
Dynamically Reducing Pressure on the Physical Register File
through Simple Register Sharing

Liem Tran, Nicholas Nelson, Fung Ngai, Steve Dropsho, and Michael Huang
Dept. of Electrical & Computer Engineering

University of Rochester�
litran, ninelson, ngai, dropsho, michael.huang � @ece.rochester.edu

Abstract

Using register renaming and physical registers, modern mi-
croprocessors eliminate false data dependences from reuse of the
instruction set defined registers (logical registers). High perfor-
mance processors that have longer pipelines and a greater capac-
ity to exploit instruction-level parallelism have more instructions
in-flight and require more physical registers. Simultaneous multi-
threading architectures further exacerbate this register pressure.

This paper evaluates two register sharing techniques for re-
ducing register usage. The first technique dynamically combines
physical registers having the same value. The second technique
combines the demand of several instructions updating the same
logical register and share physical register storage among them.
While similar techniques have been proposed previously, an im-
portant contribution of this paper is to exploit only special cases
that provide most of the benefits of more general solutions but at
a very low hardware complexity.

Despite the simplicity, our design reduces the required num-
ber of physical registers by more than 10% on some applications,
and provides almost half of the total benefits of an aggressive
(complex) scheme. More importantly, we show the simpler de-
sign to reduce register pressure has significant performance ef-
fects in a simultaneous multithreaded (SMT) architecture where
register availability can be a bottleneck. Our results show an
average of 25.7% performance improvement for an SMT archi-
tecture with 160 registers or, equivalently, similar performance as
an SMT with 200 registers (25% more) but no register sharing.

Keywords: register sharing, register renaming, frequent val-
ues, simultaneous multithreading (SMT)

1 Introduction

In pursuit of higher performance through higher clock rates and
greater instruction level parallelism (ILP), modern microarchitec-
tures are buffering an ever greater number of instructions in the
pipeline. The larger window of in-flight instructions offers the mi-
croarchitecture hardware more opportunities to discover indepen-
dent instructions to issue simultaneously. However, maintaining
more instructions requires a corresponding increase in the buffer-
ing structures; in particular, a larger physical register file with
which to hold the generated results.

On the other hand, the counter forces to arbitrarily sized buffers
are effects on cycle time due to non-scalable wire delays [1] and
limits on power consumption [7]. Also, smaller buffers can re-

duce complexity in other regions of the chip; e.g., the number of
wires in the issue logic of Alpha 21264 is directly proportional to
the number of physical registers [5]. Thus, despite large transis-
tor budgets from shrinking technology dimensions, efficient use
of register resources will always be an important design consider-
ation.

A method for improving the use of physical registers to de-
crease the overall average demand is the technique of register
sharing based on value [8]. In this type of sharing, logical reg-
isters containing the same value can be mapped to the same phys-
ical register, with the other physical register being released early.
In [8], a general scheme to detect shared values is outlined for the
Intel IA-32 architecture, an instruction set that exhibits consider-
able register pressure due to the small set of logical registers.

Another method to reduce register pressure is to aggressively
reclaim physical registers when their values are no longer needed.
Typical register renaming schemes conservatively allocate and re-
lease registers with the result that physical register lifetimes are
unnecessarily long. Techniques have been proposed to alleviate
this issue such as delaying the allocation until it is necessary [6]
and early releasing dead registers indicated by compiler analy-
sis [11].

An important contribution of this paper is to look at the prac-
tical design issues of these different ways of reducing register
pressure, with a special focus on lowering the hardware complex-
ity. We show that there are important special cases which provide
many of the benefits but with much less complexity than that re-
quired for the general cases.

In particular, we show that optimizing the shared value detec-
tion to the special set of values zero and one generates almost half
the benefits of the more general technique which shares arbitrary
values. Restricting sharing to these two values enables a num-
ber of optimizations that greatly simplifies the implementation.
Additionally, we propose a very simple mechanism that allows
multiple versions of the same logical register to share the same
physical register. We focus on a special type of instruction that
we call single-use self-overwriting instructions. These instruc-
tions are quite numerous (about a quarter of all value-producing
instructions) and their data dependence guarantees that they will
execute in program order; thus, such instructions do not need mul-
tiple physical registers to avoid anti- and output-dependences.

Part of our contribution is the detailed design of our simple reg-
ister sharing scheme that exploits these special cases. We further
show that the benefits of register sharing can be significant in a

mihuang
Appears in 2004 International Symposium on Performance Analysis of Systems and Software

simultaneous multithreaded architecture where registers are more
likely to be a limiting resource. In our simulations, we demon-
strate a 25.7% performance improvement on average across a set
of integer benchmark mixes.

The rest of this paper is organized as follows: Section 2
presents an overview of the methods to dynamically share phys-
ical registers. Our evaluation environment is discussed in Sec-
tion 3. Results are presented in Section 4. We present a practi-
cal implementation of our design in Section 5. Related work is
presented in Section 6. We conclude and discuss future work in
Section 7.

2 Dynamically Sharing Physical Registers

Register renaming schemes dynamically transform a program into
single-assignment form to remove false dependences and thus
expose more instruction-level parallelism. However, allocating
a physical register for every value-instance can lead to register
waste. For example, if multiple physical registers contain the
same value then the mapping can be adjusted to use a single copy
of the value and the redundant registers can be freed.

Sharing physical registers increases the effective number of
physical registers which can improve performance when regis-
ters are a scarce resource, such as in simultaneous multithreaded
(SMT) processors [18].

In this section, we describe a general method for detecting
shared values in the integer register file and reducing the num-
ber of physical registers in use. We also describe how, in certain
cases, multiple instructions can share the physical register storage.

We show in Section 4 that specializing these techniques pro-
vides most of the opportunities for register sharing and greatly
simplifies the design. In particular, limiting value-based sharing
to just two values, zero and one is a good design trade-off. In
Section 5 we present details of a design that is both simple and
effective.

