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Abstract

Today’s general-purpose processors are increasingly us-
ing multithreading in order to better leverage the additional
on-chip real estate available with each technology genera-
tion. Simultaneous Multi-Threading (SMT) was originally
proposed as a large dynamic superscalar processor with
monolithic hardware structures shared among all threads.
Intel’s Hyper-Threaded Pentium 4 processor partitions the
queue structures among two threads, demonstrating more
balanced performance by reducing the hoarding of struc-
tures by a single thread. IBM’s Power5 processor is a 2-way
Chip Multiprocessor (CMP) of SMT processors, each sup-
porting 2 threads, which significantly reduces design com-
plexity and can improve power efficiency.

This paper examines processor partitioning options for
larger numbers of threads on a chip. While growing tran-
sistor budgets permit four and eight-thread processors to be
designed, design complexity, power dissipation, and wire
scaling limitations create significant barriers to their ac-
tual realization. We explore the design choices of sharing,
or of partitioning and distributing, the front end (instruction
cache, instruction fetch, and dispatch), the execution units
and associated state, as well as the L1 Dcache banks, in a
Clustered Multi-Threaded (CMT) processor. We show that
the best performance is obtained by restricting the sharing
of the L1 Dcache banks and the execution engines among
threads. On the other hand, significant sharing of the front-
end resources is the best approach.

When compared against large monolithic SMT proces-
sors, a CMT processor provides very competitive IPC per-
formance on average, 90-96% of that of partitioned SMT
while being more scalable and much more power efficient.
In a CMP organization, the gap between SMT and CMT
processors shrinks further, making a CMP of CMT proces-
sors a highly viable alternative for the future.
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1 Introduction

In recent years, the exploitation of higher levels of
instruction-level parallelism (ILP) by microarchitects has
been replaced with the pursuit of both ILP and thread-level
parallelism (TLP). Simultaneous Multi-Threaded (SMT)
processors are designed to exploit both ILP and TLP within
a dynamic superscalar processor core. As originally pro-
posed by Tullsen [31], the hardware resources of an SMT
processor are shared among all threads, permitting signif-
icantly greater resource utilization and higher instruction
throughput.

However, many commercial multi-threaded processor
implementations, such as the IBM Power5 [23] and Intel
Pentium 4 [12], are not implemented as a single mono-
lithic SMT core. Rather, hardware resources are partitioned
among the threads. The Power5 uses a Chip Multiproces-
sor (CMP) of SMT processors, each of which is limited
to two active threads. With this approach, a single, mod-
est SMT core is designed and verified and then duplicated,
which greatly reduces design complexity. Additional bene-
fits may be a higher clock rate and lower power dissipation
as the hardware structures and internal buses of each core
are greatly simplified compared to that in a monolithic four-
thread core. Intel’s Hyper-Threaded Pentium 4 processor
shares all execution units among all threads, but partitions
some queue resources between the two active threads. This
has been shown to reduce the hoarding of structures by a
single thread [25], thereby providing more balanced cycle-
level performance.

These initial implementations have been limited to two
threads per processor core. As higher levels of chip in-
tegration permit more threads to be supported on a single
die, the way in which hardware resources are partitioned
among the threads needs to be re-examined. The CMP of
SMT processors (CMP+SMT) approach has the disadvan-
tage of statically partitioning resources among subsets of
threads. The use of a larger number of cores in a CMP re-
sulting in more simultaneous thread execution capability in-
creases the likelihood that some threads are under-utilizing
their resources while other threads could use more. This
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may significantly reduce overall per-cycle throughput com-
pared to a monolithic approach. Intel’s Hyper-Threading
approach in the Pentium 4 [12] has the advantage of sharing
execution resources among all threads, but the implemen-
tation complexity grows dramatically with more than two
threads. Furthermore, the micro-op queues are partitioned
but the schedulers (issue queues) are not. The schedulers
are shared among threads and the only constraint is that the
number of slots allocated to a given thread is not allowed to
exceed a certain threshold. With more threads, much larger
schedulers would be required. Thus, alternatives to these
approaches must be pursued in order to yield efficient yet
viable implementations with larger numbers of threads.

In this paper, we compare the per-cycle performance and
energy efficiency of a variety of partitioned multi-threaded
processors for four and eight threads per die. We choose
a single monolithic SMT processor as a baseline against
which to compare more viable approaches. In addition to
the aforementioned CMP+SMT approach, we explore a par-
titioned SMT approach (P-SMT), a CMP of P-SMT pro-
cessors (CMP+P-SMT), and a relatively new approach, a
Clustered Multi-Threaded (CMT) processor. P-SMT is sim-
ilar to Intel’s Hyper-Threading in that the issue queue re-
sources used by a single thread are constrained, but with
the additional complexity reduction of explicitly partition-
ing the issue queue. The CMT approach partitions/clusters
the execution units and potentially the data cache as well.
Although extensive research has been conducted on single-
threaded clustered processors [3, 9, 13, 24, 27, 28, 35],
only recently has the idea of a CMT been proposed [11, 20].
The primary difference between the P-SMT and CMT ap-
proaches is that the former assigns threads to execution
units at issue time, while in the more highly partitioned
CMT processor, this assignment is done at dispatch time by
steering each instruction to a particular cluster. The tradeoff
is between the implementation complexity of many shared
execution units versus the utilization of these resources.

