .. . . 

'The term etlitation hm becn used loosely tn rcpimcnl n SCI of siiiiul- 
talicoils cqiialitics or i~icqmlit ics. 
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only variables that appear iii their definition (in the lin- 
c w  inequalities that ciinractcrize the sct), are the inductioin 
variahlcs. The Cold Miss Equations constraint the possi- 
hie viiliics ot'one of the variables inside thc iteration space. 
Thcy hi.we the Following forin: 

wlicrc i f  corrcspoitds to the I-th variable of the itcri~ticin 
space, d l  E X. Thc lirst equation represents an additional 
iwtriclioti 011 oiic of the variables. Nutc that this equatiun 
CtJLIld i ntnicluce t~ h w e r  bound of the viuiahlc il;, instead 
01' i l I1 Lipper boiiiitl. The othcr 2 m  constlwints determine 
the itel.ation spncc. 

i! Cold Miss Bomids 
'I'hcse equations descrihc Ihe iteraticin points where i i  

spnlial rcusc is not rcalizetl becausc the reference reuscs 
(lata thal is iiiappcd in a cliffwent cachc line. These poly- 
IiuIra arc tIcfinerI OVCI' R n . l . I  , wticrc rri is the dimensiuii 
of tlic itcration s p i c ~ .  A new wrinbie z is ititroducctl for 
1inc;irity rcasons [ I  1 ,  I n  fact, here is  ii vcrsion of lhe cache 
i n k s  etlu;\tions Iliiit ignorcs Ihis v;uiahle 131, but we focus 
UII the i i iorc precise niodel that incluclcs i t .  The equatiuns 
IIilvc thc following h n i :  

j l i l  + f2i2 4. " ' + f , , , . i , ,  - Lz  2 Ln 
] , i t  +fA+'" + f , , i , ,  - -  Lz 5 un 
l l lk  5 i k  z: P l h k ,  

(L'fwq 
k = 1 , . . 711 

w l i m  L J I l ,  LDa, 1/11 E Z,anrl Lis the cachc linc size. 

I: Rcplaecinont Eqiiations 

Givcn n rciclcncc, Replaccmcn1 Equations rcprcsent its 
interfercnccs with atiy uthcr reference. 

For each pail ol'refereticcs (RA and nn), Ihc following 
oxprcssioti gives thc cnnrlition for ii cache set contetition in 
;L k-w;iy set associative cache: 

C h  CllC? "SP t ( fi ,I r3 c n clte-Sc: t ( j )  R ~ 

I E ;r 

whci-c J represents ttic iteration poiiits lxtwcen ;(the cur- 
re.iit onc) and Ihc itelation point hmni which R A  rcuscs. 

'I'his iclciitily results i n  

'I'tiis is the type of polylicrlron obtained from thc CME 
l l ia t  lios lhc most complicated q ~ o l o g y .  A Kcplaccmcnt 
polylietli.on is containccl in lK2''~r+R. 2 ~ r i  of' its variables 
( i  I ~ . . . , i.,,,, j l :  . . . , j,,,) refer in soinc way to the iteraticin 
s p x ~  and the reinaitiiiig variables ( b ,  11, and x )  artiIi- 
cid iintl havc hccn introduced, as in thc ciisc of the Cold 

where ArJ, AL, DW, UL E %. 

Solving CMA 

The points inside cadi CME polyhcdrot] rcprcsent the 
potential cachc misses (the number ok'points is the numbcr 
of potential cnchc misses). This leads 11s to consider several 
ways for computing thetn: 

Snlver Given R reference It with ni reuse vectors a n d  
r ik  equations for tIic Pa I-CLISC vcctor, ttie pnlyhcdron 
that contains all thc ilcrnlioii points ttiat rcsirlt in a 
miss is [Z]: 

S c t I M i s s i: s = n rT1 U;: I Snlq.iti on. -,5 e t _Equ ut i un j 

This approach itnplics tu count the numbcr of points 
inside ttie un?on nf cunvcx polyhcrlra. 

0 'lkavcrsing the iteration space Given a referencc, 
all the iteratirni pciints ciin bc tcstcd intlcpendently 
131. 141I this approach, we need io compute whcthor 
a polyhedron is  empty after sulistitutit1g thc iteration 
point in the equations. 