2.1 The common value buffer (CVB)

The common value buffer (CVB) is a mechanism for detecting
arbitrary shared values between registers. The CVB is a fully-
associative buffer of the last � generated values (LRU replace-
ment). After instruction execution, results are compared to values
in the CVB. Matches (hits) are considered to be common values.

Associated with the value in the buffer is the ID of an active
physical register having that value. The mapping of the logical
register associated with the just executed instruction is modified
to point to the physical register from the CVB. This update re-
quires modifying the logical-to-physical register alias table (RAT)
and also updating the source fields of the instructions waiting for
issue. The implementation requires a counter be associated with
each physical register [8] that is incremented each time another
register is redirected to use the value. The physical register cannot
be released until its count decrements to zero. Since the precise
timing of these actions requires details of the pipeline, we defer
discussing the specifics until Section 5.

2.2 Trivial computations

Trivial computations [21] are computations in which the result
can be known from the operand values without performing the
calculation itself, e.g., a logical bit-wise AND with zero. We de-
tect two types of trivial computations. The first, called Trivial 0,
detects results that can be determined a priori to always be zero.
The second class, called Trivial X, detects computations in which
the result can be determined a priori to match the value of either
operand. The list of trivial computations we detect and their input
conditions is given in Table 1.

Table 1. Trivial computations
Operation Normal Trivial 0 Trivial �

Add X+Y X=Y=0 X or Y=0
Subtract X-Y X=Y=0 Y=0
Multiply X*Y X or Y=0 X=1 or Y=1

AND X&Y X or Y=0 not detected
OR X � Y X=Y=0 X or Y=0

XOR X xor Y X=Y=0 X or Y=0
Logical shift X ��� Y or X ��� Y X=0 Y=0

Arithmetic shift X ��� Y or X ��� Y X=0 Y=0

These computations are detected during decoding and renam-
ing when the physical register mappings of the source operands
are read. Upon detection of a trivial computation, the register
rename logic maps the destination register to the zero register
(for Trivial 0 computations) or to the same register as the source
operand (for Trivial X computations).

2.3 Register lifetime reduction

In an R10000-like register renaming scheme, a physical register’s
lifetime spans from allocation to release, whereas the actual use-
ful time is between the definition of the register and its last use, as
shown in Figure 1. For simplicity, the register is allocated at the
decode/register-renaming stage. Depending on the time of wait-
ing and the number of cycles of execution, this can be many cy-
cles earlier than the write-back stage, where the register storage
is truly necessary. Furthermore, the allocated register is only re-
leased conservatively at the commit time of the next instruction
that updates the logical register. This standard strategy can lead
to much longer lifetime than is necessary. Our analyses show that
a register is only needed for an interval about 10-20% of its total
lifetime. This suggests that there is potential to increase effective
register size by reducing lifetime.

AllocationReleaseAllocation

Lifetime

Idle Dead

Definition Usages

Useful Lifetime

Figure 1. The life-cycle of physical registers.

In this paper, we propose a simple technique that exploits self-
overwriting instructions to reduce effective register lifetime. We
refer to instructions that update one of the source registers as self-
overwriting (SO) instructions, e.g., ���
	��
������� . As shown
in Figure 2, if the self-overwriting instruction is also single-use
(i.e., the instruction is the only consumer of the value in the desti-
nation register), then the lifetime of each version (in physical reg-
isters) of the (logical) destination register does not overlap. This

is enforced by standard data dependence checking hardware that
serializes this set of instructions due to their read-after-write de-
pendences. Therefore, instead of allocating multiple physical reg-
isters to hold the different versions of the logical register, these
versions can conveniently share the same physical storage. No-
tice that although the instructions can share storage space, dis-
tinction among these versions is still necessary to allow correct
dependence tracking and value communication. We defer these
discussions and other implementation details to Section 5.

2.4 Register sharing designs

There are a number of options in how value-based (register) shar-
ing, trivial computation detection, and lifetime-based sharing can
be implemented. Several features to the design are the following:

Common values. The CVB permits register sharing with arbi-
trary values. A subset of the common value space is the set of
highly used values of zero and one. While the CVB can provide
more opportunities for sharing, focusing only on the zero-one sub-
set allows only dedicated (hardwired) registers to be shared and
eliminates the register use counters.

Trivial computations. Implementing trivial X detection requires
general support for register sharing. In contrast, implementing
trivial 0 requires redirection to a hardwired register that is not ac-
tually part of the pool of physical registers and making detection
extremely simple.

Early release stage. For zero/one detection, common values are
detected during the execution stage. For general value detection
using a CVB, detection occurs in the writeback stage. The earliest
registers can be released back to the free pool is one cycle after
detection. In Section 5 we discuss why delaying register release
until the instruction commits reduces implementation complexity.

Bandwidth. Permitting multiple register redirections per cycle
minimizes the delay in freeing register resources. However, it re-
quires duplication of logic. On the other hand, buffering sharing
requests and limiting redirection to one request per cycle elim-
inates the need for duplicate logic at the cost of delaying early
register release.

Instruction type. When a single-use self-overwriting (SUSO)
instruction shares a register with the previous definition and over-
writes upon execution, we need the ability to retrieve the overwrit-

D U

op R1, ... (definition)
...

...

.... (R1 is not used)
op R1, R1, ... (self−overwrite)

.... (R1 is not used)
op R1, R1, ... (self−overwrite)

A D U R

R

1

2

3

1’

A R

A R

A

D U

Figure 2. Single-use self-overwriting (SUSO) instruc-
tions and the life-cycle of physical registers allocated.
A, D, U, and R stands for Allocation, Definition, Us-
age, and Release. Physical registers 1 to 3 can be sub-
stituted with a single register 1’ with an extended life-
time.

ten value when handling exceptions. One way to retrieve the value
is to reverse the instruction. To be able to do this, we can only al-
low SUSO instructions with reversible opcodes to share register
(see Section 5.4.2). Alternatively, we can rely on a more elaborate
checkpointing scheme and allow all types of SUSO instructions.