Our results show that the best performance is obtained
by restricting the sharing of the L1 Dcache banks and the
execution engines among threads. On the other hand, sig-
nificant sharing of the front-end resources is the best ap-
proach. The CMT approach, with appropriate sharing of
the front-end, execution, and data cache resources, yields
competitive, and sometimes even superior, cycle-level per-
formance compared to other partitioned machines, as well
as competitive energy efficiency. Finally, the last partition-
ing option that we explore is a CMP of CMT processors,
each of which has fewer clusters than a single CMT organi-
zation. The scalability of the front-end and the back-end in
this organization makes it an attractive alternative for future
highly-threaded processors.

The rest of this paper is organized as follows. In the
next section, we discuss the overall microarchitecture of the

machines that we evaluate, followed by our methodology
in Section 3. As CMTs are relatively new, in Section 4,
we explore CMT design alternatives and propose new op-
timizations, including a partitioned L1 Dcache option. Our
comparative results are presented in Section 5. Section 6
discusses related work, and we conclude in Section 7.

2 Partitioning Multi-Threaded Processors

There are many different options for partitioning proces-
sor resources among threads. Although not exhaustive, our
work tries to capture the vast majority of the options that are
most likely to be profitable.

We consider partitioning the three main microarchitec-
tural components: the front-end, the execution engine, and
the L1 DCache. The front-end includes the L1 ICache
banks, the Fetch Queue, rename, and dispatch. The exe-
cution engine is comprised of the issue queues, the register
file, and the functional units, while the L1 DCache consists
of the Load-Store Queue and the data cache banks. Within
these three major sub-systems, we consider options for par-
titioning the various queues and the L1 D-cache among the
threads, and grouping the execution resources.

Figure 1 shows the more conventional multi-threaded
microarchitectures that we explore in this paper. The SMT
option is a monolithic machine similar to that proposed by
Tullsen et al. [31, 32] without any level of partitioning. The
major machine resources, the Fetch Queue (FQ), the Integer
Issue Queue (IIQ), the Floating point Issue Queue (FIQ),
the Integer and Floating point Functional Units (IFUs and
FPUs), the Load-Store Queue (LSQ), and the caches, are
shared among all threads. Instructions are fetched based
on the ICOUNT mechanism as proposed in [32]. The L1
caches are highly banked to reduce inter-thread port con-
flicts.

In the partitioned SMT microarchitecture (P-SMT), all
machine queues (FQ, IIQ, FIQ, and LSQ) are partitioned
among all threads, and all other hardware resources are
shared by all threads. The fetch policy of our P-SMT design
is the same as in the SMT machine. The primary advantage
of partitioning queues in the P-SMT option is that it pre-
vents one thread from consuming so many resources so as
to starve other threads.

For both the SMT and P-SMT designs, the shared func-
tional units make it challenging to design a high speed and
power-efficient machine with four or more threads. The
large number of shared FUs required to exploit ILP in each
of these threads significantly increases bypass complexity.
A Chip Multi-Processor (CMP) of multi-threaded proces-
sors (either SMT or P-SMT – see Figure 1) circumvents
these problems by equally partitioning resources among two
or more processors, but this creates a resource sharing prob-
lem. Threads have access to only the resources on the
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Figure 1. Conventional multi-threaded machine
organizations

Figure 2. Clustered multi-threaded machine or-
ganizations

processor on which it was scheduled; idle resources (such
as unused FUs) on another processor cannot be accessed.
With higher levels of integration supporting more threads,
it becomes necessary for clock speed and power reasons to
create even more processors. If fewer than the maximum
number of supported threads are running, then there may be
many unnecessarily idle resources.

Clustered Multi-Threaded (CMT) processors support
multiple threads in a clustered processor organization [3,
9, 11, 13, 20, 24, 27, 28, 35]. A CMT with a single front-
end, two execution clusters, and two L1 DCache clusters
is shown in Figure 2. Like a CMP, clustering avoids large
monolithic structures that do not scale well (such as the
large group of connected FUs in SMT and P-SMT designs),
which increases clock speed, reduces power consumption,
and increases scalability. Unlike a CMP, however, all of the
resources in a CMT are available to all threads as commu-
nication links connect the front-end to all clusters, as well
as the clusters themselves. This permits better resource uti-
lization than CMPs.

With greater levels of integration, however, it becomes
necessary to implement more clusters in order to maintain
a scalable design. Thus, the maximum distance (in cycles)
between clusters increases. This makes it more profitable
to restrict each thread to a subset of the clusters rather than
spread them across all clusters, as the added communication
cost quickly overrides any ILP improvement; moreover, this
reduces inter-thread resource contention, within clusters as
well as over communication links. Thus, at higher levels of
integration, it eventually becomes attractive to implement a
CMP of CMTs (Figure 2) rather than a single large CMT.