I n  n k-way set associative cwhc, there are k caclic line 
in every set, so k distinct contentions nre needed hc- 
fore a cache miss occur. 'I'hercforc, the first method 
cm only be applied to direct-mappcd crichcs whcreas thc 
second tnethorl works for hoth direct-mappcd and set- 
nssociative organizations. Our proposal builds upon the 
second nicthorl. 

1v RFMUVIN(~: I'MPTY I'Ol.YI-[Er>RA 

The complcxity of boih methods inentiooetl ahovc is a 
hinction of tlic nmnbcr o l  CML polyhedra. For this rcasm 
it is interesting to rcducc the number of them. This scction 
presents somc critcria forderecting empty CMH polylicdra. 

The gcncral cciferioti that has been presented in scction 
I3 docs not detect d l  empty polyhctlm. 111 cirdcr to increase 
ttic nuinhcr 01' detected empty polyherln~, spccific criteria 
for cnch type 0 1  polyhedron have heen (levclr)pcd. These 
criteria rcly on thc structure of the equations and thcir in- 
terpretation iii tcrnis of tho cache behavior. 
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A Cold Miss Equations 
Sincc cncli of thcsc polyhedra coiisists of the iteration 

space and an additionat constraint on one of the variables, 
i t  will be empty if the constraint is incompatible with the 
iteretion space. If' the additionat restriction has the form 
i ,  5 dl and dl < 11~1,  there is B contradiction between 
the two conditions and WG conclude that the polyhedron is 
einpty. The same happens when the constraint has the form 
I: ,  2 (Jd  and di > I&.  Hence. the time taken to compute 
the cmptiiicss is o(I). 

B Cold Miss Rounds 
Recall the equations that define the Cold Miss Bounds 

polyhcdi-a. Sincc thc domains of i l ,  . . . , i, are explicitly 
given, and lhey arc not constrained by any other equation, 
the only variable that might have R domain without integer 
values inside is variable 2 :  Let us observc the constraints 
invulving varinble z. 

f,%13.'..+f,rti,,l-~B< Lz 5 f,il-t..~+fminl-LR 
Wc haw that 

where 1 stands for the iteration space. Then, the integer 
domain ofthe variable 7 in  the polyhedron (CMB) is 

[[zlraanl, L ~ ~ 4 1  n E 
If there me no intcgcr values inside this interval, we can 
conclude that the (CMl3) polyhedron is empty in O(m) .  
This condition is su'licicnt, but not nccessary. That is, even 
if the domain of z contains integcr values, the polyhedron 
[night bc empty. 

C Rcplnccmcnt Equations 

Different critcria to detect einpty Replacement polyhe- 
dra have been developed. In this case, not only the infor- 
rnntion given hy the equations is considered, but also its 
intcrpretntion in  tertns of'thc cache behavior. 

I n  a Rcplacement polyhedron, 
there is a subset of equations which relates the vari- 
ables i k  ancl j k  fork = 1,. . . , ~ n .  

i k - , j l ; > p k ,  i k - j k s q k ,  k = i  , . . ,  m 

Thcsc equations appear from the division in  convex 
regions of the domain ofthe variables jl, . . . j ,  [2] .  
111 order to detect empty Replacement polyhedra, it is 
cliccked whyher these constraints are consistent with 
the fact that i and ;must belong to the iteration space. 
Thc worst case complexity for calculating it is O(m).  

0 Convex Rcgions: 

Mernn, - M C W L R ~  and the vnriable n have dif- 
ferent sign: Recall that Replwcernent equations result 
from the following identity: 

where RA and RB are the references whose inter- 
ferences are being studied, C stands for cachE size, 
where k is the associativity of the cache, n stands for 
the distance between RA and Xn in cache size units, 
and b is the difference between the offset of each refer- 
ence with respect to the beginning of their respective 
lines. 
Sincc the placement of the two references RA and Rn 
in  the memory is fixed, their relative position will not 
change, so that $f:nzn, (9 - Mem.n, (;) has con- 
stant sign for all i, j .  