Chain scope and length. SUSO instructions can form a chain
of arbitrary length and it can span across multiple basic blocks.
Limiting the chain to be within the same basic block will greatly
simplify the design in branch misprediction handling. Also, the
length of the chain that is allowed to share a register dictates the
number of bits in the wakeup system to differentiate between dif-
ferent instructions that write to the same register. These design
considerations will be discussed in more detail in Section 5.4.

From the above features, we construct two design points with
which to compare to a base design without register sharing. In all,
there are three cases:

� base: No register sharing.
� complex: The most aggressive design to maximize regis-

ter sharing and early release of registers. The design in-
cludes a CVB, trivial X, immediate release, a redirection
bandwidth matching the issue bandwidth. Every chain of
self-overwriting instructions shares a single physical regis-
ter, regardless of the length and scope of the chain. We note
that, complex requires complicated micro-architectural sup-
port, especially for handling branch mispredictions and ex-
ceptions.

� simple: A modest design that trades some reduction in regis-
ter sharing opportunities for much less implementation com-
plexity. For value-based register sharing: values are re-
stricted to zero/one (there is no CVB); only trivial 0 is ex-
ploited; early-release is delayed until the instruction com-
mits; and register sharing updates are restricted to one per
cycle. For register sharing based on lifetime, sharing is lim-
ited to only those SUSO instructions within the same basic
block of the initial assignment, and only up to three self-
overwriting instructions are allowed to share the allocated
register. This is the scheme we detail in Section 5.

3 Methodology

We explore the effects of the various register sharing schemes on
individual applications to provide insight into behavior with shar-
ing. From this data, we justify the simple scheme as providing the
best advantage for the cost, and then demonstrate this scheme’s
effects on performance in the much more register intensive envi-
ronment of an SMT architecture.

For the exploratory, per-application results we use the Sim-
plescalar simulator version 4.0 (MASE) [10]. The processor is
modeled after the MIPS R10000 [20] and has a general pool
of 64 physical integer registers (no dedicated architectural regis-
ters). For the SMT simulations (the primary results) we use SMT-
SIM [18]. The SMT processor configuration parameters are given
in Table 2.

We have modified both simulators to perform common value
detection and register redirection as described in the text. Our
focus is on common value reuse in integer benchmarks. The com-
plete list of SPECInt 2000 benchmarks is given in Table 3 and the

Table 2. SMT Architectural Parameters
Threads 4
Fetch/Decode width 16 instructions
Branch predictor 2K gshare
Branch mispred. latency 6 cycles
Branch target buffer 256 entries, 4-way associative
Issue width 11 instructions
Reorder buffer entries/thread 256 entries
Issue queue entries 40 entries Int/Ld/St, 40 entries FP
Physical integer regs see results
Functional units 8 Int (4 handle loads/stores), 3 FP
TLB 48 entries (I), 128 entries (D)
L1 I-cache 32 KB, 2-way, 64B line
L1 D-cache 32 KB, 2-way, 64B line
L2 256 KB 2-way, 64B line, 15 cycles
Memory latency 120 cycles

six application mixes used in the SMT simulations. In all simu-
lations, we use the reference input set, fast-forward 500 million
instructions per thread and then simulate for 500 million cycles.

Table 3. Applications & SMT Mixes
bzip2, gcc, crafty, gap, gzip, mcf

parser, perlbmk, twolf, vortex, eon, vpr
Mix 1: vpr, crafty, gcc, gzip Mix 4: gzip, gcc, mcf, twolf
Mix 2: bzip2, mcf, twolf, parser Mix 5: gap, gzip, gcc, mcf
Mix 3: twolf, parser, vpr, crafty Mix 6: mcf, twolf, parser, gcc

4 Results

We limit the primary study to comparing three register sharing
configurations: base, simple, and complex (defined in Section 2).
Shown in Figure 3 is the per application performance improve-
ment for the three configurations. More important is the reduction
in register pressure using the three schemes shown in Figure 4.
In this figure lower bars are better. While average performance
improvement across all the individual applications is only 1.3%
for simple and 4.5% for complex, the overall average reduction in
number of physical registers in use decreases by 4.4% and 10.6%,
respectively. In other words, the simple scheme garners almost
half the reduction in register pressure of that of the more complex
scheme.

0

1

2

IP
C

base
simple
complex

bz
ip2

gc

c

cr
af

ty
ga

p

pa
rs

er

gz
ip

 m

cf

 pe
rlb

m
k

tw
olf

vo
rte

x
eo

n vp
r

av
er

ag
e

Figure 3. Relative performance

Table 4 and Figures 5 and 6 help explain why the simple
scheme is so effective. In Figure 5, we show the hit rate in the
CVB averaged across the benchmarks for various buffer sizes
buffering values excluding the special values of zero and one.

0

20

40

60

80

A
ve

ra
ge

 R
eg

is
te

r
U

sa
ge

 (
%

)

base
simple
complex

bz
ip2

gc

c

cr
af

ty ga
p

gz
ip

 m

cf

 pa
rs

er

pe
rlb

m
k

tw
olf

vo
rte

x
eo

n vp
r

av
er

ag
e

Figure 4. Relative physical register usage

Special care was taken to eliminate NOP-type instructions from
being counted. As the buffer size is doubled the hit rate increases
linearly. Shown in Figure 6 is the percentage of values that are ei-
ther zero or one. These two values are invariably the top two most
frequently occurring values. On average, 9.6% of the instructions
generate one of these special values. The occurrence rate of al-
most 10% for values of zero and one nearly matches the hit rate
of the larger CVB; thus, simply detecting these two values pro-
vides much of the benefits. Moreover, for all the applications, the
frequency of the third frequent value is negligible and the value
itself is application-dependent.