Because CMTs are relatively new, we explore options
for sharing front-end, execution, and L1 Dcache resources
among threads in Section 4, before comparatively analyz-
ing the different partitioning options in Section 5. First, we

discuss our methodology.

3 Methodology

3.1 Simulation Infrastructure and Machine Con-
figurations

Our simulator is based on Simplescalar-3.0 [8] for the
Alpha AXP instruction set with the Wattch [7] power ex-
tensions. Like the Alpha 21264 [16], the register update
unit (RUU) is decomposed into integer and floating point
issue queues and register files, and a reorder buffer (ROB).
The memory hierarchy is modeled in significant detail, in-
cluding accounting for bus contention between multiple L1
DCaches, or multiple L1 DCache banks, and the unified L2
cache, for the CMP and CMT options.

Support for multithreading has been added by replicat-
ing the fetch control, rename, and ROB per thread. For the
P-SMT design, per-thread FQ, IIQ, FIQ, and LSQ queues
are implemented as discussed in the previous section. Be-
cause the threads in our study are independent applications,
the CMP option in our simulator simply splits the front-end,
execution, and L1 Dcache resources into a number of inde-
pendent sections corresponding to the number of processors
(SMTs, P-SMTs, or CMTs). Each processor in this context
runs the same number of threads, and threads are randomly
assigned to processors. To make a fair comparison, we en-
sure that threads are assigned to shared processors in a CMP
exactly as they are assigned to shared clusters in a CMT.

For the clustered microarchitecture, we implemented Re-
mote Access Window (RAW) structures [35] for waking up
the remote consumer of a physical register. Unlike in [35],
however, the physical register file serves as both the local
register file and the Remote Access Buffer (RAB); no sepa-
rate RAB is used. We assume a ring interconnect in which
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each cluster is directly connected to two other neighboring
clusters via two pairs of uni-directional links in each direc-
tion. These links are required for load and store communi-
cation as well as to bypass register results among clusters.
Our simulations show that a single pair of links significantly
degrades performance, while performance tails off beyond
two pairs. Our simulator accounts for the latency of these
links (one cycle per hop) as well as contention for their use.
The front-end is assumed to be co-located with cluster 0,
and the distribution of instructions to the issues queues takes
additional cycles based on the location of the cluster. For
the ICOUNT fetch policy, per thread counters are required
to prioritize the threads. We model the propagation delay
from the cluster to the front-end to update these counters.
(As in [32], instructions in the Fetch Queue are also consid-
ered in our ICOUNT scheme.) We also use this information
to gate any thread that occupies at least ��� of the total issue
queue resources (across all clusters), where � is the number
of threads. In all cases, the communication latency is calcu-
lated as the number of hops between the source cluster and
the front-end, plus any added delay due to contention.

In our CMT model, once individual threads are assigned
to particular clusters and to particular cache banks (we ex-
plore policies for both of these in Section 4), each thread is
steered according to the heuristics in [3]. For instructions
other than loads and stores, the mechanism of [9] that steers
an instruction (and its destination register) to the cluster that
produces most of its operands is used, using a criticality
predictor [14, 33] to give a higher priority to the cluster that
produces the critical source operand (with a provision for
load balancing as is done in [9]).

Loads and stores are assigned to the cluster whose L1
DCache handles the corresponding memory address. A
bank predictor [34] is used if the effective address is not
known at rename time [3]. Once the effective address is
computed, the request is sent to the correct cache bank via
the interconnect if there was a misprediction, data is fetched
from the cache bank, and returned to the requesting clus-
ter. As the LSQ is distributed among the clusters along
with the L1 DCache banks, a dummy slot is created in the
other clusters whose banks are assigned to the particular
thread [35]. Subsequent loads from this thread that are be-
hind the dummy slot in these clusters are prevented from
proceeding, because there is an earlier store with an unre-
solved address that could potentially cause conflicts. Once
the effective address is computed, the information is sent to
the LSQs associated with the banks across which a thread is
distributed and the dummy slots in the corresponding LSQs
except one are removed. This multicast operation increases
the traffic on the interconnect for the register and cache data
(which we model).

Table 1 lists the configuration parameters used in the
evaluations. For all the machine configurations and experi-

ments, the same total hardware of Table 1 is used unless ex-
plicitly mentioned. Figure 3 shows the performance change
of increasing the size of the execution engine, including reg-
ister files, issue queues and functional units, for SMT ma-
chines with two, four, eight, and 16 integer functional units
(SMT2, SMT4, SMT8, and SMT16, respectively). Perfor-
mance steadily improves as the total number of execution
engines is increased. Comparing SMT2 to SMT16, the im-
provement is about 3.25X for 4 threads and about 4X for
8 thread workloads. Although perhaps justified in terms
of performance improvement, as we show later, the large
SMT16 configuration is very energy inefficient. This is one
reason that we also explore partitioned SMT options, in ad-
dition to the CMT machine and various CMP options.