Besides. this sign must be the same as thc sign 
of the variable n, as this variable represents thc 
distance, in terms of cache sizc, between the two 
references, A Keplaceinent polyhedron is empty 
if the range nf feasible values of the expression 
MemRn (3 - Memn, (i), (which depends on the 
variables i l , .  . . , 'i, and j1,  . . . ,j,,), causcs a contra- 
diction with the conslraint that determines thc sign of 
the vai.iablen. This can be donc in O(1). 

0 Incompatiblc range of Mcrrzn, -PIemlZn with the 
constraint an thc variable n: Dfipending on the con- 
straint on the variable n, one of the fotluwing expres- 
sion holds: 
nl -1: 
As this restriction gives an uppcr bound of n, that is a 
lower bound of -R ,  we considcr the second constraint 
411-nY 2 f ~ i i - ~ , . . t . I , n i m + e i j i  + . . . + a r n j , n - C p  

2 f i i i  + ,  . . + Im i, 1- o l j l  t ,  . . + n,,j,, + C 
2 miu (IIil + . . . +  f m i m + ~ l i i + .  . + u n r j n , >  

?E1 , j E J  

-to 

n > l :  
Inf i is  case the considered inequation i s  the first one. 
AT. - Dl, 5 

5 
5 

) t i l  . t , ,  , + f m i ~ , a  + o l i l  i-, . , + g m j n ~  - 6 t h  

f i ' i  ,+. . + I n l i n k  + s i i l  - k . .  . + R m j m  + C 
l l inx  

X r . 7 w  
i-c 

( J i i i  .I. . .  . t I n l i n t  +. e i j 1  + .  . . +81nirn1  

where 1 sfands for the iteration space and d for the 
domain o f  (jl, . . . ,j&). 
In each of these cases, if the constraint does not hold, 
we conclude the polyhedron is empty in O(m). 

0 The variable TI cannot tnkc intcger values: The in- 
equlztions (1) and ( 1 )  are used in order to compute 
the domain of the variable n. If it contains no inte- 
ger p in ts ,  the polyhedron is empty. 
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Hence, the worst case complexity to decidc whether a Re- 
@cement Equation is empty or not is O(m). 

V ANALYZING ITRRATION POINTS 
This section shows some inethods for knowing whether 

a11 iteration point i; fulfills a CME. This problem is equiv- 
alent to finding nut whether the resulting polyhedron after 
substituting the variables il,. . I ,i,, with the values given 
by the iteration point is empty. 

A Cold Miss Equations 

ied. Thc only inequality it might not verify is 
Let $ = ( i u l ,  i 0 2 , .  . . , iona), be the iteration point stud- 

as the others represents the iteration space. So, ii is apoint 
from tlic given Cold Miss polyhedron its I-th com- 
poncnt verifies inequality (1). 

B Cold Miss Bounds 
When an iteration point i; i s  substituted in the Cold 

Miw Bouinds Equations, n I-dimensional polyhedron is ob- 
tained. Deciding whether i; verifies the equations i s  equiv- 
alent to deciding whether the I-dinaensionalpolyhedron 

( C M B ' )  LB' 5 -Lz 5 UBI 

IS cmpty, where LB' = L D  - f i i o l  - - + - jPrmionm and 

The reel rlornnin of the varinbte 2, [ - "L"' , - "."'I c R, 
is first computed, and ihen the integer domain of z is ob- 
taincd froin its rcnl domain. By comparing its bounds, it is 
tletcrinincd whether it is empty. 

C RepIaccment Equations 

Afier a n  iteraation point i; has been substituted in the 
cquations of  n Replacement polyhedron, the problem of 
deciding whether it is  a potential miss depends on the as- 
sociativity cif tlic y h e .  When considering ii k-way set as- 
sociative cache, io fulfills the equations if the polyhedron 

. contains a set of inleger points with k different values ofthe 
iwinble IL (that represent k distinct contentions, k 2 1). 

We propose II inethod for counting integer points inside 
Rcplaccnien t polyhedra that works either for direct mapped 
ciiclies 01' for sct-associativc orgnnizations. 