1 2 4 8 16 32
0%

5%

10%

15%

Common Value Buffer size (entries)

CVB hitrate (excl. 0/1)
0/1 occurrences

Figure 5. Hit rate of CVB

0%

10%

20%

30%
zero
one

bz
ip2

gc

c

cr
af

ty
ga

p
gz

ip
m

cf

pa
rs

er

pe
rlb

m
k

tw
olf

vo
rte

x
eo

n
vp

r

av
er

ag
e

Figure 6. Fraction of values that are zero or one

The distribution of 0/1 detections occurring per cycle is shown
in Table 4. Multiple occurrences of zero/one results in a cycle
arise in only 4% of the cycles. Thus, buffering sharing requests
and limiting their processing to one per cycle incurs little delay
on the early release, in general. In contrast to buffering requests,

Table 4. Distribution of 0/1 detection per cycle
Number of values 0 1 2 3+
Percentage of cycles 82.9% 13.1% 3.35% 0.58%

another method would be to arbitrarily ignore all but one sharing
request each cycle. We implement the former.

The simplicity of the simple scheme and its demonstrated ef-
fectiveness to exploit register sharing suggests the simple design
is preferable to the more complex design for actual implementa-
tion.

Simultaneous multithreading. Figure 4 showing the reduc-
tion in register pressure is the more interesting data than the per-
formance data since the effect on performance from reducing reg-
ister pressure is highly dependent on whether the registers are a
performance limiting resource. In an SMT processor, however,
the availability of physical registers is often a limiting factor,
much more so than in a single threaded architecture. We explore
this effect in Figure 7, showing various aspect of the performance
improvement for the SMT processor having the simple scheme.

In Figure 7-(a) we show the reduction in register conflict using
the simple scheme. Register conflict is measured by the number of
cycles the decode stage is stalled due to lack of available registers.
With 160 physical registers, register conflicts are reduced by 28%
to 40%, with an average of 35%. The simple scheme has the same
or better effect as adding 40 physical registers (25% more). The
decrease in register pressure from sharing improves performance
by an average of 25.7% (Figure 7-(b)). Even with 200 registers,
the scheme can still improve the performance and by an average of
8.8%, and up to 13.2%. In Figure 7-(c), we show the performance
improvements for each individual application in the mixes, using
the simple scheme with 160 registers. We measure the execution
of the SMT processor for a fixed number of cycles and calculate
the number of instructions finished per-thread with and without
the simple scheme. Not surprisingly, as shown in the figure, the
increase in resource benefits all threads relatively evenly. Finally,
in Figure 7-(d) we show the effect of value-based and lifetime-
based register sharing in isolation and combined. We can see that
while the value-based sharing is more effective, the improvements
from both components are additive.

Overall, we have shown that the simple scheme is indeed very
effective and delivers significant performance improvement in an
SMT processor.

5 A Design for Dynamic Register Sharing

5.1 The baseline system

While dynamic out-of-order microprocessors have various pos-
sible implementations, we focus on a straightforward baseline
processor core that is largely based on MIPS R10000 [20]. The
pipeline of the processor is shown in Figure 8.

Register renaming In this processor, there are no dedicated
architectural registers [13, 20, 9]. Instead, physical registers from
a larger pool are dynamically assigned to represent the logical reg-
isters. In the decode/map stage, the logical register numbers are
translated into physical register numbers. This is done through

(a)

mix 1 mix 2 mix 3 mix 4 mix 5 mix 6
0

20

40

60

80

100

R
eg

is
te

r
C

on
fli

ct
 (

%
)

base 160
simple 160
base 200
simple 200

(b)

mix 1 mix 2 mix 3 mix 4 mix 5 mix 6
0

1

2

3

4

IP
C

base 160
simple 160
base 200
simple 200

(c)

mix 1 mix 2 mix 3 mix 4 mix 5 mix 6
0

20

40

60

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t (

%
)

 threads 1−4

(d)

mix 1 mix 2 mix 3 mix 4 mix 5 mix 6
0

10

20

30

40

50

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t (

%
) lifetime−based

value−based
combined

Figure 7. SMT performance analysis

a multi-ported RAM table (RAT). In this rename process, source
logical registers are renamed into physical registers by reading its
corresponding RAT entry. Each instruction with a destination reg-
ister will allocate a free physical register in FIFO manner from the
free list. This newly allocated physical register is written into the
RAT, in the entry for the destination (logical) register. The previ-
ous value of that entry (the “old” physical register ID) is copied
into the instruction’s entry in the reorder buffer (ROB). When this
instruction commits, the “old” physical register is appended to the
free list. To handle branch misprediction, the RAT, together with
the read pointer of the free list is checkpointed upon decoding of

Fetch WB(Mem)EXEDec/Map Dispatch Commit

Figure 8. Pipeline of the baseline processor core.

a branch [20]. The checkpoint is restored when the branch is de-
tected as mispredicted. Since the read pointer of the free list is
also restored, physical registers allocated to wrong-path instruc-
tions are freed instantly.

Instruction wakeup Each physical register has a dedicated
busy bit that is set during allocation to indicate that the producer
has not finished execution, and therefore, dependent instructions
need to wait in the instruction queue (or issue queue). When an
instruction is issued, its destination register is broadcast to wake
up dependent instructions and mark the associated operands as
ready. Instructions with all operands marked ready can be issued
in the following cycle. To speed up back-to-back data dependent
instructions, any operands that use the result of a currently exe-
cuting instruction will read the value off the bypass path as it is
written to the register file.

5.2 Value-based register sharing

5.2.1 Overview

When two physical registers
���

and
���

contain the same value,
one of the register (say

���
) can be early-released and re-allocated

for other instructions. To ensure future instructions intending to
read from

� �
will read from

���
, the following needs to be done:

1. Change the RAT entry pointing to
���

to
� �

.

2. Any instruction in the issue queue with a
���

in the source
operand field needs to change it into

���
.

Apparently these steps would correctly modify the processor
state and allow the release of

���
. However, there are three pri-

mary complications we list below, � ���	��
 . For discussion pur-
poses, let us call their corresponding logical registers � � and � � ,
respectively:

C-1 Physical register
� �

cannot be released as usual, namely
when the next producer of � � is committed. We have to
wait until both � � and � � are defined again, and the pro-
ducer instructions have committed. Reference counting has
been proposed to keep track of when a physical register can
be freed [8], but the design is complex especially if it per-
mits sharing along speculative paths, as reference counters
need to be fixed upon a branch misprediction.