There are a total of eight L1 ICache banks to allow fetch-
ing from multiple threads in the same cycle. Similarly,
the L1 DCache consists of a total of eight line-interleaved
banks, effectively providing eight read and write ports, 1
per bank, in the absence of bank conflicts. In the base
CMT architecture, a subset of the banks is associated with a
cluster, with additional communication latency for access-
ing banks associated with a different cluster. In the SMT
and P-SMT processors, the latency of the centrally located,
multi-banked, L1 DCache is assumed equal to that for ac-
cessing a single bank in the CMT. This optimistic latency
assumption favors the SMT and P-SMT configurations over
the CMT.

One key partitioning parameter in our comparative anal-
ysis concerns the size of the execution resources that are
grouped. We define this as the number of integer FUs that
are grouped together, either within a SMT or P-SMT pro-
cessor, or in a cluster in a CMT organization. Each of these
groups has the appropriate number of FP FUs and issue
queue and register file resources according to how the to-
tal resources in Table 1 are divided. Although we permit
larger sizes in SMT and P-SMT processors for comparison
purposes, we evaluate CMT processors with sizes of two
or four. We found that a cluster size of one creates exces-
sive communication in a CMT, while a larger size will limit
clock speed and increase power dissipation as technology
scales.

In our results, we designate different machine configura-
tions according to the number of processors, the size of the
grouped execution resources, and for the CMT, the num-
ber of clusters. The machine CMPx has x processors, pro-
cessors SMTy and P-SMTy have y integer FUs, and proces-
sor CMTz y has z clusters of size y. Thus, the organization
CMPx CMTz y has x CMT processors, each of which has z
clusters of size y (y integer FUs).
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Figure 3. Execution engine size in SMT machines
Table 1. Simulator parameters

Branch predictor comb of bimodal and 2-level
Bimodal predictor entries 2048
Level 1 table entries 1024
Level 2 table entries 4096
BTB entries, associativity 2048, 2-way
Branch mispredict penalty 10 cycles
Fetch policy ICOUNT.8.32
Fetch width 32
Fetch queue size 32 per thread
Integer Issue queue size 160
FP Issue queue size 160
Register Access Window size 160
Load/Store queue size 384
Issue width 24
Dispatch and commit width 32
Integer Physical Registers 512
FP Physical Registers 512
Reorder Buffer Size 512 per thread
Integer FUs 16
FP FUs 8
L1 ICache 64KB, 2-way
L1 DCache 16KB, 2-Way, 8 banks, line-

interleaved
L1 Dache Latency 2 cycles
L2 Cache 2MB, 8-way
L2 Cache latency 20
TLB (each, I and D) 128 entries, 8KB page size, fully

associative, per thread
Cluster interconnect latency 1 cycle per hop
Communication Buffer size 15 per cluster per direction
Memory latency 100 cycles

3.2 Benchmarks and Multi-Threaded Workloads

Table 2 lists the SPEC2000 benchmarks used in our sim-
ulations, classified according to whether they are from the
integer ( i) or floating point ( f ) suites, and according to
whether they are limited by communication (com) or the
number of resources for exploiting ILP (ilp). We deter-
mined these classifications experimentally by running each
benchmark individually and observing the change in IPC as
the number of clusters is increased. The ilp benchmarks ex-
perience a gain in performance with more clusters, while

Table 2. Benchmark classification

Benchmark Classification Benchmarks Included
com i bzip, gcc, gzip, mcf, parser, perlbmk, twolf, vpr
com f art, equake
ilp f applu, galgel, lucas, mesa, mgrid, swim

Table 3. Multi-threaded workloads

Workload Name Benchmarks Included
com 8 i bzip, gcc, gzip, mcf, parser, perlbmk, twolf, vpr, galgel
mix 8 f applu, mgrid, swim, equake, mesa, lucas, art, galgel
com 8 if bzip, perlbmk, gzip, art, parser, vpr, twolf, equake
mix 8 if mesa, parser, swim, twolf, art, gcc, lucas, mgrid
com 4 i bzip, mcf, perlbmk, vpr
mix 4 if gzip, applu, gcc, mesa
ilp 4 f applu, lucas, swim, mgrid
mix 4 f art, equake, galgel, mesa

the performance of the com benchmarks either stays con-
stant or degrades. The former is due to the ability to make
use of more execution resources or L1 Dcache banks (or
both), while the latter is due to inter-cluster register to regis-
ter communication, or accesses to remote L1 Dcache banks
(or both). In any event, the ilp benchmarks tend to want to
spread among more clusters than the com benchmarks.

Table 3 lists the multi-threaded workload mixes used to
evaluate the different architectural configurations. The or-
der in which the benchmarks are listed represents their adja-
cency during execution. The classification is similar to Ta-
ble 2, except that we can have a mix of ilp and com (mix )
and integer and floating point (if ) benchmarks, and either
four or eight thread workloads.

Each individual benchmark was compiled with gcc with
the -O4 optimization and run with its reference input set,
fast-forwarding for 2 billion instructions, and then running
for the next 100 million instructions. We therefore report
the resulting IPC from executing 100 million instructions
from each thread in the workload mix.
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3.3 Metrics

As a performance metric, we chose the geometric mean
of the relative IPC ratings of the � threads:

�

��
�

������

������

�

Since the metric used is a relative measure, the use of a
geometric mean avoids the issue of which configuration is
placed in the numerator or in the denominator [21]. The ge-
ometric mean equally weighs a performance improvement
in one thread and an identical performance degradation in
another simultaneously executing one. The harmonic mean
would overly penalize a performance degradation, while the
arithmetic mean would overly reward a performance im-
provement. The geometric mean avoids skewing the results
in either direction when presenting relative performance.