C. 1 Counting Intcgcr Points 

I n  this scction, a inethud for counting the Replacement 
polyhedra will be dcscrihed. It is based on the general 
method prescnted in section C, extended with n new tech- 
nique to computc thc domains of the variables. 

W i P  = uu - f,io, - . ' ' - f r r L i O n a .  

When considering a k-way set associative cache, n poly- 
hedron is not empty when it contains a set of integer points 
with at least IC different values of the variable n, 

From the definition of (RCM') we can derive the fol- 
lowing conclusion: 

The domains of the variables j, , I . . ,j,, are explicitly 
given in the expression CIF the polyhedron, so they do not 
need to be cahla ted .  The domain of the variable n can be 
calculated by means of the two ncxt incquations: 

0 1  1 1  + ' '  + a m j m l  - UU' 5 ~n 5 g i j l  + . , - + gmiln - Dr.' (2) 

Let us define 

nmin 

where J is the domain of j' = (jl,. . . ,,jm). Then, the 
integer domain of the variable n in the polyhedron (RCM') 
is 

[rnminl, 1n7n4 n z 
We can thus conclude that the domains of all variables are 
easily computed and the explicit computation of' the ver- 
tices is not needed. 

Since the domains of the variables jl,. . . , j, may 
change when the variable n is fixed, the order in which 
the variables will be fixed cannot be determined at the be- 
ginning. Thus, the real domain of these variables must be 
recalcuIated every time. This is done in  a similar way to 
the computation of the domain of  n in the initial polyhe 
dron: for every variable jk, its greatest and lowest valucs 
given by the two inequations (cq. 2 )  nre calculated. The 
actual domain of this variable i s  the intersection between 
this interval and the explicit domain giwn by the equations 
of the polyhedrun. 

I n  order to detect empty polyhedra, the search ofempty 
integer domains must be done for all the variables. Thco- 
retically, the complexity is #(#iterotion-points), but in 
practice, it is O(1.5pn) for our benchmarks. 

VI PERFORMANCE UVALUATrON 

We have generated the CME for tlic SPECfp95 bench- 
mark suite. For each program, we havc chosen the most 
time consuming loop nests that in total represent between 
the 60-70% of' the total cxecution time using the reference 
input data. 

A Empty Polyhedra 

Pirst we evaluate the effectiveness of our proposal for 
detecting empty polyhedra, assuming a 32K direct mapped 
cache. Figure 1 coinpares our mcthod with the technique 
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Figure 1. Empty Polyhedra 

oi'thc Polylib [,SI for dctccting ctnpty polyhedra. Oiily Re- 
placeineii t pnIyIietlra Ii;ivc been considered, as their evalu- 
atiori is thc inust time consortling atnorig dl CME polyhe- 
d r a  The first cidinnn shows the number of Replacement 
polyhetli,n obtnirietl for c;ch SPEC1'p95 program mnlyzetl. 
Thc sccuiiti colomn depicts the niunhcr of empty polyhc- 
tfra tletcctecl by nur approach, wliereas the third colii inn 
shows thc iiiirriber of empty I<eplaccmcnt dctccted through 
thc l'dylib. We can see that cHIr approach dctccts U sig- 
nilicnntly higher numbcr of cinpty polyticdm. This is due 
io thc fact that Polylib only detects polytiedra without any 
Ical point insirlc. 

Cultmns I and 2 of table 2 show ttic execution time 
rcquired hy hoth tncihnds to check the emptiness trl all 
polyhedra. Uuc fo the coniplexity ol' the coinpulation 
01' the vertices ol' n polyhedron, our proposal is much 
Iistcr than Polylib's technique. The cornplexity of the 
p r o p ~ x i  nicthritl is O(ITL). On the other hand, Polylib's 
rnethotl relies on cotnputing the vertices of  each poly- 
hedron. The cumplexity of the algorittim that it uses is 
Cl(#~:nn.stl.ni~s-t~1~-.-2-- -,I). For IZeplacernent Polyhe- 
dra, thc nirinber of constraints is 2mn + 3 and the number 
of varinbles i s  m + 1, where m i s  t.he nesting depth of the 
Iricqincst. Thus, the coinplcxity of Polylih's approach is 