C-2 If the RAT entry of � � has been overwritten, then one of
the in-flight instructions (
��), will release

���
at the commit

time. Only one release, either the early-release or the normal
release by
 � can be allowed.

If we allow the early-release, we have to search the ROB,
perhaps associatively, and modify the entry of
 � . As the
ROB continues to grow in size, and would otherwise need
only indexing-based access, this search functionality would
have significant impact on the scalability of the ROB.

C-3 Branch mispredictions also present complications. First, if
we allow an instruction to early-release its allocated physi-
cal register before the instruction is committed, then if the
instruction is squashed because of misprediction recovery
we cannot free the register again. In our R10000-like regis-
ter renaming scheme, this presents a major design challenge,
since freeing all the registers allocated on the wrong path is

done in a single action of restoring the read pointer of the
free list [20].

Second, when we early-release a register (say
���

), we need
to change not only the current RAT (if it is still mapped) but
also any checkpoints where

���
appears. Otherwise when a

branch misprediction happens, we may restore a checkpoint
(made before the early-release) containing

� �
, resulting in

an error. The ability to search and selectively change check-
point entries would introduce significant overhead.

To implement a generic dynamic register sharing, handling
these complications would require complicated hardware support
and/or a very conservative sharing scheme. We now describe an
implementation for the special case of register sharing that is sim-
ple and straightforward. Limiting sharing to the values of zero
and one allows the following simplifications:

1. Because their values are fixed, special dedicated registers
(
���

and
���

) can be provided without the need of freeing
(C-1).

2. Detecting these two common values is almost trivial.

3. Changing the content inside the RAT or the source register
field in the issue queue is greatly simplified: only one bit
needs to be set (to 0 or 1), while others can be cleared.

Additionally, in the interest of hardware simplicity, we only
early-release a physical register when (1) the common value-
producing instruction commits, and (2) if the register is still in
the RAT. Restriction (1) ensures that a branch misprediction roll
back will not free any early-released register (C-3). Restriction
(2) avoids complication C-2. Combining (1) and (2), we know
that if the register is still in the RAT it will be present in the same
entry in every checkpoint as well. Thus, we only need the ability
to check the primary RAT, not any of the checkpoints. Given that
we only exploit values zero and one, changing the checkpoints is
quite easy.

Matched R0

Delay
Buffer

Reorder Buffer

Old PReg

New PReg

other
information

V (0/1)

Release
Free list

Allocate

Table with
Checkpoints

Register Rename

Matched R31

Early
Release

CAM port

ALU

ALU

Issue Queue

0/1 detected

Common Value?

Figure 9. The overview of the microarchitecture for
early release of registers containing common values.

Figure 9 shows a simplified overview of the proposed microar-
chitectural support for register sharing. The outline of the algo-
rithm is as follows (some specific design choices are discussed
later):

1. If an ALU operation results in 0 or 1, the instruction is
marked in the ROB as a common-value-producing instruc-
tion. The specific value is also recorded. This requires only
two extra bits in the ROB.

2. When an instruction is committed, the superseded physical
register ����� �����	� is released as usual. If the instruction is
marked as a common-value-producing instruction, its allo-
cated physical register � �	
 ������� becomes a candidate for
early-release. It is broadcast through a special CAM port
(Section 5.2.2) to detect its presence in the RAT. When a
match occurs:

(a) The physical register is released to the free list.

(b) The matching RAT entry and the corresponding
checkpoint entries are all set to the dedicated physi-
cal register (either 0 or 1, see Section 5.2.2).

(c) The physical register number is entered into a 1-cycle
delay buffer and used to rename instructions inside the
issue queue (Section 5.2.3).

5.2.2 Modified RAT

The register alias table needs to be slightly modified to add the
functionality mentioned above. Figure 10 shows the diagram for
the modified rename table. The base cell design is shaded for a
 -ported table. Figure 10-(a) shows the comparators and clear
transistor for all bits other than the least significant bit (LSB) of
the physical register ID. Figure 10-(b) has additional logic (shown
in bold lines) that sets the LSB to the common value (�) pro-
duced by the instruction. The match line is precharged and sense-
amplified to perform a CAM-style parallel search. If the logical
register number is readily available, only its corresponding match
line needs to be precharged. To avoid race conditions, the CAM
port should be accessed in the opposite clock phase as the RAM
ports. Since early-release is not time critical, we assume this clock
phase is after that of the RAM port access phase.

The added five or six transistors represent an insignificant in-
crease: in a four-way issue pipeline, the map table requires 12
read ports and 4 write ports (
�� �	�) for a total of 36 transistors
in the base cell design [16]. This circuit allows a maximum early-
release of 1 per cycle. As we have seen in Section 4, only 4% of
the cycles have more than one early release candidate. A simple,
small buffer can easily accommodate the occasional bursts.

To ensure the early-released physical register ID does not
reappear erroneously by way of RAT checkpoint restore (Sec-
tion 5.2.1), the corresponding mappings in all checkpoint copies
are likewise set to the same dedicated ID (P0/P1) simultaneously.
The reason we can change all copies indiscriminately is that the
common-value-producing instruction is being committed and any
valid checkpoint at the moment should also point to that register.

5.2.3 Modified issue queue

Broadcasting the to-be-released register ID into the issue queue
is necessary to ensure all dependent instructions read the correct

Clear

line

C
om

pa
re

Standard cell portion
MB B B B MBB

WL

WL

sense
amp

p−1

0

ii
0

i
p−1

i
0p−1

ii

Match

(a) Non least significant bits (��������������� �! "�)

line

C
om

pa
re

MB00
p−1 p−1 0

WL

amp

00

Match

Standard cell portion
B B 0

0

WL
p−1

sense

0
0MB B B

VV

(b) Least significant bit (�$#)
Figure 10. Diagram of modified RAT cell

source register when issued. This broadcast is very similar to the
instruction wake-up broadcast. The difference is, normal wake-up
marks the operand as ready and the instruction is ready to issue if
all source operands are ready. The broadcast for register early re-
lease, however, marks the matching source register as a common
value, indicating that during issue, rather than reading from the
register file, zero or one should be used.