For energy, we report the average energy per instruction
normalized to that of the SMT16 organization. This is an
appropriate metric given that we run the exact same instruc-
tions in all configurations for a given workload.

4 CMT Optimizations

To date, there have been few efforts that explore opti-
mizations for CMT processors. In this section, we explore
alternatives for assigning threads to execution clusters, for
organizing the L1 DCache banks, and partitioning the front
end.

4.1 Thread to Cluster Assignment

In this section, we examine static and dynamic schemes
for assigning threads to clusters. The manner in which the
distribution is done preserves locality (i.e., threads are dis-
tributed to neighboring clusters) while taking the number
of threads and the individual thread characteristics into ac-
count. We explore a range of possible static distributions of
threads to clusters, from clusters being exclusively assigned
to threads to being shared by multiple threads. Restricting
the number of clusters assigned per thread reduces average
communication cost and conflicts for per-cluster resources
(as they are shared among fewer threads), but prevents re-
sources from being available to all threads.

Figure 4 gives results for various static cluster assign-
ment (CLA) schemes for the CMT8 2 and CMT4 4 config-
urations for the various four and eight thread workloads.
For each workload, the results are normalized to the per-
formance achieved by CMT8 2 for that workload. We first
note that in all cases, distributing the threads among all
clusters (CMT8 2 CLA8 and CMT4 4 CLA4) produces the
worst performance. It is always better to assign threads to

a subset of the clusters, thereby restricting communication
and inter-thread contention for cluster resources. With four
threads, the best static approach is to separate the threads
completely from one another, assigning them to unique
clusters (one cluster each for CMT4 4 and two clusters each
for CMT8 2). The same is true for the com workloads with
eight threads, while the mix workloads perform best with
two threads sharing each cluster. This is because of two fac-
tors. First, the ILP threads generally require more resources
than provided in a single cluster for CMT4 4 and two clus-
ters for CMT8 2. The com benchmarks on the other hand,
do not require significant resources, and thus the mixing of
com and ilp threads on a cluster permits progress to be made
by the ilp thread while the com thread is stalled due to com-
munication.

As workload behavior may vary over time, we also de-
veloped a dynamic scheme that varies the thread-to-cluster
assignment. Based on the static assignment results, we con-
sider all but the CMT8 2 CLA8 option to be potential candi-
dates. After every 1M cycles, we execute each of these can-
didate thread-distribution options for 1K cycles and record
the performance. After five such instrumentations, we pick
the thread-to-cluster assignment that was the best most of-
ten, choosing the larger number of clusters in the case of a
tie. The dynamic scheme closely matched the best static
scheme in all cases, even exceeding its performance by
about 10% in two cases. However, our results do not make
a compelling case for the dynamic approach, as assigning
threads to separate clusters works virtually just as well as
the dynamic scheme in almost all cases, as also concluded
by Latorre et al. [20].

4.2 L1 DCache Bank Assignment & Partitioning

In the CMT microarchitectures studied thus far, the L1
DCache banks are evenly distributed among the clusters as
proposed by Zyuban [35]. The LSQ is also split across the
different clusters. We explore the sharing of banks among
all threads, in which case the banks are organized in a line-
interleaved manner, as well as a private approach in which
a given bank is assigned to a single thread independent of
the thread distribution across the clusters.

The obvious tradeoff in the number of banks that are as-
signed to each thread is that between greater cache capacity
and greater inter-cluster communication, as load operations
become distributed among more clusters as more banks are
assigned to threads. In terms of shared versus private banks,
there is greater inter-thread interference with shared banks,
but less efficient use of overall cache resources with private
banks.

There are several other more subtle differences between
these L1 DCache options. The bank misprediction rate, and
thus the effectiveness of instruction steering, is dependent
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Figure 4. Static & dynamic thread to cluster assignment

on the number of banks: with fewer banks assigned to a
thread, the lower the bank mispredict rate, which results in
fewer corrective L1 DCache accesses. This is one advan-
tage of limiting the degree of cache bank sharing among
threads, or using fewer, private banks. A second advantage
is that fewer LSQ entries are occupied by dummy slots as
the number of per-thread banks is reduced, reducing the oc-
currence of a full LSQ. This also leads to less inter-cluster
traffic as the notification of a completing store has to be
multicast to fewer clusters. This is one advantage of the
Partitioned option over the Decentralized one.

We first gain an understanding of the sensitivity of the L1
DCache size and bank assignment in an SMT architecture
for our workloads. This permits us to isolate the effects of
thread conflicts within banks and cache capacity constraints
from the CMT-specific constraints discussed above. Fig-
ure 5 shows the performance of varying the total number
of banks, and the number assigned per thread when using
eight banks, for SMT16 averaged over the four and eight
thread workloads. Performance relative to the single bank
result in each case steadily improves as the total number
of banks is increased to eight. With eight banks and four
threads, each thread should be given a minimum of two
banks; this is the reason that there is one less bar for the four
thread. Although eight banks are necessary for good SMT
performance, restricting the number of banks per thread has
only a small impact on performance. These results indicate
that it is reasonable to consider restricting the number of L1
DCache banks assigned to threads in a CMT machine.