lln, l l l l r l C 0  

1. I,) (*rl i y 

R Analyzing Itcrilti(>n Poinb 

In order to evaluiite the techniques proposed lor analyz- 
ing itcr;ition points, we implemented a solver of the Cache 
Miss liquations hascd on trwersitig a subsct of the iteration 
spacc through sainplitig techniques as described in 141. 
Next, we evaliialc Ihc el'fectivcncss of thc proposcd tech- 

nique fnr hoth dircct niappcd and sct-associative caches, 
and it is  comparctl Io an algorithm that counts thc n i m -  

hcr of iiitcger points inside the polylicdrn by means of the 
gencral mclhad loor counting presenlcd in section C. The 
computation of  thc vcrticcs [)E tlic lmlyherlrtl needed for 
this second rnethotl (Verfire.7) is dnne by incans of' func- 
tions from tlic Polylib librmy. 

Tnble I shows .the tiinc in seconds required to atialyzc 
the different SPECfp95 [or four dif'fcrcnt orgariimtiriiis of 
sct-associative caches, for both the proposed method nnd 
thc Verlices method. 

The specd-up of 011r appIo;ich is vcry important, due tr) 
the different complexities of both algorithms. For a direct 
mapped cache, it is between 7 and 41 8 times faster than the 
Vclriices method and it is 30 on average. 'Uic spced-up for 
different set-associative conIigurations is cvcn higher. For 
instance, the average speed-up foot a 4-way sct-associative 
cachc Is 42. 

The differerice between these two algorithms relies on 
tbc apprrmh tu compiitc fhc doinains o f  all variables. Thc 
ploposcd method clocs i t  with a coinplcxity of O(rnZ).  
Thc Vertices  neth hod is split into two stcps: first the ver- 
tices of the polyhedron :Ire computed with a complexity 
of O(mi y j ) ,  as explained in the previous section. Then, 
by mcans of thc vcrticos, thc dom;iins of the variiiblcs :ire 

computed with a complexity of 8(mn * #?icptices). 

Note that most programs can be analyzed by the pro- 
posed approach i n  less than a iiiinutc and thc most expen- 
sive one is npplu which takes about I .5 minutes, whereas 
the approach based on the Vercices method takes several 
minutes anti in the worst u s e  it trikes innre than one hour. 

144 



Table 1. Execution time for different cache organizatlons using 
an Origin2000. 

Table 2. Execution 
time (in seconds) us- 
ing a Sun Ultra Sparc 
I. 

VI1 CONCLLJStONS ticins. Technical Report UPC-DAC- 1999-50, Univer- 
siht Palitbcnica de Ctitalunya, November 1999. 

C:achc Miss Equations prnvidc nn aiialytical atid precise 
rlescription of thc ciichc inemory behavior. Ilnfortunately 

teger points insirlc polyhedra is R very tiinc consuming task 
thal inakes them infcasiblc for inany ~pplicatioiis. 

In this paper we proposc some techniques lhat ex- 
ploit sonic intrinsic properries of thc particular polyhedra 
generntctl by CME. These techniqoes significantly reducc 
he cnriiplcxity of thc nlgoritlinis and result in spccd-ups 
of inorc tlim one order of magaitudc fnr the SPECTp95 
Imicliinarks. This irnportantspccd-up is due to the fact that 
he propnsctl appr(i:ich does iiot require the computatinn of 
thc vcrticcs O F  thc nssocinted plyhcdra.  Wc have shown 
that thc prnposccl approach usually takcsjust a Few seconds 
lo analyze R program 0 1  thc SPECfpp95. and it never takes 
iiiorc t h w  2 ininiites Ibr the different cnchc configurations 
that liavc becn aiirdynetl. This cost is sindl enough to allow 
the technique tn Ix iticluclcd in a production compiler. 

[s] D, Wjl&. A library for CloiIIg polyhedral operations, 
s o l  viiig CMR hy t.raditiona1 methods based on counting in- t 993. 

[hl M. E, Wolf and M. S.  Lam. A datn locnlity optimizing 
algririthm. In ACM SIGFI.AN91, pages 3044, 1991, 
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