This logic can be implemented in two ways. In one method, a
dedicated broadcast port can be built into the issue queue. When
a source operand register ID field matches the content on this spe-
cial broadcast port, the operand is marked, and the common value
recorded. Alternatively, an existing free wake-up broadcast port
can be used. In this case, each such port is augmented with two
special bits. One bit indicates that the port is used for early-release
broadcast, and the other for the specific value.

The reason for the delay buffer in Figure 9 is that, when a can-
didate early-release physical register is checked in the RAT in cy-
cle % , there may be instructions decoded and mapped in the same
cycle that references the candidate register. Recall that these in-
structions read the RAT earlier than the potential RAT update due
to early-release, and thus will not see any change. They will enter
the issue queue in cycle % 	 � . If the broadcast is done in cycle
% , these instructions will not be notified. Notice that a 1-cycle de-
lay is sufficient since typically broadcasts happen in a later clock
phase than dispatch. This is to ensure proper wake-up. Finally, we
note that there is no race condition between the register’s release
and subsequent reuse even though the register is released one cy-

cle before the broadcast. This is because there are multiple cycles
between when a released register can be written to again.

5.2.4 Discussion

By freeing the register at commit time and only if the register is
still mapped, our design is much simplified. Compared to im-
mediate early-release, this does miss a few opportunities to free
more registers containing the frequent values zero or one. This is
indeed a good design tradeoff as exemplified in Figure 11. In this
figure, we show the breakdown of physical registers during 200
million cycles of execution of one application mix (mix 5). From
bottom up, we show the number of registers holding 0, 1, or some
other value. The remaining registers are either not yet written to
(unassigned), or not allocated (free). The left and right half of the
plot corresponds to the breakdown without and with our sharing
scheme respectively. The figure shows that while about 40 reg-
isters contain either 0 or 1 in the baseline system, only about 4
registers still hold one of the two special values.

50 100 150
0

40

80

120

160

of

 p
hy

si
ca

l r
eg

is
te

rs

millions of cycles

 0 50 100 150

free
unassigned
other
1
0

Figure 11. Register usage breakdown

5.3 Zero value trivial computations

Minimal logic is required to detect zero value trivial computa-
tions. Some calculations are zero regardless of the input operands
(e.g., ��������� �	�). For instances where one or both of the
operands must be known to be zero for the computation to be triv-
ial, we limit the detection to cases where the operand registers
have been mapped to the zero register already so an explicit read
of the register value is unnecessary.

5.4 Lifetime-based register sharing

Given an SO (self-overwriting) instruction, we call the previous
dynamic instruction that writes to the same logical register its as-
signment instruction. Notice that, this assignment instruction can
be an SO instruction itself. As explained in Section 2, an SUSO
(single-use self-overwriting) instruction can share the physical
register allocated to the assignment instruction. An SO instruc-
tion is an SUSO instruction if no other instructions between the
SO and the assignment instruction sources the destination register
of the assignment instruction.

5.4.1 Detection, sharing, wakeup, and release

Detection: Detecting SO instructions dynamically is straight-
forward. Detecting SUSO instructions requires cross-comparing

sources and destinations of simultaneously renamed instructions
and an extra reference bit per logical register in the RAT. The ref-
erence bit is cleared when the logical register is written to and set
when it is read from. To limit the detection of SUSO instructions
to be within the same basic block, we simply set all the reference
bits after decoding a conditional branch and making a checkpoint
for the RAT (Section 5.4.2). When restoring a checkpoint, we also
set all the bits.

Sharing and wakeup: When an SUSO instruction is detected, we
can simply reuse the currently mapped physical register (for the
destination register), without allocating a new one. However, in
our baseline system, the physical register ID also serves the pur-
pose as a tag for instruction wakeup and value communication.
Therefore we cannot allow two instructions to have the same des-
tination physical register number. In a system with virtual physi-
cal registers [6], this can be solved by using two virtual physical
register IDs pointing to the same physical register. In our design,
we choose a much simpler scheme: we extend the physical reg-
ister ID and use the most significant bits to differentiate different
versions. In particular, if we extend the ID by % bits, we can allow
��
 instructions to share the same physical register storage.

For example, in a system with 160 physical registers (requir-
ing 8-bit addresses), if we add two most-significant bits, then the
IDs 10, 266, 522, and 778 are the four tags associated with phys-
ical register 10. A non-SUSO instruction that produces a value
will be allocated a tag with the two most-significant bits set to
0. Subsequent SUSO instructions writing to the same destination
will increment these two bits, until it reaches 3. The next SUSO
instruction (writing to the same destination) will be treated as a
non-SUSO instruction and assigned a new register.

When decoding an SUSO instruction, if the destination register
is mapped to

� �
or
� �

, the special dedicated registers, the SUSO
instruction will also be treated as a normal instruction and obtain
a new physical register.

Release: When an SUSO instruction shares the physical register
with its corresponding assignment instruction, the ����� ������� field
of the SUSO instruction is set to an invalid value, the same way
as a non-value-producing instruction. Thus, when the SUSO in-
struction is committed, no register is released. The shared register
will eventually be released at commit time of the next instruction
that updates the same logical register and allocates a new register.

5.4.2 Misprediction and exception handling

Allowing multiple instructions to write to the same physical reg-
ister presents a challenge to branch misprediction and exception
handling. Consider this sequence of events: (1) if the original
assignment instruction occurs in a different (earlier) basic block
than the associated SUSO instruction, (2) a branch between the
SUSO instruction and its assignment instruction is mispredicted,
and (3) if the assignment instruction has been committed, then we
cannot recover the original assignment value that had been spec-
ulatively overwritten. For this reason, we only allow an SUSO in-
struction to share a register with its assignment instruction if they
belong to the same basic block. (If the SUSO instruction falls into
the next basic block, it will be treated as a normal instruction and
will allocate a new register.) This way, if the SUSO instruction is
on the wrong path, so is the assignment instruction.