Figure 6 shows a four cluster CMT that illustrates the

partitioning options that we evaluate for the L1 DCache1.
In the Centralized scheme, the L1 Dcache in its entirety
(all banks) and the LSQ are co-located with cluster 0 (as
is the L2 cache). Load and store instructions originating
from other clusters must traverse the inter-cluster intercon-
nect to send the request, and the result returns over the inter-
connect as well. A Decentralized organization spreads the
banks evenly over the different clusters. This is the option
that we have been exploring thus far. Finally, Partitioned
is an in-between option that assigns banks to between two
and ���, inclusive, of the � clusters. An additional degree
of freedom that we explore is the assignment of threads to
banks. In the Decentralized and Partitioned options, a par-
ticular L1 Dcache bank may be assigned to more than one
thread (shared) or restricted to one particular thread only
(private). In this section, we explore the tradeoff between
the Decentralized and Partitioned options with shared and
private banks.

Figure 7 compares the results for these different schemes
for each of our workloads for the CMT8 2 organization.
Unlike the SMT where assigning all threads to all of the
eight banks gives good results, the Centralized scheme for
the CMT never performs best. The reason is the added
communication overhead of accessing cluster 0 for all load
and store operations significantly increases load latency and
also increases network traffic. This is shown in Table 4,
which gives various statistics related to the different cache

1Note that this does not accurately reflect the layout; the clusters are
arranged so that the ring interconnect, not shown here, provides one-cycle
latency between adjacent clusters, even the “end” ones. Also, we consider
eight clusters in our results but four are shown here for space reasons.
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Table 4. Cache statistics over all 8 thread work-
loads

Cache organization LSQ oc-
cupancy

Dummy
STORES

Bank predic-
tion accuracy

Decentr, 8 banks/thrd 83.05 104.5 68.15 %
Decentr, 4 banks/thrd 92.25 50.47 73.64 %
Decentr, 2 banks/thrd 88.76 16.27 84.94 %
Decentr, 1 banks/thrd 89.84 0 100 %
Centralized 98.76 0 N/A
2 Partitions, 1 parts/thrd 95.75 0 N/A
4 Partitions, 1 parts/thrd 93.88 0 N/A

Cache organization load
latency
(cycles)

DL1Miss
rate

Communication
buffer occu-
pancy

Decentr, 8 banks/thrd 17.73 6.92 % 6.73
Decentr, 4 banks/thrd 16.23 6.92 % 5.48
Decentr, 2 banks/thrd 14.47 6.98 % 3.62
Decentr, 1 banks/thrd 13.39 7.38 % 1.38
Centralized 17.71 6.86 % 4.84
2 Partitions, 1 parts/thrd 17.12 6.86 % 4.59
4 Partitions, 1 parts/thrd 14.92 6.96 % 2.72

options. As expected, bank prediction rates improve with
fewer banks/thread and the total number of dummy stores
decreases. Communication network traffic (measured as
the number of buffered messages per cycle in the system)
is reduced with the Partitioned option compared to Decen-
tralized due to the elimination of dummy stores and asso-
ciated multicasts. The average load latency increases, how-
ever, due to the increase in the average distance between
the clusters and the bank partitions. As expected, the miss
rates do not change significantly between schemes with the
same total number of banks per thread. The net effect is
a small difference between the best Decentralized and Par-
titioned approaches. However, the Partitioned option does
not require bank prediction or dummy stores; we therefore
choose it due to its simplicity and expected robustness over
a variety of workloads. Our conclusion for the sharing of
L1 Dcache banks is similar to that for execution clusters,
i.e., sharing should be restricted in order to achieve the best
performance.

4.3 Partitioned Versus Shared Front-end

In this section, we examine the effect of sharing the
front-end in clustered multi-threaded processors given that
the back-ends are privately assigned to the threads. Fig-
ure 8 shows the relative performance of shared versus pri-
vate front-ends for different workloads and back-end op-
tions. Partitioning the front-end into four clusters clearly
degrades performance. For four threads, the performance
loss is more pronounced as each front-end is occupied by
a single thread, which greatly reduces its utilization. With
four threads, moving from four to two front-ends has the
greatest impact on the mix workloads (a 20%-30% improve-
ment) due to their orthogonal machine resource require-
ments.

Similar results are observed with eight threads although
the differences are less pronounced. Overall, although the
com 4 i and ilp 4 f workloads have slightly lower perfor-
mance with one compared to two front-ends, a single, uni-
fied, front-end is the best performing option, and eliminates
a crossbar connection to the back-ends.

5 Comparative Analysis of Partitioning Op-
tions

Figure 9 compares the performance of various SMT
options (monolithic, partitioned, with and without flush-
ing [30]), CMT, and various CMP options relative to the
SMT machine, while Figure 10 provides relative energy per
instruction results. The first five bars are uniprocessor ma-
chines, while the remaining ones are various CMP options.