It is possible that an exception occurs for an instruction be-
tween an SUSO instruction and its assignment instruction. If, by
the time the exception is handled, the SUSO instruction has al-
ready finished execution, then the physical register shared by the
SUSO instruction and its assignment instruction no longer con-
tains the assignment instruction’s result. After handling the ex-
ception, the SUSO instruction will be re-executed leading to an
erroneous result.

To solve this problem, we need to reverse the effect of any
already-executed SUSO instructions. In a typical exception han-
dling mechanism, to reconstruct the RAT, the oldest valid RAT
checkpoint is restored, and the ROB is “walked” in reverse or-
der to unmap the instructions in the oldest basic block [16, 20].
During this process, the only additional effort for us is to reverse
any already-executed SUSO instruction: we compute the over-
written operand using the result and the remaining operands, if
there are any. (For example, there is no remaining operand for
��� 	 � � � � � , and performing a right-shift on ��� ’s current value
recovers the overwritten operand.)

To be able to do this, we need the remaining operand un-
changed and a reversible opcode for the instruction. Fortunately,
the remaining operand is guaranteed to be in a normal register
(not shared) and stay unchanged since it is sourced by the SUSO
instruction, and therefore can not be the destination of another
SUSO instruction (violates the single-use rule).

To guarantee a reversible operation, we simply do not perform
register sharing for a non-reversible SUSO instruction (e.g., load)
in the first place. Most ALU instructions and address manipula-
tion are reversible. The reverse operation depends on the exact
format of the SUSO instruction and the detail can be found in
[17].

An alternative design is to roll back to the beginning of the ba-
sic block, re-execute the basic block without sharing registers. To
do so, we cannot commit any instruction in a basic block until
all instructions in the basic block finish execution without excep-
tion. To handle the pathological case where a basic block is larger
than the size of ROB, we have to artificially divide a large basic
block into smaller ones by inserting a not-taken branch instruction
dynamically. This design is not only complicated, but also subop-
timal in that instruction commit (and thus resource recycling) can
be delayed unnecessarily.

SUSO instructions and adding 2 bits to extend the register ID
is a good design point. On average, out of all value-producing
instructions, 24.3% are SUSO instructions. Our design captures
80% of these SUSO instructions, or 19.2% of all value-producing
instructions.

5.5 Implementing both schemes

When implementing both value-based and lifetime-based register
sharing, we have to make sure they work together. In particular,
we have to ensure that a shared register is not erroneously released
early. In our design, this is not a problem.

Consider a pair of instructions sharing a register: an SUSO in-
struction and its corresponding assignment instruction. (1) The
assignment instruction will not early-release the shared register
because of the restriction that the register ID be still mapped in the

RAT. Recall that although an SUSO instruction shares the physi-
cal register, it still updates the RAT table with a different register
ID (incrementing the two most-significant bits). (2) The SUSO
instruction can safely early-release the shared register. Because
the assignment instruction commits before the SUSO instruction
and thus does not need the register anymore.

6 Related Work

One of the closest work to ours is the register renaming by Jour-
dan et al. [8]. As previously discussed, the authors use register
sharing to exploit value locality and reduce register pressure in
the Intel IA-32 architecture. In this paper, we restrict the range
of values and greatly simplify the design. In a concurrent work,
Balakrishnan and Sohi also propose to use dedicated registers for
values zero and one to reduce register waste on storing these fre-
quent values [2]. However, in [2], implementation and support for
branch misprediction handling are not discussed in detail. We an-
alyze tradeoffs and present a simple and very effective design that
only reclaims registers at the commit stage. Moreover, we also
propose a simplified scheme that reduces the lifetime of physical
registers and show how both schemes work together.

In Cherry [12], registers are released early but state must be
recovered on exceptions. The design relies on checkpointing and
the ROB to rollback to a correct architectural state on exceptions
and replay instructions up to the exception in order to recover
state from resources released early. In our register sharing, when
processing an exception, we only need to reverse the effect of
already-executed SUSO instructions in the oldest basic block.

In [6, 19] register allocation is delayed until the value is actu-
ally ready to be written. In particular, Gonzalez et al. [6] describe
a virtual physical register design. The virtual register scheme as-
signs a virtual register ID during decode as a placemarker. An
actual physical register is not allocated until the result is ready in
the writeback stage. This technique reduces register pressure by
not requiring physical registers for many of the in-flight instruc-
tions. Our work is complementary to the virtual physical register
work. In fact, combining our work with virtual registers would
further decrease register pressure and simplify our design. The
simplification occurs since assignment to a physical register will
not occur until writeback when the value of the result is known
and common values can be assigned to the zero/one registers di-
rectly, eliminating the necessity of redirection later.

Martin et al. [11] detect registers having dead values (values
no longer needed) and return them to the free pool. The technique
is used to reduce the number of saves/restores at procedure calls,
but also reduces register pressure by reducing register lifetime.
Our lifetime-based register sharing is simpler in that it is purely
hardware-based.

Yi and Lilja [21] evaluate the most extensive set of trivial com-
putations in the literature to improve performance. In addition
to our Trivial 0 and Trivial X policies, the authors also perform
strength reduction (e.g., convert a multiply by 2 to a shift). In
contrast, we explore the effect of squashing trivial computations
on register pressure.

The frequent value cache (FVC) of Zhang et al. [23] attempts
to improve the performance of a direct-mapped cache by supple-

menting it with a small additional buffer. Because only frequently
used values are stored in the FVC, the data can be encoded to keep
the buffer small. The FVC acts as a specialized victim cache opti-
mized to storing only data lines with known frequent values. The
CVB is similar, but leverages these common values for a different
purpose, sharing physical registers to reduce register pressure.

Finally, there is a body of work that tries to build large reg-
ister files while limiting the adverse effect on the access tim-
ing [3, 4, 15, 22, 14]. Our approach is complementary to these
approaches in that we reduce the demand of physical registers
through sharing.