In comparing the uniprocessor machines, we first note
that P-SMT provides a large performance boost over SMT
for both 4 and 8 thread workloads. As noted previously,
providing per-thread queue resources prevents a subset of
the threads from hoarding machine resources and degrad-
ing overall performance. Even with the use of flushing [30],
which squashs the instuctions of threads that experience
DL2Cache misses in order to free resources so that other
simultaneously executing threads can utilize them, P-SMT
still outperforms SMT. (Note that flushing would have lit-
tle impact if used with P-SMT due to the use of separate
queues.) This is because flushing only addresses the L2
miss source of issue queue clog, whereas partitioned queues
by their design address all sources. In addition, flush-
ing wastes fetch bandwidth when instructions are flushed
from the pipeline whereas partitioned queues incur no such
penalty.

The cycle-level performance of the CMT machines is
very competitive with that of P-SMT. The CMT4 4 Dyn or-
ganization even comes within 90-96% of the cycle level per-
formance of P-SMT16, yet the CMT design will surely be
simpler to implement and achieve a higher clock rate. Its
energy is also slightly less than 40% of SMT16 and less than
50% of that of P-SMT16. Flushing causes extra energy to
be consumed due to the need to fetch, decode, and dispatch
the same instructions after flushing is invoked.

The large energy reductions on the CMT architecture rel-
ative to the SMT machine are mainly the result of reduc-
tions in the register files and result bus. The issue queues
and LSQs experience a noticeable energy reduction as well.
These queues and the register files have essentially been
partitioned into 8 banks and the energy savings come from
the access of a much smaller structure. It could be argued
that the SMT design could also use a banked organization.
However, this would come at a cost of additional complex-
ity as well as some additional energy for the long wires
across banks that are avoided in the case of clustering. The
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result bus in each cluster of the CMT is much shorter and
lightly loaded compared to that for the SMT architecture.
Some of the energy reduction in the result bus is compen-
sated for by the Communication component, i.e., the energy
in the cluster interconnects. However, since communication
is point-to-point and occurs only when dependencies exist
across clusters, while results are always broadcast on the re-
sult bus in the SMT design, this additional energy is much
smaller than that saved in the result bus.

As expected, the result bus and register file energy are
similar for both SMT and P-SMT, but the issue queue (IQ)
energy increases despite the partitioning in P-SMT. This
is due to the interconnection network required between the
queues and the shared FUs (which is not required in either
SMT or CMT), the contribution of which we lump into the

IQ category.

Previously, we showed how CMT4 4 Dyn outperforms
CMT8 2 Dyn. The difference in clock power due to fewer
clusters also manifests itself in a similar energy difference
as shown in Figure 10. The CMT8 2 Dyn has the advan-
tage, however, of having a smaller cluster size, and there-
fore would be expected to have either a faster clock or a
shallower intra-cluster pipeline. These factors are not taken
into account in our results.

The CMP options that we evaluate include two and four
processor SMT and P-SMT organizations, an eight single-
threaded (ST) processor configuration, and two processor
CMT organizations. Four processor CMT options are not
considered as this would require twice the number of FUs
as the other options.
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We first observe that the performance gap between the
P-SMT and CMT options closes considerably for the CMP
organizations (but the energy gap closes as well). The rea-
son is that a major advantage of P-SMT has been dimin-
ished: its ability to assign threads to any of the FUs. Thus,
there is a non-negligible performance drop from P-SMT16
to CMP2 P-SMT8, while the performance of the CMT or-
ganizations (which have the same cluster size but half the
number of clusters compared to the uniprocessor CMT op-
tions) remains steady. Recall that the CMT cluster and
cache assignment policies restrict threads to a few clusters.
Therefore, creating a CMP of fewer cluster CMTs has very
little impact. The energy of the SMT and P-SMT options
drops significantly in a 2-processor CMP due to signifi-
cant reductions in register file, result bus, and IQ energy.
Yet CMT is compellingly better than CMP2 P-SMT8 when
considering the complexity in implementing an out-of-order
processor with eight integer ALUs (compared to four with
CMT4 4).

The remaining three CMP organizations, consisting of
four processor SMT and P-SMT configurations, and eight
single-threaded processors are much more implementable
than the previous SMT and P-SMT options. However, their
performance is significantly less than the CMT options. The
flexibility advantage of SMT and P-SMT over CMT is non-
existent at this point; in fact, the CMT organizations have
more flexibility as each thread has access to more FUs via
the inter-cluster network. Furthermore, both front-end and
back-end resources are now highly divided among threads
with four and eight processor CMPs. Thus, our results make
the case for CMT4 4, which outperforms CMP4 P-SMT4
by a wide margin for our workloads.

Finally, we note that the uniprocessor CMT options and
dual processor of smaller CMTs achieve almost identi-
cal performance and energy efficiency. For a coarse-grain
threaded workload environment like that modeled here, the
choice is one of hardware and software implementation
complexity. More pronounced differences may occur for
parallel workloads, but this is the subject of future work.

In summary, a Clustered Multi-Threaded organization
with a single front end, clusters of four integer units, a
Partitioned L1 DCache, and appropriate thread distribution
heuristics, can achieve 90-96% of the cycle-level perfor-
mance of a partitioned SMT processor with 16 integer units
shared among all threads. The CMT is much more realiz-
able, more energy efficient, and is likely to have either a
higher clock or lower internal latencies. The CMPs of more
realistic P-SMT and SMT configurations fall far short of the
CMT performance. Thus, for future chips supporting four
and eight thread workloads, a uniprocessor CMT or a dual
processor of simpler CMTs are very attractive options.

6 Related Work

As feature sizes shrink and wires become slower relative
to logic, future microprocessors will tend to be more com-
munication bound than computation bound [1], and it will
not be possible to increase the number of threads in a SMT
processor further. Zyuban and Kogge [35] proposed a mul-
ticluster architecture to reduce power consumption in su-
perscalar processors. A multicluster architecture is power-
efficient, tackles the wire delay problem, and is scalable.
The only drawback of such an architecture is the interclus-
ter communication cost. Various groups [2, 3, 4, 6, 9, 10]
have studied cluster assignment mechanisms for one thread
to reduce the overhead of inter-cluster communication. We
extend their ideas to a clustered architecture with multiple
threads.

Krishnan and Torrellas [18] investigated a hybrid
SMT/CMP approach of multiple SMT processor cores on
a chip. Their results showed that limiting the level of SMT
allowed performance benefits comparable to full-scale SMT
over the pure CMP approach while retaining its shorter cy-
cle time advantage. Hetrogeneous multi-core architectures
for multi-threaded workloads have been studied by Kumar
et al. [19]. They also proposed dynamic thread to core as-
signment policies. Recently, Collins and Tullsen [11] eval-
uated the effect of clustering the front-end, execution en-
gine, and register file on the overall performance of a mul-
tithreaded processor. Cache banking and clustering was not
evaluated. Their results showed that multithreading can re-
duce the negative IPC impact of clustering. Raasch and
Reinhardt [25] studied the performance impact of partition-
ing hardware resources in SMT processors and showed that
partitioning of the storage structures avoided starvation due
to resource contention, while the sharing of issue band-
width and functional units contributed to SMT’s improved
throughput. Latorre et al. [20] have also studied clustered
multithreaded processors. Their work is the closest to our
proposed CMP CMT architecture except that simultane-
ous use of individual front-ends or back-ends by multiple
threads is not considered. Also, they don’t study processors
with more than four threads, cache partitioning options, or
detailed comparisons with other partitioned multi-threaded
alternatives. [3, 26] investigated cache designs for clus-
tered microarchitectures. Balasubramonian et al. [3] used
dummy stores for memory disambiguation, whereas Racu-
nas and Patt [26] used a centralized partition assignment
table for maintaining information about data assignment to
partitions. We chose the former approach of dummy stores
in our design to avoid the extra hardware complexity.

Tullsen et al. [31] proposed simultaneous multithreading
(SMT) to attack both horizontal and vertical waste. They
showed a 52% average speedup as compared to a four-
processor, single-chip multiprocessor with comparable ex-
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ecution resources. Intel’s Hyper-Threaded Pentium 4 pro-
cessor [17, 22] is a SMT processor with support for two
threads, which was analyzed by Tuck and Tullsen [29]. Huh
et al. [15] studied the space of CMP organizations. Two
commercial CMPs include IBM’s Power5 [23], a CMP of
SMT processors, and the experimental Piranha system [5]
developed at Compaq. The latter integrates eight simple Al-
pha processor cores along with a two-level cache hierarchy
onto a single chip. Our work includes these design points
in a comparative evaluation of CMTs and CMPs with and
without SMT support for up to 8 contexts.

7 Conclusions and Future Work

With higher levels of integration supporting more on-
chip threads, the way in which the resources in multi-
threaded processors are partitioned needs to be examined.
In this paper, we compare the performance and energy ef-
ficiency of several partitioning options in a 4 to 8-thread
multi-threaded architecture, ranging from chip multipro-
cessing (CMP) to simultaneous multi-threading (SMT), for
a fixed amount of total resources. Our analysis shows that
the best performance is obtained by partitioning (and re-
stricting the sharing of) the L1 data cache banks and execu-
tion units among threads, but allowing significant sharing of
the front-end resources. The corresponding clustered multi-
threaded (CMT) architecture is highly competitive with un-
realizable SMT processors, achieving 90-96% of the cycle-
level performance of a partitioned SMT (which improves
on the base SMT), while dissipating about 50% of its en-
ergy. Adopting a dual-processor CMP approach closes the
performance gap between the SMT and CMT processors,
as the major advantage of the former, flexibility in the as-

signment of threads to FUs, diminishes. Further dividing
the resources for SMT processors among four processors
creates more realizable organizations, but their performance
falls far short of the CMT alternatives. We find that a mono-
lithic CMT and a dual processor CMP of CMT processors
are very attractive options for future designs.

We have recently incorporated support in our infrastruc-
ture for parallel applications and are exploring support for
database and server-oriented benchmarks. They are the sub-
ject of our ongoing work.
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