7 Conclusion and Future Work

As high performance processors attempt to exploit ever greater
parallelism, more instructions are in-flight and, consequently,
more physical registers are required. With the register file be-
ing a complex multi-ported structure, its capacity has both power
and performance implications. In this paper, we present a method
to reduce the demand for physical registers by sharing registers
that have the same value or non-overlapping useful lifetimes. It is
important in any implementation that the benefits justify the cost.
We propose a simple register sharing scheme and show that it pro-
vides almost half the benefits of the most aggressive scheme, but
with significantly less implementation complexity.

In an SMT architecture, reducing the demand for physical reg-
isters using our simple scheme results in a 25.7% performance
improvement, which is equivalent as having 25% more registers
and no register sharing. In future work, we plan to explore ad-
ditional opportunities to collapse registers and to combine this
scheme with a virtual physical register design, where we expect
the late binding of values to physical registers to increase the op-
portunities for sharing and also further simplify the register shar-
ing implementation.

References
[1] V. Agarwal, M. Hrishikesh, S. Keckler, and D. Burger. Clock Rate

versus IPC: The End of the Road for Conventional Microarchitec-
tures. In International Symposium on Computer Architecture, pages
248–259, Vancouver, Canada, June 2000.

[2] S. Balakrishnan and G. Sohi. Exploiting Value Locality in Physical
Register Files. In International Symposium on Microarchitecture,
pages 265–276, San Diego, California, December 2003.

[3] R. Balasubramonian, S. Dwarkadas, and D. Albonesi. Reducing the
Complexity of the Register File in Dynamic Superscalar Processors.
In International Symposium on Microarchitecture, pages 237–248,
Austin, Texas, December 2001.

[4] J. Cruz, A. González, M. Valero, and N. Topham. Multiple-Banked
Register File Architectures. In International Symposium on Com-
puter Architecture, pages 316–325, Vancouver, Canada, June 2000.

[5] J. Farrell and T. Fischer. Issue Logic for a 600-Mhz Out-of-Order
Execution Microprocessor. IEEE Journal of Solid-State Circuits,
33(5):707–712, May 1998.

[6] A. Gonzalez, J. Gonzalez, and M. Valero. Virtual-Physical Regis-
ters. In International Symposium on High-Performance Computer
Architecture, pages 175–184, Las Vegas, Nevada, January–February
1998.

[7] M. Gowan, L. Biro, and D. Jackson. Power Considerations in the
Design of the Alpha 21264 Microprocessor. In Design Automation
Conference, pages 726–731, San Francisco, California, June 1998.

[8] S. Jourdan, R. Ronnen, M. Bekerman, B. Shomar, and A. Yoaz.
A Novel Renaming Scheme to Exploit Value Temporal Locality
through Physical Register Reuse and Unification. In International
Symposium on Microarchitecture, pages 216–225, Dallas, Texas,
November–December 1998.

[9] R. Kessler. The Alpha 21264 Microprocessor. IEEE Micro, 9(2):24–
36, March 1999.

[10] E. Larson, S. Chatterjee, and T. Austin. MASE: A Novel In-
frastructure for Detailed Microarchitectural Modeling. In Interna-
tional Symposium on Performance Analysis of Systems and Soft-
ware, pages 1–9, Tucson, Arizona, November 2001.

[11] M. Martin, A. Roth, and C. Fischer. Exploiting Dead Value Infor-
mation. In International Symposium on Microarchitecture, pages
125–135, Research Triangle Park, North Carolina, December 1997.

[12] J. Martinez, J. Renau, M. Huang, M. Prvulovic, and J. Torrellas.
Cherry: Checkpointed Early Resource Recycling in Out-of-order
Microprocessors. In International Symposium on Microarchitecture,
pages 3–14, Istanbul, Turkey, November 2002.

[13] M. Moudgill, K. Pingali, and S. Vassiliadis. Register Renaming and
Dynamic Speculation: An Alternative Approach. In International
Symposium on Microarchitecture, pages 202–213, Austin, Texas,
December 1993.

[14] M. Postiff, D. Greene, S. Raasch, and T. Mudge. Integrating Su-
perscalar Processor Components to Implement Register Caching. In
International Conference on Supercomputing, pages 348–357, Sor-
rento, Italy, June 2001.

[15] R. Russell. The Cray-1 Computer System. Readings in Computer
Architecture, 2000.

[16] D. Sima. Register Renaming Techniques. In V. Oklobzija, editor,
The Computer Engineering Handbook, chapter 6.2, pages 6.6 – 6.20.
CRC Press, 2002.

[17] L. Tran, N. Nelson, F. Ngai, S. Dropsho, and M. Huang. Dynamic
Register Sharing for Register Pressure Reduction: Design Issues and
Considerations. Technical report, Electrical & Computer Engineer-
ing Department, University of Rochester, January 2004.

[18] D. Tullsen, S. Eggers, and H. Levy. Simultaneous Multithreading:
Maximizing On-Chip Parallelism. In International Symposium on
Computer Architecture, pages 392–403, Santa Margherita Ligure,
Italy, June 1995.

[19] S. Wallace and N. Bagherzadeh. A Scalable Register File Archi-
tecture for Dynamically Scheduled Processors. In International
Conference on Parallel Architectures and Compilation Techniques,
pages 179–184, Boston, Massachusetts, October 1996.

[20] K. Yeager. The MIPS R10000 Superscalar Microprocessor. IEEE
Micro, 6(2):28–40, April 1996.

[21] J. Yi and D. Lilja. Improving Processor Performance by Simplifying
and Bypassing Trivial Computations. In International Conference
on Computer Design, pages 462–465, Freiburg, Germany, Septem-
ber 2002.

[22] J. Zalamea, J. Llosa, E. Ayguadé, and M. Valero. Two-level Hierar-
chical Register File Organization for VLIW Processors. In Interna-
tional Symposium on Microarchitecture, pages 137–146, Monterey,
California, December 2000.

[23] Y. Zhang, J. Yang, and R. Gupta. Frequent Value Locality and Value-
Centric Data Cache Design. In International Conference on Archi-
tectural Support for Programming Languages and Operating Sys-
tems, pages 150–159, Cambridge, Massachusetts, November 2000.

